JPH0371464B2 - - Google Patents

Info

Publication number
JPH0371464B2
JPH0371464B2 JP59271359A JP27135984A JPH0371464B2 JP H0371464 B2 JPH0371464 B2 JP H0371464B2 JP 59271359 A JP59271359 A JP 59271359A JP 27135984 A JP27135984 A JP 27135984A JP H0371464 B2 JPH0371464 B2 JP H0371464B2
Authority
JP
Japan
Prior art keywords
ring double
cyclopentadiene
double bonds
petroleum resin
concentration ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59271359A
Other languages
Japanese (ja)
Other versions
JPS61148249A (en
Inventor
Takeshi Matsumoto
Suetaka Hayashida
Yasunobu Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Maruzen Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Oil Co Ltd filed Critical Maruzen Oil Co Ltd
Priority to JP59271359A priority Critical patent/JPS61148249A/en
Publication of JPS61148249A publication Critical patent/JPS61148249A/en
Publication of JPH0371464B2 publication Critical patent/JPH0371464B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はノルボネン環二重結合のシクロペンテ
ン環二重結合に対する濃度比が0.40以下の値を示
す熱重合シクロペンタジエン系石油樹脂からなる
ゴム用配合材ならびにそれをジエン系重合体に配
合してなるゴム組成物に関する。該ゴム組成物は
耐カツテイング姓および耐チツピング性において
著るしい改善がなされている。 高速バスやトラツク等の大型タイヤや土木建設
用のOTR(Off The Road)タイヤは通常過酷な
条件下で使用されるため、これらのタイヤには常
に高荷重の負荷が発生し、特に岩石等との衝突に
よりタイヤトレツド部のカツテイングやチツピン
グがしばしば生じ安全上の問題となつている。 (従来の技術) これらの耐カツト性および耐チツプ性の改良開
発は古くから行われ、天然ゴム、スチレン−ブタ
ジエン(SBR)等の最適なジエン系重合体の選
択あるいはジシクロペンタジエンを主体とする石
油樹脂を補強剤として添加する方法が提唱されて
いる。 特公昭48−38615号はジシクロペンタジエン系
樹脂を、特公昭52−43664号ではフエノール樹脂
で変性したジシクロペンタジエン樹脂を、また特
公昭58−18938号ではジシクロペンタジエン−オ
キシスチレン共重合体をそれぞれSBRあるいは
天然ゴムに配合することによつてタイヤトレツド
部の耐カツト性および耐耐チツプ性を改良できる
ことを各々開示している。しかしながらいずれの
方法も十分に満足されるべきものではなく、特に
今日の交通量の激増や車両条件の過酷化に伴ない
更により高いタイヤ性能が要求されている。 (解決しようとする問題点) 本発明の目的は、更に優れた耐カツト性および
耐チツプ性を示すゴム組成物ならびにそれに用い
る配合材を提供することにある。高速度あるいは
高荷重で回転するタイヤトレツド部と岩石等との
衝突あるいは摩擦等によつて生じるカツテイング
あるいはチツピングの程度を評価するには、実走
行テストやミニチユアータイヤによるシユミレー
シヨンテストあるいは衝撃カツト試験等複雑な実
用性能試験が必要であり、多大な費用、労力及び
時間を必要とする。しかし、上記3件の特許公報
等に該性能の実験室評価法として引張試験法が教
示されており、しかもこの試験法が実用性能と良
く相関することも確認されている。引張試験はゴ
ム組成物の伸びと応力とを測定することによりゴ
ム組成物の弾性エネルギー特性を示す方法であ
る。タイヤトレツド部のカツテイングおよびチツ
ピングの発生度合が岩石等との衝突等により生じ
るエネルギーをタイヤトレツド部がどれ程吸収す
るかで左右されることを考えると該試験法はよく
理解される方法である。 したがつて換言するならば本発明の目的はより
大きな弾性エネルギー特性すなわち、常温および
高温(100℃)でより大きな応力値と伸びを示す
ゴム組成物、特に優れた引張応力を示すゴム組成
物ならびにそれに用いる配合材を提供することに
ある。この様な常温及び高温で引張応力の優れた
ゴム組成物はタイヤトレツド部のうち、常時高い
荷重を受けやすい部分に特に有効である。 (問題を解決するための手段) 本発明者らは種々のゴム組成物用石油樹脂につ
いて鋭意検討を重ね開発改良を行なつた結果、ノ
ルボネン環二重結合のシクロペンテン環二重結合
に対する濃度比が0.40以下になる様に調整したシ
クロペンタジエン系石油樹脂がより一層の配合効
果を示すことを見い出し本発明を完成した。 すなわち、本発明の要旨はノルボネン環二重結
合のシクロペンテン環二重結合に対する濃度比が
0.40以下の値を示す熱重合シクロペンタジエン系
石油樹脂をジエン系重合体に配合してなるゴム組
成物ならびに上記石油樹脂からなるゴム用配合材
に存する。 ノルボルネン環二重結合のシクロペンテン環二
重結合に対する比は試料の水素核磁気共鳴スペク
トル(NMR)で約5.9ppm(δ)付近のノルボル
ネン環二重結合のプロトンに基づくピークの約
5.6ppm(δ)付近のシクロペンテン環二重結合の
プロトンに基づくピークに対する面積比(濃度
比)を測定することによつて求められる。すなわ
ち、本発明の配合材および組成物で用いられる前
記のシクロペンタジエン系石油樹脂は核磁気共鳴
スペクトルの上記の面積比が0.40以下のものであ
る。 上記の特性を有するシクロペンタジエン系石油
樹脂は特別な処理を要さずに、通常の方法で条件
を適宜選択することによつて製造することができ
る。すなわち、本発明で用いるシクロペンタジエ
ン系石油樹脂は通常の方法で製造され、ノルボル
ネン環二重結合とシクロペンテン環二重結合の濃
度比は熱重合条件、溶媒除去条件あるいは希望に
応じて行われる2段目の重合条件の適切な設定に
よつて主に調整される。以下その詳細について述
べる。 本発明で言うシクロペンタジエン系石油樹脂と
はシクロペンタジエン、ジシクロペンタジエンあ
るいはこれらのアルキル置換体あるいはこれらの
混合物を主成分として熱重合させた石油樹脂であ
り、これらと共重合可能なオレフイン類炭化水素
化合物との共重合樹脂も含まれる。ここで言うシ
クロペンタジエン類と共重合可能なオレフイン類
としてはイソプレン、1,3−ペンタジエン、ブ
タジエン、ブテン類等の脂肪族オレフイン、シク
ロペンテン等の脂環族オレフインおよひスチレ
ン、ビニルトルエン等のビニル置換芳香族炭化水
素類あるいはこれらの混合物が挙げられる。 なお、共重合可能なオレフイン類炭化水素の量
は弾性エネルギー特性から考えてシクロペンタジ
エン類あたり10重量%未満が好ましい。さらに重
合のさせ易さあるいは重合体収量などの面も考え
併せると、原料のモノマー混合物中におけるシク
ロペンタジエン類に対する上記の共重合可能なオ
レフイン類の割合を10重量%未満とするのが良
い。 このようなシクロペンタジエン類の重合はキシ
レン、トルエン、n−ヘキサンあるいはケロシン
等の溶剤の存在下あるいは不存在下、回分式ある
いは連続式装置を用いて200〜350℃、好ましくは
240〜300℃の温度範囲で0.1〜10時間の条件で一
般に行われる。ノルボルネン環二重結合のシクロ
ペンテン環二重結合に対する濃度比が0.40以下に
なる重合温度および重合時間の領域はシクロペン
タジエン類の種類、濃度あるいは溶剤の種類等で
大幅に変動するため、一義的に設定されないが一
般に重合条件が過酷になるにつれ該濃度比は小さ
くなる。ごく一般的には比較的低温度の場合4、
5時間以上の重時間が必要であり、また比較的高
温度の場合1、2時間程度の重合時間で所望の濃
度比を有する石油樹脂が得られる。なお引き続き
溶剤の存在下低温度で2段目の熱重合を行う場合
も同様な事が類推される。 溶剤除去条件は本質的にはノルボルネン環二重
結合とシクロペンテン環二重結合の濃度比に影響
を及ぼさないが、溶剤および未反応モノマーの除
去の際随伴される主に2,3量体を含む比較的低
分子量のオリゴマーの量が除去条件によつて異な
り、その結果としてノルボルネン環二重結合とシ
クロペンテン環二重結合の濃度比が変動する。し
たがつて除去条件の設定により製品の二重結合濃
度比を調整することが可能である。 更に、溶剤除去後2段目の熱重合を行うことに
よつてもノルボルネン環二重結合とシクロペンテ
ン環二重結合の濃度比を小さくすることができ
る。すなわち、2段目の熱重合の進行に伴ない該
二重結合の濃度比は小さくなる。 なお、この様な製造条件の設定以外にも、製品
のノルボルネン環二重結合と選択的に反応する化
学種あるいはマスキング剤の使用によつてもノル
ボルネン環二重結合のシクロペンテン環二重結合
に対する濃度比を0.40以下に調整することができ
る。 該シクロペンタジエン系石油樹脂はジエン系重
合体100重量部あたり一般に5〜40重量部好まし
くは5〜20重量部配合される。 また、本発明の「ジエン系重合体」には天然ゴ
ム、ポリブタジエンゴム、スチレン−ブタジエン
ゴム、イソプレンゴム等およびこれらの混合物が
含まれる。 (発明の効果) 本発明の配合材は極めて簡単に製造されうるも
のでありながら配合効果が優れ、従来用いられて
きたシクロペンタジエン系石油樹脂の配合に比べ
て耐カツト性および耐チツプ性が容易に10%程度
以上改善されうる。 (実施例) 以下実施例などにより本発明をさらに具体的に
説明するが、これらによつて本発明が限定される
ものではない。配合処方は第1表に示すとおり標
準的なものであり、配合割合は全て重量部であ
る。配合に用いた加硫促進剤等も一般的なもので
ある。 配合はロール方式で通常の方法(JIS K
6383)を用いて行い引張強さ、300%引張応力、
引張伸びおよび硬さ(スプリング式JIS A型)等
の物性はいずれもJIS K 6301の方法に従つて評
価した。標準例1は軟化剤として石油樹脂を含ま
ない例(ブランク)であり、比較例1は通常の方
法で重合したノルボルネン環二重結合のシクロペ
ンテン環二重結合に対する濃度比が0.40より大き
いシクロペンタジエン系石油樹脂の例であり、参
考例1はシクロペンタジエンおよびメチルシクロ
ペンタジエンを主成分とする市販の石油樹脂の例
である。 比較例 1 ナフサのスチームクラツキングから得られたジ
シクロペンタジエン類の濃度が84重量%のジシク
ロペンタジエン600gとキシレン400gを内容積3
のオートクレーブに仕込み、窒素雰囲気下で撹
拌しながら250℃で3時間保持し、重合を行なつ
た。反応終了後直ちに反応系を冷却し生成物を取
り出した。 重合生成物から減圧蒸留により190℃でキシレ
ン、未反応シクロペンタジエン等を除去し、軟化
点97℃のシクロペンタジエン樹脂307gを得た。
該樹脂のノルボルネン環二重結合のシクロペンテ
ン環二重結合に対する濃度比は0.62であつた。 参考例 1 石油樹脂からなる市販のゴム配合剤(Exxon
社製)を用いた。該石油樹脂を電解脱離質量分析
計で分析した結果、その主成分はシクロペンタジ
エンとメチルシクロペンタジエンであつた。また
そのノルボルネン環二重結合のシクロペンテン環
二重結合に対する濃度比は0.46であつた。 実施例 1 比較例1と同様な方法で270℃で2時間熱重合
した。その後160℃で溶剤等の除去を行ない軟化
点が96℃の石油樹脂420gを得た。該石油樹脂の
ノルボルネン環二重結合のシクロペンテン環二重
結合に対する濃度比は0.33であつた。 実施例 2 比較例1と同様な方法で280℃で2時間熱重合
した。その後140℃の温和な条件下で溶剤等を除
去し、軟化点92℃の石油樹脂480gを得た。ノル
ボルネン環二重結合のシクロペンテン環二重結合
に対する濃度比は0.38であつた。 実施例 3 比較例1と同様な方法で260℃で2時間熱重合
した。その後210℃で溶剤等を除去した後、更に
240℃で1時間重合した。軟化点140℃の石油樹脂
270gを得た。ノルボルネン環二重結合のシクロ
ペンテン環二重結合に対する濃度比は0.31であつ
た。 上記比較例1および実施例1〜3で得たシクロ
ペンタジエン樹脂および参考例1の市販シクロペ
ンタジエン系樹脂をそれぞれ配合したゴムの引張
試験を行つた。ゴム組成物の配合割合を第1表に
示し、加硫後のゴム物性を第2表に示す。実施例
1〜3の石油樹脂は明らかに比較例1および参考
例1の石油樹脂よりも優れた弾性エネルギー特性
を持つことが理解される。
(Field of Industrial Application) The present invention relates to rubber compounding materials made of thermally polymerized cyclopentadiene petroleum resins having a concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds of 0.40 or less, and diene-based The present invention relates to a rubber composition formed by blending the compound into a compound. The rubber composition has significantly improved cutting resistance and chipping resistance. Large tires for express buses and trucks, as well as OTR (Off The Road) tires for civil engineering construction, are usually used under harsh conditions, so these tires are constantly subjected to high loads, especially when exposed to rocks, etc. Collisions often result in cutting or chipping of the tire tread, which poses a safety problem. (Prior art) Developments to improve cut resistance and chip resistance have been carried out for a long time, and the selection of optimal diene polymers such as natural rubber and styrene-butadiene (SBR), or dicyclopentadiene as the main component, has been carried out for a long time. A method of adding petroleum resin as a reinforcing agent has been proposed. Japanese Patent Publication No. 48-38615 uses dicyclopentadiene resin, Japanese Patent Publication No. 52-43664 uses dicyclopentadiene resin modified with phenol resin, and Japanese Patent Publication No. 18938 No. 1987 uses dicyclopentadiene-oxystyrene copolymer. Each of them discloses that the cut resistance and chip resistance of the tire tread can be improved by blending them with SBR or natural rubber. However, none of these methods should be fully satisfied, and even higher tire performance is required, especially as today's traffic volume increases dramatically and vehicle conditions become more severe. (Problems to be Solved) An object of the present invention is to provide a rubber composition exhibiting even better cut resistance and chip resistance, and a compounding material used therein. To evaluate the degree of cutting or chipping caused by collision or friction between the tire tread rotating at high speed or under high load and rocks, etc., actual driving tests, simulation tests using miniature tires, or impact cutting tests are used. complex practical performance tests are required, which requires a great deal of cost, effort, and time. However, the above-mentioned three patent publications teach a tensile test method as a laboratory evaluation method for this performance, and it has also been confirmed that this test method correlates well with practical performance. A tensile test is a method of showing the elastic energy properties of a rubber composition by measuring the elongation and stress of the rubber composition. This test method is a well-understood method considering that the degree of cutting and chipping in the tire tread depends on how much energy the tire tread absorbs due to collisions with rocks, etc. Therefore, in other words, the object of the present invention is to provide a rubber composition that exhibits greater elastic energy properties, that is, a greater stress value and elongation at room temperature and high temperature (100°C), in particular a rubber composition that exhibits excellent tensile stress; The purpose of this invention is to provide compounding materials used for this purpose. Such a rubber composition having excellent tensile stress at room temperature and high temperature is particularly effective for the tire tread portion, which is subject to constant high loads. (Means for Solving the Problem) The present inventors have conducted intensive studies and developed and improved various petroleum resins for use in rubber compositions, and as a result, the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds has been found to be The present invention was completed based on the discovery that a cyclopentadiene petroleum resin adjusted to have a molecular weight of 0.40 or less exhibits even greater blending effects. That is, the gist of the present invention is that the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds is
The present invention relates to a rubber composition prepared by blending a thermally polymerized cyclopentadiene petroleum resin with a diene polymer having a value of 0.40 or less, as well as a rubber compounding material comprising the petroleum resin. The ratio of the norbornene ring double bond to the cyclopentene ring double bond is approximately 5.9 ppm (δ) in the hydrogen nuclear magnetic resonance spectrum (NMR) of the sample, which is the peak based on the proton of the norbornene ring double bond.
It is determined by measuring the area ratio (concentration ratio) of the cyclopentene ring double bond to the proton-based peak around 5.6 ppm (δ). That is, the cyclopentadiene petroleum resin used in the compounding materials and compositions of the present invention has an area ratio of 0.40 or less in the nuclear magnetic resonance spectrum. The cyclopentadiene petroleum resin having the above-mentioned properties can be produced by a conventional method by appropriately selecting conditions without requiring any special treatment. That is, the cyclopentadiene-based petroleum resin used in the present invention is produced by a conventional method, and the concentration ratio of norbornene ring double bonds and cyclopentene ring double bonds is determined by thermal polymerization conditions, solvent removal conditions, or two-stage polymerization as desired. It is mainly regulated by appropriate setting of the polymerization conditions. The details will be described below. The cyclopentadiene petroleum resin referred to in the present invention is a petroleum resin thermally polymerized with cyclopentadiene, dicyclopentadiene, alkyl substituted products thereof, or a mixture thereof as a main component, and olefin hydrocarbons copolymerizable with these. Also included are copolymer resins with compounds. The olefins that can be copolymerized with the cyclopentadiene mentioned here include aliphatic olefins such as isoprene, 1,3-pentadiene, butadiene, and butenes, alicyclic olefins such as cyclopentene, and vinyl olefins such as styrene and vinyltoluene. Examples include substituted aromatic hydrocarbons or mixtures thereof. Note that the amount of copolymerizable olefin hydrocarbons is preferably less than 10% by weight per cyclopentadiene in view of elastic energy properties. Furthermore, considering aspects such as ease of polymerization and polymer yield, it is preferable that the ratio of the above-mentioned copolymerizable olefins to cyclopentadiene in the raw material monomer mixture is less than 10% by weight. Such polymerization of cyclopentadienes is carried out at 200 to 350°C, preferably in the presence or absence of a solvent such as xylene, toluene, n-hexane or kerosene, using a batch system or a continuous system.
It is generally carried out at a temperature range of 240-300°C for 0.1-10 hours. The polymerization temperature and polymerization time range in which the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds is 0.40 or less is uniquely set because it varies greatly depending on the type and concentration of cyclopentadiene, the type of solvent, etc. Generally speaking, as the polymerization conditions become more severe, the concentration ratio becomes smaller. In general, at relatively low temperatures 4.
A polymerization time of 5 hours or more is required, and in the case of relatively high temperatures, a petroleum resin having a desired concentration ratio can be obtained with a polymerization time of about 1 to 2 hours. The same thing can be inferred when the second stage thermal polymerization is subsequently carried out at a low temperature in the presence of a solvent. The solvent removal conditions essentially do not affect the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds, but mainly contain dimers and trimers that are entrained during the removal of solvent and unreacted monomers. The amount of relatively low molecular weight oligomers varies depending on the removal conditions, and as a result, the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds varies. Therefore, it is possible to adjust the double bond concentration ratio of the product by setting the removal conditions. Furthermore, the concentration ratio of the norbornene ring double bond to the cyclopentene ring double bond can also be reduced by performing the second stage thermal polymerization after removing the solvent. That is, as the second stage thermal polymerization progresses, the concentration ratio of the double bonds decreases. In addition to setting these manufacturing conditions, the concentration of the norbornene ring double bond relative to the cyclopentene ring double bond may be reduced by using chemical species or masking agents that selectively react with the norbornene ring double bond in the product. The ratio can be adjusted to below 0.40. The cyclopentadiene petroleum resin is generally blended in an amount of 5 to 40 parts by weight, preferably 5 to 20 parts by weight, per 100 parts by weight of the diene polymer. Furthermore, the "diene polymer" of the present invention includes natural rubber, polybutadiene rubber, styrene-butadiene rubber, isoprene rubber, and mixtures thereof. (Effects of the Invention) Although the compounded material of the present invention can be produced extremely easily, it has excellent compounding effects, and has easier cut resistance and chip resistance than the conventionally used cyclopentadiene petroleum resin compound. can be improved by about 10% or more. (Examples) The present invention will be explained in more detail by Examples below, but the present invention is not limited by these. The formulation is standard as shown in Table 1, and all proportions are in parts by weight. The vulcanization accelerators used in the formulation are also common. Compounding is done in the usual roll method (JIS K
6383) tensile strength, 300% tensile stress,
Physical properties such as tensile elongation and hardness (spring type JIS A type) were all evaluated according to the method of JIS K 6301. Standard Example 1 is an example (blank) that does not contain petroleum resin as a softener, and Comparative Example 1 is a cyclopentadiene system polymerized by a conventional method in which the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds is greater than 0.40. This is an example of a petroleum resin, and Reference Example 1 is an example of a commercially available petroleum resin containing cyclopentadiene and methylcyclopentadiene as main components. Comparative Example 1 600 g of dicyclopentadiene with a dicyclopentadiene concentration of 84% by weight obtained from steam cracking of naphtha and 400 g of xylene were mixed in an internal volume of 3
The mixture was placed in an autoclave and held at 250°C for 3 hours with stirring under a nitrogen atmosphere to carry out polymerization. Immediately after the reaction was completed, the reaction system was cooled and the product was taken out. Xylene, unreacted cyclopentadiene, etc. were removed from the polymerization product by vacuum distillation at 190°C to obtain 307 g of cyclopentadiene resin with a softening point of 97°C.
The concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds in the resin was 0.62. Reference example 1 Commercially available rubber compound made from petroleum resin (Exxon
(manufactured by S.A.) was used. Analysis of the petroleum resin using an electrolytic desorption mass spectrometer revealed that its main components were cyclopentadiene and methylcyclopentadiene. The concentration ratio of the norbornene ring double bond to the cyclopentene ring double bond was 0.46. Example 1 Thermal polymerization was carried out in the same manner as in Comparative Example 1 at 270°C for 2 hours. Thereafter, the solvent and the like were removed at 160°C to obtain 420 g of petroleum resin with a softening point of 96°C. The concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds in the petroleum resin was 0.33. Example 2 Thermal polymerization was carried out at 280° C. for 2 hours in the same manner as in Comparative Example 1. Thereafter, the solvent and the like were removed under mild conditions at 140°C to obtain 480 g of petroleum resin with a softening point of 92°C. The concentration ratio of the norbornene ring double bond to the cyclopentene ring double bond was 0.38. Example 3 Thermal polymerization was carried out at 260° C. for 2 hours in the same manner as in Comparative Example 1. Then, after removing the solvent etc. at 210℃,
Polymerization was carried out at 240°C for 1 hour. Petroleum resin with a softening point of 140℃
Obtained 270g. The concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds was 0.31. Tensile tests were conducted on rubbers blended with the cyclopentadiene resins obtained in Comparative Example 1 and Examples 1 to 3 and the commercially available cyclopentadiene resin of Reference Example 1, respectively. The compounding ratio of the rubber composition is shown in Table 1, and the physical properties of the rubber after vulcanization are shown in Table 2. It is understood that the petroleum resins of Examples 1 to 3 clearly have better elastic energy properties than the petroleum resins of Comparative Example 1 and Reference Example 1.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ノルボルネン環二重結合のシクロペンテン環
二重結合に対する濃度比が0.40以下の値を示す熱
重合シクロペンタンジエン系石油樹脂をジエン系
重合体に配合してなるゴム組成物。 2 該シクロペンタジエン系石油樹脂中のシクロ
ペンタジエン類あたり共重合可能なオレフイン類
炭化水素の割合が10重量%未満である特許請求の
範囲第1項に記載の組成物。 3 ノルボルネン環二重結合のシクロペンテン環
二重結合に対する濃度比が0.40以下の値を示す熱
重合シクロペンタジエン系石油樹脂からなるゴム
用配合材。 4 該シクロペンタジエン系石油樹脂中のシクロ
ペンタジエン類あたり共重合可能なオレフイン類
炭化水素の割合が10重量%未満である特許請求の
範囲第3項に記載のゴム用配合材。
[Scope of Claims] 1. A rubber composition prepared by blending a thermally polymerized cyclopentanediene petroleum resin with a diene polymer in which the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds is 0.40 or less. 2. The composition according to claim 1, wherein the proportion of copolymerizable olefin hydrocarbons per cyclopentadiene in the cyclopentadiene petroleum resin is less than 10% by weight. 3. A compound material for rubber comprising a thermally polymerized cyclopentadiene petroleum resin having a concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds of 0.40 or less. 4. The rubber compound according to claim 3, wherein the proportion of copolymerizable olefin hydrocarbons per cyclopentadiene in the cyclopentadiene petroleum resin is less than 10% by weight.
JP59271359A 1984-12-21 1984-12-21 Rubber composition and additive therefor Granted JPS61148249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59271359A JPS61148249A (en) 1984-12-21 1984-12-21 Rubber composition and additive therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59271359A JPS61148249A (en) 1984-12-21 1984-12-21 Rubber composition and additive therefor

Publications (2)

Publication Number Publication Date
JPS61148249A JPS61148249A (en) 1986-07-05
JPH0371464B2 true JPH0371464B2 (en) 1991-11-13

Family

ID=17498969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59271359A Granted JPS61148249A (en) 1984-12-21 1984-12-21 Rubber composition and additive therefor

Country Status (1)

Country Link
JP (1) JPS61148249A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689182B2 (en) * 1985-02-19 1994-11-09 株式会社ブリヂストン Rubber composition with improved cut resistance and chipping resistance
JPH0699600B2 (en) * 1987-07-08 1994-12-07 丸善石油化学株式会社 Rubber composition
US4997677A (en) * 1987-08-31 1991-03-05 Massachusetts Institute Of Technology Vapor phase reactor for making multilayer structures
JP7346158B2 (en) * 2019-08-22 2023-09-19 Eneos株式会社 Sulfur-containing unsaturated hydrocarbon polymer and its production method, rubber additive, rubber composition, and tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838615A (en) * 1971-09-17 1973-06-07
JPS53115763A (en) * 1977-03-18 1978-10-09 Kanegafuchi Chem Ind Co Ltd Composition comprising non-crystalline dicyclopentadiene ring-opened polymer and rubber
JPS57178906A (en) * 1981-04-09 1982-11-04 Goodyear Tire & Rubber Pneumatic tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838615A (en) * 1971-09-17 1973-06-07
JPS53115763A (en) * 1977-03-18 1978-10-09 Kanegafuchi Chem Ind Co Ltd Composition comprising non-crystalline dicyclopentadiene ring-opened polymer and rubber
JPS57178906A (en) * 1981-04-09 1982-11-04 Goodyear Tire & Rubber Pneumatic tire

Also Published As

Publication number Publication date
JPS61148249A (en) 1986-07-05

Similar Documents

Publication Publication Date Title
EP1153972B1 (en) Rubber composition
JPS59140240A (en) Rubber composition
WO2005007740A1 (en) Pneumatic tire
AU2018382796A1 (en) Civil engineering vehicle tire
JPH01229017A (en) Abc-block copolymer based butadiene, isoprene and styrene, its production and use
JP2000230080A (en) Dicyclopentadiene/limonene polymer resin
JPS6335668B2 (en)
US4968764A (en) Rubber compounding material and composition
EP1050547B1 (en) Polymeric dimethyl-dicyclopentadiene/limonene resin
JPS63101440A (en) Rubber composition
EP3950380A1 (en) Cross-linked product and tire
JP2002284933A (en) Modified conjugated dienic polymer composition and rubber composition
JPH01249812A (en) Production of diene-based polymer rubber and rubber composition therefrom
JPH0371464B2 (en)
US20200325308A1 (en) Tire provided with an inner layer made from at least an isoprene elastomer, a reinforcing resin and a metal salt
JPH0699600B2 (en) Rubber composition
CA1059669A (en) Polydodecenamers as reinforcing resins for elastomers
JPS58122939A (en) Rubber composition
JP3392258B2 (en) Rubber composition for tire tread and method for producing the same
US20220227975A1 (en) Tire incorporating a rubber composition including a specific hydrocarbon resin
US12024631B2 (en) Civil engineering vehicle tire
JPH0678450B2 (en) Modified rubber composition
JPH039936A (en) Styrene-butadiene copolymer, rubber composition prepared therefrom and preparation thereof
Hansley et al. Control of Alfin Rubber Molecular Weight
JPH039910A (en) Styrene-butadiene copolymer, rubber composition prepared therefrom and preparation thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees