JPH0371052A - Detecting sensor - Google Patents

Detecting sensor

Info

Publication number
JPH0371052A
JPH0371052A JP20742189A JP20742189A JPH0371052A JP H0371052 A JPH0371052 A JP H0371052A JP 20742189 A JP20742189 A JP 20742189A JP 20742189 A JP20742189 A JP 20742189A JP H0371052 A JPH0371052 A JP H0371052A
Authority
JP
Japan
Prior art keywords
sensing part
thermally expandable
tetrafluoroethylene resin
sheet
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20742189A
Other languages
Japanese (ja)
Inventor
Yoshio Hara
祥夫 原
Tsunehiko Naganuma
恒彦 長沼
Makoto Takahashi
眞 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Original Assignee
Junkosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd filed Critical Junkosha Co Ltd
Priority to JP20742189A priority Critical patent/JPH0371052A/en
Publication of JPH0371052A publication Critical patent/JPH0371052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To obtain the sensor which is hardly affected by an ambient temp. change and is improved in stability by incorporating a thermally expandable high-polymer material into a sensing part and prohibiting the thermal shrinkage of an uncalcined tetrafluoroethylene resin which carries an atmosphere carbon material. CONSTITUTION:The detecting sensor 1 is constituted by connecting two pieces of conductors 4 via solderless terminals 3 to both end parts of the sensing part 2 consisting of the conductive uncalcined tetrafluoroethylene resin formed to a sheet shape in such a manner that the conductors face each other, then disposing two pieces of metallic wires 5 for reinforcement apart each other along the sensing part 2. The assembly is inserted and held and integrated by a sheet 6 consisting of two sheets of porous high-polymer materials as sheath which allows the selective passage of the fluid to be detected. The sheet 6 is used by being impregnated in a soln. prepd. by dissolving the thermally expandable high-polymer material, such as, for example, elastomer or rubber-modified polymer, in an org. solvent, without being calcined. The shrinkage of the uncalcined tetrafluoroethylene resin at the time of a temp. rise is offset by the expansion of the thermally expandable high-polymer material and there is substantially no volumetric change over the entire part of the sensing part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、重油やガス等の検知が可能で、安定性に優
れた検知センサに関4−る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a detection sensor that is capable of detecting heavy oil, gas, etc. and has excellent stability.

〔従来の技術〕[Conventional technology]

従来のこの種のセンサとしては、例えばカーボンブラッ
ク、グラファイト等の導電性炭素物質を含有する未焼成
の四フッ化エチレン樹脂シーI・を用い、このシートに
よって二本の導体を離間支持してなるものがあり、前記
シートの内部に分散している導電性炭素物質粒子間にA
I+が侵入すると、トンネル効果によるンートの導電性
が低下し、これを導体間の電気抵抗値の変化として捉え
ることにより、漏油を検知するような構成になっている
Conventional sensors of this type use an unfired tetrafluoroethylene resin sheet I containing conductive carbon materials such as carbon black and graphite, and support two conductors apart from each other with this sheet. There is A between the conductive carbon material particles dispersed inside the sheet.
When I+ enters, the conductivity of the channel decreases due to the tunnel effect, and oil leakage is detected by capturing this as a change in the electrical resistance between the conductors.

(特公昭59−4.7256号参照)。(See Special Publication No. 59-4.7256).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記センサの感知部は、未焼成の四フソ化エチレン樹脂
で形成され、圧延等の成形加工時に受(また歪が残留し
ているので、温度上昇に対して収縮する傾向がみられる
。そして、感知部である導電性シー)・が収縮すると、
その体積抵抗率が変化する。このため、本来のη1■検
知時における電気抵抗値の変化と、周囲の温度変化に起
因する電気抵抗値の変化とを誤認し、誤報を発づ゛るお
それがあった。
The sensing part of the sensor is made of unfired tetrafluoroethylene resin, which is subjected to stress during forming processes such as rolling (and has a residual strain, so it tends to shrink when the temperature rises. When the conductive sheet (sensing part) contracts,
Its volume resistivity changes. For this reason, there is a possibility that a change in the electric resistance value during the original detection of η1■ may be mistakenly recognized as a change in the electric resistance value due to a change in the ambient temperature, and a false alarm may be issued.

この発明は、このような従来技術の課題に鑑みなされた
ものであって、周囲の温度変化に対して影響を受けにく
い安定性の向」−シた検知センサの提供をその目的とす
る。
The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide a detection sensor that is less susceptible to changes in ambient temperature and has improved stability.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者らはこのような従来技術の課題を解決
するために鋭意検討を重ねた結果、ある種のポリマーを
感知部に混入した時、センサの安定性が高まることを見
い出し本発明に到達した。
Therefore, the present inventors conducted extensive studies to solve the problems of the conventional technology, and as a result, they discovered that the stability of the sensor increases when a certain type of polymer is mixed into the sensing part. Reached.

即ち、本発明は、少なくとも一対の導体と、この導体を
相互に離間させて保持する導電性炭素物質が分散した未
焼成四フッ化エチレン樹脂からなる感知部と、この感知
部の外側に設けられる透過性外被を備える検知センサに
おいて、前記感知部に未焼成四フッ化エチレン樹脂の収
縮を匝止する熱膨張性高分子材料を混入したことを特徴
としている。
That is, the present invention provides at least one pair of conductors, a sensing section made of an unfired tetrafluoroethylene resin in which a conductive carbon material is dispersed to hold the conductors apart from each other, and a sensing section provided outside the sensing section. The detection sensor includes a transparent jacket, and is characterized in that the sensing portion contains a thermally expandable polymer material that prevents contraction of the green tetrafluoroethylene resin.

熱膨張性高分子材料としては、特に限定はされないが、
例えばエラストマーあるいはゴム変性ポリマーなどが好
適に用いられる。これら熱膨張性高分子材料を感知部に
混入するには、例えば有機溶剤に溶解させたものを感知
部に含浸させた後、乾燥硬化させるか、粉末状のものを
導電性炭素物質と共に四フッ化エチレン樹脂に混ぜるよ
うにしてもよい。
Although there are no particular limitations on the thermally expandable polymer material,
For example, elastomers or rubber-modified polymers are preferably used. In order to mix these thermally expandable polymer materials into the sensing part, for example, the sensing part is impregnated with a solution dissolved in an organic solvent and then dried and hardened, or a powdered material is mixed with a conductive carbon material into a four-fluoride material. It may also be mixed with ethylene chloride resin.

〔作用〕[Effect]

この種のセンサにおいて、感知部は、カーボンブラック
等の導電性を有する炭素物質粒子を四フッ化エチレン樹
脂に分散した組成物からなり、この導電性粒子が連鎖構
造を形成するか、あるいは数オングストローム以内の距
離に接近することにより、導電性が付与されている。そ
して従来のセンサでは、検知時に感知部への油の浸透が
不可欠であるから、上記樹脂組成物は多数の気孔が残る
ように未焼成の状態で使用される。この未焼成の樹脂組
成物は、成形加工時に受けた歪が除失されずにそのまま
残っているので、温められると収縮する性質がある。こ
のため、設置場所の温度が変化したときに、感知部の体
積抵抗率も変化してしまうので、センサの安定性の面で
は好ましくない。
In this type of sensor, the sensing part is made of a composition in which conductive carbon material particles such as carbon black are dispersed in tetrafluoroethylene resin, and the conductive particles form a chain structure or have a diameter of several angstroms. Conductivity is imparted by approaching within a distance of In conventional sensors, it is essential for oil to penetrate into the sensing portion during detection, so the resin composition is used in an unfired state so that a large number of pores remain. This unfired resin composition has the property of shrinking when heated because the strain received during the molding process remains without being removed. For this reason, when the temperature of the installation location changes, the volume resistivity of the sensing portion also changes, which is unfavorable from the standpoint of sensor stability.

そこで、この発明では、熱膨張性高分子材料を感知部に
混入する。これにより、温度上昇時における未焼成四フ
ッ化樹脂の収縮は、熱膨張性高分子材料の膨張によって
相殺され、感知部全体としての体積変化はほとんど起こ
らない。したがって、その中に分散された導電性炭素物
質の粒子あるいは繊維の分散状態が変化しないので、感
知部の体積抵抗率は、温度が変動しても常に一定に保た
れる。
Therefore, in the present invention, a thermally expandable polymer material is mixed into the sensing portion. As a result, the contraction of the unfired tetrafluoride resin when the temperature rises is offset by the expansion of the thermally expandable polymer material, and the volume of the sensing section as a whole hardly changes. Therefore, since the dispersion state of the particles or fibers of the conductive carbon material dispersed therein does not change, the volume resistivity of the sensing part is always kept constant even if the temperature changes.

〔実施例〕〔Example〕

第1図は、この発明の一実施例による検知センサの一部
を切り欠いた斜視図である。図示の検知センサlは、シ
ート状に形成された導電性の未焼成四フッ化エチレン樹
脂組成物からなる感知部2部2に沿って二本の補強用金
属線5.5を離間させて配置し、そしてこれらを、検知
すべき流体を選択的に透過させることのできる外被とし
ての二枚の多孔質高分子材料からなるシート6,6で挟
持一体化した構成となっている。
FIG. 1 is a partially cutaway perspective view of a detection sensor according to an embodiment of the present invention. The illustrated detection sensor 1 has two reinforcing metal wires 5.5 spaced apart along a sensing portion 2 made of a conductive unfired polytetrafluoroethylene resin composition formed in a sheet shape. These are sandwiched and integrated between two sheets 6, 6 made of a porous polymeric material as an outer cover that can selectively transmit the fluid to be detected.

ここで、感知部2は、四フッ化エチレン樹脂粉末にカー
ボンブラック10〜50重量%加え、その混和物に液状
潤滑剤を添加して押出し圧延したシートを、幅方向もし
くは長手方向、あるいは両方向に12〜1.4倍程度延
伸したもので、この延伸によってシートは連続気孔性の
多孔質構造になる。
Here, the sensing part 2 is configured to extrude and roll a sheet obtained by adding 10 to 50% by weight of carbon black to tetrafluoroethylene resin powder and adding a liquid lubricant to the mixture, in the width direction, longitudinal direction, or both directions. The sheet is stretched approximately 12 to 1.4 times, and this stretching gives the sheet a porous structure with continuous pores.

そして、この多孔質シートは、例えばエラストマーある
いはゴム変性ポリマーなどの熱膨張性高分子材料を有機
溶剤に溶解さ且た溶液によって含浸処理され、焼成され
ることなく用いられる。なお、熱膨張性高分子材料は、
導電性炭素物質と一緒に粉末状のものを混入するように
してもよい。
Then, this porous sheet is impregnated with a solution in which a thermally expandable polymer material such as an elastomer or a rubber-modified polymer is dissolved in an organic solvent, and is used without being fired. In addition, the thermally expandable polymer material is
A powdered material may be mixed together with the conductive carbon material.

また、透過性外被6は、四フッ化エチレン樹脂1等の高
分子材料からなり、液状潤滑剤の種類や乾燥条件等は若
干異なるが、前記感知部2と同様な方法でシート状に成
形したものが使用される。このような成形方法により、
シート6は若干多孔質化し四フッ化エチレン樹脂のもつ
撥水性によりith等を選択的に透過させることができ
る。
The permeable jacket 6 is made of a polymeric material such as tetrafluoroethylene resin 1, and is formed into a sheet in the same manner as the sensing part 2, although the type of liquid lubricant and drying conditions are slightly different. is used. With this molding method,
The sheet 6 is made slightly porous so that ith and the like can selectively pass therethrough due to the water repellency of the tetrafluoroethylene resin.

次に、熱膨張性高分子材料としてシリコーン系ポリマー
を50%の重量比で感知部に混入したもの(実施例)と
、熱膨張性高分子材料を含まない従来品(比較例)につ
いて、感知部の体積抵抗率の温度依存性(抵抗変化率)
を調べるため、それぞれ30℃から100°Cの範囲で
ヒートザイクル試験を行なった。その結果を第2図に示
す。
Next, we examined the sensing part of a sensor in which a silicone polymer was mixed at a weight ratio of 50% as a thermally expandable polymer material (example) and a conventional product that did not contain a thermally expandable polymer material (comparative example). Temperature dependence of volume resistivity (resistance change rate)
In order to investigate this, a heat cycle test was conducted in the range of 30°C to 100°C. The results are shown in FIG.

第2図から明らかな上うに、感知部に熱膨張件高分子+
A *Aを混入してなる実施例は、それを含まない比較
例に比へて、温度変化に対ケる体積抵抗率の変化が極め
て小さいことがわかる。
As is clear from Figure 2, thermal expansion polymer +
It can be seen that the examples in which A*A is mixed have extremely small changes in volume resistivity with respect to temperature changes, compared to the comparative examples that do not contain it.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明では、感知部に熱膨張性
高分子子4料を混入17、これにより導電性炭素物質を
担持する未焼成四フッ化エチレン樹脂の熱収縮を阻止す
る構成としたから、設置場所の温度が変化したときに、
感知部の体積抵抗率が従来のように変動することはなく
、センサとしての安定性が大幅に向」二する。
As explained above, in this invention, four thermally expandable polymer molecules are mixed in the sensing part17, thereby preventing thermal contraction of the unfired tetrafluoroethylene resin supporting the conductive carbon material. , when the temperature of the installation location changes,
The volume resistivity of the sensing part does not fluctuate like in the past, and the stability of the sensor is greatly improved.

な4;、この発明はJ二記実施例に限定されるものでは
なく、例えば導体の本数を増やしたり、あるいは形状を
変更したり、ガス検知センサに適用するなど、この発明
の技術思想内での種々の変更はもちろん可能である。
4; This invention is not limited to the embodiment described in J2, and may be modified within the technical concept of this invention, such as increasing the number of conductors, changing the shape, or applying to a gas detection sensor. Of course, various changes are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による検知センサの−・実施例を示す
一部を切り欠いた斜視図、第2図は第1図実施例の検知
センサと従来の検知センサの温度依存性を示す曲線であ
る。 2 感知部、4.導体、6 透過性外被。
Fig. 1 is a partially cutaway perspective view showing an embodiment of the detection sensor according to the present invention, and Fig. 2 is a curve showing the temperature dependence of the detection sensor of the embodiment of Fig. 1 and a conventional detection sensor. be. 2 sensing section, 4. Conductor, 6 Transparent jacket.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも一対の導体と、この導体を相互に離間
させて保持する導電性炭素物質が分散した未焼成四フッ
化エチレン樹脂からなる感知部と、この感知部の外側に
設けられる透過性外被を備える検知センサにおいて、前
記感知部に未焼成四フッ化エチレン樹脂の収縮を阻止す
る熱膨張性高分子材料を混入したことを特徴とする検知
センサ。
(1) At least one pair of conductors, a sensing section made of unfired tetrafluoroethylene resin in which conductive carbon material is dispersed and which holds the conductors apart from each other, and a transparent outer layer provided outside the sensing section. What is claimed is: 1. A detection sensor comprising: a thermally expandable polymer material that prevents shrinkage of green tetrafluoroethylene resin;
JP20742189A 1989-08-10 1989-08-10 Detecting sensor Pending JPH0371052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20742189A JPH0371052A (en) 1989-08-10 1989-08-10 Detecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20742189A JPH0371052A (en) 1989-08-10 1989-08-10 Detecting sensor

Publications (1)

Publication Number Publication Date
JPH0371052A true JPH0371052A (en) 1991-03-26

Family

ID=16539476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20742189A Pending JPH0371052A (en) 1989-08-10 1989-08-10 Detecting sensor

Country Status (1)

Country Link
JP (1) JPH0371052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347456A (en) * 1993-06-08 1994-12-22 Yuichi Moriki Oil sensor
GB2433164B (en) * 2004-11-23 2009-06-03 Intel Corp Switch structures or the like based on a thermoresponsive polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347456A (en) * 1993-06-08 1994-12-22 Yuichi Moriki Oil sensor
GB2433164B (en) * 2004-11-23 2009-06-03 Intel Corp Switch structures or the like based on a thermoresponsive polymer

Similar Documents

Publication Publication Date Title
Megha et al. Conducting polymer nanocomposite based temperature sensors: a review
Huang et al. Nanostructured polyaniline sensors
Laakso et al. Conducting polymer blends
Dai et al. Interfacial polymerization to high-quality polyacrylamide/polyaniline composite hydrogels
Bhat et al. Investigation of electropolymerized polypyrrole composite film: Characterization and application to gas sensors
Pirsa Fabrication of 1, 1-dimethylhydrazine gas sensor based on nano structure conducting polyaniline
de Oliveira et al. Development of flexible sensors using knit fabrics with conductive polyaniline coating and graphite electrodes
Anwane et al. Bessel’s polynomial fitting for electrospun polyacrylonitrile/polyaniline blend nanofibers based ammonia sensor
JPH0371052A (en) Detecting sensor
JP2001011224A (en) Preparation of porous tube and usage of porous tube
Park et al. Preparation of conducting polyacrylonitrile/polyaniline composite films by electrochemical synthesis and their electroactivity
KR102186656B1 (en) Fiber-shaped alcohol sensor based on carbon material-hydrophilic polymer complex
Makhlouki et al. Transport properties in polypyrrole–PVA composites: Evidence for hopping conduction
Jousse et al. Synthesis and microwave characterization of polypyrrole-PVC blends
Dias et al. Electrical properties of intrinsically conductive core–shell polypyrrole/poly (vinylidene fluoride) electrospun fibers
PT91540A (en) FLUORINATED CARBONATED ARTICLES, IN PARTICULAR, A FOAM, PARTICLE, FILM OR SHEET
Kim et al. Effects of infill patterns on resistance-dependent strain and ammonia gas sensing behaviors of 3D-printed thermoplastic polyurethane modified with polypyrrole
EP0298463B1 (en) Vaporizable liquid detection element
Luangaramvej et al. Synthesis of Janus polyaniline–polyelectrolyte complex membrane via in situ confined polymerization
Amado et al. Properties evaluation of the membranes synthesized with castor oil polyurethane and polyaniline
Ansari et al. Effect of thermal treatment on the electrochemical properties of conducting polypyrrole polymers
Xie et al. Change of conductivity of polyaniline/(styrene–butadiene–styrene) triblock copolymer composites during mechanical deformation
Othman Conjugated polymer of biosensor using langmuir-blodgett technique-A review
JPH04307231A (en) Heat-resistant micro-porous film and coating method
Hemant K et al. Synthesis of polypyrrole using ferric chloride (FeCl 3) as oxidant together with some dopants for use in gas sensors