JPH0370622B2 - - Google Patents

Info

Publication number
JPH0370622B2
JPH0370622B2 JP58085015A JP8501583A JPH0370622B2 JP H0370622 B2 JPH0370622 B2 JP H0370622B2 JP 58085015 A JP58085015 A JP 58085015A JP 8501583 A JP8501583 A JP 8501583A JP H0370622 B2 JPH0370622 B2 JP H0370622B2
Authority
JP
Japan
Prior art keywords
fluid
molten
lens material
lens
concave spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58085015A
Other languages
Japanese (ja)
Other versions
JPS59212225A (en
Inventor
Masaki Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP8501583A priority Critical patent/JPS59212225A/en
Publication of JPS59212225A publication Critical patent/JPS59212225A/en
Publication of JPH0370622B2 publication Critical patent/JPH0370622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0042Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor without using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 この発明は、顕微鏡の対物レンズ或は音響レン
ズ等に用いられる微小径の凹球面レンズの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a concave spherical lens with a minute diameter used as an objective lens of a microscope, an acoustic lens, or the like.

半球に近い凹球面レンズを高精度に製作するこ
とは曲率半径の大小に拘らず困難とされている。
まして曲率半径が0.5mm以下の凹球面を研摩によ
り高精度に研摩することは不可能に近いものであ
つた。これを解決する手段として、特開昭55−
149998号に、溶融材料中の気泡が真球度の高いこ
とを利用し、溶融させたレンズ材料、例えば石英
ガラス、フリントガラス、コパールガラス、クラ
ウンガラス等のレンズに用いられる各種のガラス
材料中に意図的に微細な気泡を生じさせる手段が
開示されている。しかしながら、この開示された
従来技術では、任意所望の曲率半径を有する凹球
面レンズを得るためには、測定により所望の曲率
半径を有する気泡を捜し出さねばならず、非常に
煩わしいものであつた。また、一定の大きさの気
泡が生ずるように同じ大きさの空気穴を多数設置
する方法もとられているが、これとて任意所望の
大きさの穴を得るには、空気穴の大きさを変えな
ければならないという煩わしさがあつた。従つ
て、上記従来技術では、任意所望の曲率半径を有
する微小径の凹球面レンズを安定的に供給するこ
とは難しいという問題があつた。
It is considered difficult to manufacture a concave spherical lens close to a hemisphere with high precision regardless of the radius of curvature.
Moreover, it is nearly impossible to polish a concave spherical surface with a radius of curvature of 0.5 mm or less with high precision. As a means to solve this problem,
No. 149998 discloses that by utilizing the high sphericity of air bubbles in molten materials, various glass materials used for lenses such as fused silica glass, flint glass, copal glass, crown glass, etc. A means of intentionally generating fine bubbles is disclosed. However, in this disclosed prior art, in order to obtain a concave spherical lens having any desired radius of curvature, it is necessary to search for bubbles having the desired radius of curvature by measurement, which is extremely troublesome. Another method is to install many air holes of the same size so that bubbles of a certain size are generated, but in order to obtain holes of any desired size, it is necessary to adjust the size of the air holes. It was a hassle to have to change it. Therefore, the above-mentioned prior art has a problem in that it is difficult to stably supply a concave spherical lens having a minute diameter and having an arbitrary desired radius of curvature.

この発明は、従来技術の上記問題を解消し、任
意所望の曲率半径を有する微小径の凹球面レンズ
を安定的に供給することのできる凹球面レンズの
製造方法を提供することを目的としている。
An object of the present invention is to provide a method for manufacturing a concave spherical lens that can solve the above-mentioned problems of the prior art and stably supply a concave spherical lens with a minute diameter and an arbitrary desired radius of curvature.

以下、この発明の詳細を実施例に従つて説明す
る。
Hereinafter, the details of this invention will be explained according to examples.

第1図はこの発明の第1実施例を示しており、
同図において、溶融容器1内には吐出に必要な一
定の温度で溶融されたレンズ材料(石英ガラス)
2が収容され、この溶融レンズ材料2は一定の速
度で材料吐出ノズル3より垂下してくる。このと
き、溶融容器1内で材料吐出ノズル3と同軸に設
置された流体吐出ノズル4より、所望の曲率半径
を得るために必要な流体5が溶融しているレンズ
材料2内に一定間隔で注入され球体を形成する。
内部に流体5の入つている溶融レンズ材料2は、
吐出速度と同じ速度で矢印A方向に下方に引き出
され、第2図に示すように内部に一連の球体5を
形成した均一径のロツド7としてか、或は矢印B
方向に動く材料切断鋏6により1個ずつに分割し
た第3図に示すように内部に一個の球体5を形成
したゴブ8として提供される。こうして、この発
明によれば、溶融しているレンズ材料中に必要と
するレンズの曲率半径に応じて流体を注入し、そ
の注入量をレンズ材料の粘度や温度或は曲率半径
の大小に応じて制御し、例えば溶融レンズ材料2
中に注入する流体5の体積を調節する。溶融レン
ズ材料が冷却固化した後、一般的な削り出しの方
法で球体5の凹球面がレンズ面となるように加工
し、任意所望の曲率半径を有する微小径の凹球面
レンズを安定的に供給することができる。
FIG. 1 shows a first embodiment of this invention,
In the figure, a lens material (quartz glass) is melted at a constant temperature necessary for dispensing in the melting container 1.
2 is accommodated, and this molten lens material 2 hangs down from the material discharge nozzle 3 at a constant speed. At this time, fluid 5 necessary to obtain the desired radius of curvature is injected into the melted lens material 2 at regular intervals from a fluid discharge nozzle 4 installed coaxially with the material discharge nozzle 3 in the melting container 1. and form a sphere.
The molten lens material 2 containing the fluid 5 inside is
Either as a rod 7 of uniform diameter that is drawn downward in the direction of arrow A at the same speed as the discharge speed and that forms a series of spheres 5 inside it, as shown in FIG.
As shown in FIG. 3, the gob 8 is divided into individual pieces by a material cutting scissor 6 that moves in the direction, and is provided as a gob 8 with a single sphere 5 formed inside. Thus, according to the present invention, fluid is injected into the melted lens material according to the radius of curvature of the lens required, and the amount of fluid to be injected is adjusted according to the viscosity and temperature of the lens material or the size of the radius of curvature. control, e.g. melting lens material 2
Adjust the volume of fluid 5 injected into it. After the molten lens material is cooled and solidified, it is processed using a general cutting method so that the concave spherical surface of the sphere 5 becomes a lens surface, thereby stably supplying a micro-diameter concave spherical lens with any desired radius of curvature. can do.

この第1実施例において、流体5はAr、He、
H2のガスであつてもよく、或はSn、Zn、Al等の
溶融金属であつてもよい。またロツド7又はゴブ
8に対する冷却後の加工に際しては、ごく一般的
な削り出しの方法でもよいし、ロツド7の場合な
どには切断部に適当な深さのノツチをつけてトー
チで加熱し、熱応力により切断してもよい。特に
ロツド7に対する熱応力による切断では、切断位
置を正確にコントロールすることにより2ケ分の
凹球面レンズが取れる。
In this first embodiment, the fluid 5 is Ar, He,
It may be H 2 gas, or it may be molten metal such as Sn, Zn, Al, etc. Further, when processing the rod 7 or gob 8 after cooling, a very general cutting method may be used, or in the case of the rod 7, a notch of an appropriate depth is made in the cut part and heated with a torch. It may also be cut by thermal stress. In particular, when cutting the rod 7 due to thermal stress, two concave spherical lenses can be obtained by accurately controlling the cutting position.

特に高精度の凹球面を必要とする場合には、第
4図に示すように、一旦切断したゴブ8を容器に
収容した溶融Sn9中で再加熱溶融し、ゴブ8内
部の球体の真球度を向上させることも可能であ
る。特に、流体5が気体の場合には、レンズ材料
が溶融している状態で外圧を調整することによ
り、例えばゴブ8を再溶融して外圧を加えること
により、球の曲率半径を調整することも可能であ
る。即ち、溶融Sn9中で溶融したゴブ8はSnと
ゴブ材料の比重により液面上に出る体積が異な
り、ゴブ材料が軽ければ液面上に出る体積が増加
し、全体の形状は偏平になるが、形状が安定する
まで充分に溶融しておけばゴブ8内の気泡5の形
状を真球に保つことができる。
In particular, when a highly precise concave spherical surface is required, as shown in FIG. It is also possible to improve In particular, when the fluid 5 is a gas, the radius of curvature of the sphere can be adjusted by adjusting the external pressure while the lens material is melted, for example by remelting the gob 8 and applying external pressure. It is possible. In other words, the volume of gob 8 melted in molten Sn 9 that rises above the liquid surface varies depending on the specific gravity of the Sn and gob material; if the gob material is lighter, the volume that rises above the liquid surface increases, and the overall shape becomes flat. If the bubbles 5 in the gob 8 are melted sufficiently until the shape becomes stable, the shape of the bubbles 5 in the gob 8 can be maintained as a perfect sphere.

第5図はこの発明の第2実施例を示しており、
同図において、加熱装置(図示されていない)に
より加熱されている溶融容器10内で溶融してい
るレンズ材料(石英ガラス)12に流体吐出ノズ
ル11を投入し、流体吐出装置並びにノズル移動
装置(何れも図示されてない)により、流体吐出
ノズル11を矢印C及びD方向にかつ矢印E方向
に移動させながら、溶融しているレンズ材料12
中に一定の深さと間隔で流体13をレンズ材料1
2全体に行き亘るように吐出して注入して行き、
流体吐出ノズル11を引き上げて吐出は完了す
る。流体吐出ノズル11は、流体吐出時にノズル
先端からの流体13の切れを良くするために、吐
出時には下方或は上方に移動することができる。
第5図では流体吐出ノズル11は、上方を向いて
いるが、流体13がレンズ材料12より比重が大
きいときは下向きにする。こうして、流体吐出ノ
ズル11の向きを流体13とレンズ材料12との
比重の大小で上向きか下向きかを決め、更に流体
13の切れを良くするために吐出時にノズル11
を流体の吐出方向と反対方向に後退させる。この
ようにして溶融レンズ材料12全体に流体13を
吐出し終えたならば、流体13が真球になるまで
必要な時間、溶融状態を保持した後に、レンズ材
料12を、歪が生じないように除冷した後、溶融
容器10から取り出し、取り出したレンズ材料に
対し流体13により成型された球体を中心にして
切り出し必要な形状に加工する。流体13は第1
実施例の場合と同様である。
FIG. 5 shows a second embodiment of the invention,
In the figure, a fluid discharge nozzle 11 is introduced into a lens material (quartz glass) 12 that is being melted in a melting container 10 that is heated by a heating device (not shown), and the fluid discharge device and nozzle moving device ( (none of which are shown) moves the fluid ejection nozzle 11 in the directions of arrows C and D and in the direction of arrow E, while melting the lens material 12.
Fluid 13 is placed at a certain depth and spacing into the lens material 1.
2. Discharge and inject so as to spread throughout the entire area,
The fluid discharge nozzle 11 is pulled up and discharge is completed. The fluid discharge nozzle 11 can move downward or upward during fluid discharge in order to improve the cutting of the fluid 13 from the nozzle tip during fluid discharge.
In FIG. 5, the fluid ejection nozzle 11 faces upward, but when the fluid 13 has a higher specific gravity than the lens material 12, it faces downward. In this way, the direction of the fluid discharge nozzle 11 is determined as upward or downward depending on the specific gravity of the fluid 13 and the lens material 12, and furthermore, in order to improve the cutting of the fluid 13, the nozzle 11 is
is retracted in the opposite direction to the fluid discharge direction. After discharging the fluid 13 over the entire molten lens material 12 in this way, the fluid 13 is maintained in a molten state for a necessary period of time until it becomes a perfect sphere, and then the lens material 12 is heated so that no distortion occurs. After being slowly cooled, the lens material is taken out from the melting container 10, and the lens material is cut out centering around the sphere formed by the fluid 13 and processed into a desired shape. Fluid 13 is the first
This is the same as in the embodiment.

第6図はこの発明の第3実施例を示しており、
同図において、加熱装置(図示されてない)によ
り加熱されている溶融容器14内にSn等の軟化
点が低くレンズ材料と濡れない金属18が溶融し
て溶融金属浴を構成している。また溶融容器14
内には溶融金属18の表面を2分する仕切板16
が設置されており、分割された一方にはレンズ材
料(石英ガラス)17が溶融状態で浮んでおり、
もう一方には流体吐出ノズル15が投入されてい
る。流体吐出ノズル15は、仕切板16の下を通
して溶融しているレンズ材料17側に、流体吐出
装置並びにノズル移動装置(何れも図示されてな
い)により、矢印C及びD方向にかつ矢印E方向
に移動しながら、一定量の流体19を一定間隔で
レンズ材料17全体に行き亘るように吐出して注
入して行く。流体19は溶融金属18と混わら
ず、かつ溶融金属18並びにレンズ材料17より
も比重が小さいものを用いる。流体吐出ノズル1
5は吐出時の流体19の切れを良くするために上
下動ができる。このようにして吐出された流体1
9は、溶融金属18中を浮上して行き、やがては
溶融しているレンズ材料17にも入り込んで行き
球体を形成する。流体19がレンズ材料17中に
充分入り込んだならば、溶融容器14の温度を下
げて行き、レンズ材料17を歪が生じないように
除冷する。除冷後は溶融金属浴からレンズ材料1
7を取り出し、第2実施例の場合と同様に加工す
る。
FIG. 6 shows a third embodiment of the invention,
In the figure, a metal 18 such as Sn which has a low softening point and does not wet the lens material is melted in a melting container 14 which is heated by a heating device (not shown) to form a molten metal bath. Also, the melting container 14
Inside is a partition plate 16 that divides the surface of the molten metal 18 into two.
is installed, and a lens material (quartz glass) 17 is floating in a molten state on one side.
A fluid discharge nozzle 15 is inserted into the other side. The fluid discharge nozzle 15 passes under the partition plate 16 toward the melted lens material 17 in the directions of arrows C and D and in the direction of arrow E by a fluid discharge device and a nozzle moving device (none of which are shown). While moving, a predetermined amount of fluid 19 is discharged and injected at regular intervals so as to cover the entire lens material 17 . The fluid 19 used is one that does not mix with the molten metal 18 and has a specific gravity lower than that of the molten metal 18 and the lens material 17. Fluid discharge nozzle 1
5 can move up and down to improve the cutting of the fluid 19 during discharge. Fluid 1 discharged in this way
9 levitates through the molten metal 18 and eventually enters the molten lens material 17 to form a sphere. Once the fluid 19 has sufficiently entered the lens material 17, the temperature of the melting container 14 is lowered to slowly cool the lens material 17 so that no distortion occurs. After slow cooling, lens material 1 is removed from the molten metal bath.
7 is taken out and processed in the same manner as in the second embodiment.

以上説明したように、この発明は、溶融してい
るガラスからなるレンズ材料中に流体を注入する
ことにより球体を形成しこの形成された球体の凹
球面をレンズ面とするので、注入する流体の量又
は体積を制御することにより任意所望の曲率半径
の凹球面が前記球体から容易に得られ、これによ
り任意所望の曲率半径を有する凹球面レンズが安
定的に供給され、特に微小径の凹球面レンズの製
造に際し特段に有効なものとなるという効果があ
る。
As explained above, the present invention forms a sphere by injecting fluid into a lens material made of molten glass, and uses the concave spherical surface of the formed sphere as the lens surface. By controlling the amount or volume, a concave spherical surface with any desired radius of curvature can be easily obtained from the sphere, and thereby a concave spherical lens with any desired radius of curvature can be stably supplied, especially a concave spherical surface with a minute diameter. This has the effect of being particularly effective in manufacturing lenses.

また、この発明の第1実施例の場合、流体注入
後の光学用ガラスからなるレンズ材料をロツド状
にすることにより、球部を所望の形状に加工する
際も容易であり、また曲率半径の異なる凹球面を
連続的に大量生産する場合に適している。また、
流体に気体を用いる場合には、内部に流体の入つ
ているレンズ材料を再溶融して外圧を加えること
により、球の曲率半径を調整することも可能であ
る。
In addition, in the case of the first embodiment of the present invention, by forming the lens material made of optical glass into a rod shape after injecting the fluid, it is easy to process the spherical part into a desired shape, and the radius of curvature can be reduced. Suitable for continuous mass production of different concave spherical surfaces. Also,
When using gas as the fluid, it is also possible to adjust the radius of curvature of the sphere by remelting the lens material containing the fluid and applying external pressure.

また、この発明の第2実施例の場合にも前記と
同様の効果があり、また装置が簡単なもので済む
ことから、少量物のロツト生産に向いている。
Further, the second embodiment of the present invention has the same effects as described above and requires only a simple device, so it is suitable for lot production of small quantities.

また、この発明の第3実施例の場合、溶融して
いる光学用ガラスからなるレンズ材料中に流体に
作用する浮力を利用して流体を押し込んで行くた
めに、流体吐出ノズルでレンズ材料をかき回すこ
とが避けられ、そのため一層均質な凹球面レンズ
を得ることができる。また、流体により形成され
る凹球面がレンズ材料表面付近にあるために、成
形後の加工も容易である。
Further, in the case of the third embodiment of the present invention, in order to push the fluid into the lens material made of molten optical glass by using the buoyancy force acting on the fluid, the lens material is stirred with a fluid discharge nozzle. Therefore, a more homogeneous concave spherical lens can be obtained. Further, since the concave spherical surface formed by the fluid is located near the surface of the lens material, processing after molding is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例である当該製造
方法を実施する装置を示す断面図、第2図は第1
図に示す装置で作られたロツドを示す側面図、第
3図は第1図に示す装置で作られたゴブを示す平
面図、第4図はゴブを再加熱溶融して真球度を向
上させる装置を示す断面図、第5図はこの発明の
第2実施例である当該製造方法を実施する装置を
示す断面図、第6図はこの発明の第3実施例であ
る当該製造方法を実施する装置を示す断面図であ
る。 1,10,14……溶融容器、2,12,17
……溶融レンズ材料、4,11,15……流体吐
出ノズル、5,13,19……流体。
FIG. 1 is a sectional view showing an apparatus for carrying out the manufacturing method according to the first embodiment of the present invention, and FIG.
Figure 3 is a side view showing a rod made with the equipment shown in Figure 3. Figure 3 is a plan view showing a gob made with the equipment shown in Figure 1. Figure 4 is a gob that is reheated and melted to improve sphericity. FIG. 5 is a cross-sectional view showing an apparatus for implementing the manufacturing method according to the second embodiment of the present invention, and FIG. 6 is a cross-sectional view showing an apparatus for implementing the manufacturing method according to the third embodiment of the present invention. FIG. 1, 10, 14...melting container, 2, 12, 17
...Melting lens material, 4,11,15...Fluid discharge nozzle, 5,13,19...Fluid.

Claims (1)

【特許請求の範囲】 1 溶融レンズ材料中に流体を注入することによ
り球体を形成し、前記溶融レンズ材料の冷却固化
後前記球体の凹球面をレンズ面とすることを特徴
とする凹球面レンズの製造方法。 2 溶融レンズ材料中に注入する流体の体積を調
節することによつて任意所望の曲率半径を有する
凹球面レンズを得る特許請求の範囲第1項に記載
の凹球面レンズの製造方法。 3 溶融レンズ材料中で流体吐出ノズルを移動さ
せながら流体を吐出して注入する特許請求の範囲
第1項に記載の凹球面レンズの製造方法。 4 流体を吐出して溶融レンズ材料中に注入する
流体吐出ノズルの向きを流体とレンズ材料との比
重の大小で上向きか下向きかを決め、更に流体の
切れを良くするために吐出時に流体吐出ノズルを
流体の吐出方向と反対方向に後退させる特許請求
の範囲第1項に記載の凹球面レンズの製造方法。 5 溶融金属浴上で溶融状態で浮んでいる溶融レ
ンズ材料に対して、溶融金属と混わらずかつ溶融
金属並びに溶融レンズ材料よりも比重の小さい流
体を溶融金属浴の中に注入し、前記流体に作用す
る浮力を利用して、前記流体を溶融金属浴中を浮
上させやがては溶融レンズ材料中に入り込ませる
ことを特徴とする特許請求の範囲第1項に記載の
凹球面レンズの製造方法。
[Claims] 1. A concave spherical lens characterized in that a spherical body is formed by injecting a fluid into a molten lens material, and after the molten lens material is cooled and solidified, the concave spherical surface of the spherical body is used as a lens surface. Production method. 2. The method for manufacturing a concave spherical lens according to claim 1, wherein a concave spherical lens having any desired radius of curvature is obtained by adjusting the volume of fluid injected into the molten lens material. 3. The method for manufacturing a concave spherical lens according to claim 1, wherein the fluid is discharged and injected into the molten lens material while moving a fluid discharge nozzle. 4 The direction of the fluid discharge nozzle that discharges the fluid and injects it into the molten lens material is determined by the magnitude of the specific gravity of the fluid and the lens material, and whether it is directed upward or downward, and in order to improve the cutting of the fluid, the direction of the fluid discharge nozzle during discharge is determined. 2. The method for manufacturing a concave spherical lens according to claim 1, wherein the concave spherical lens is moved backward in a direction opposite to the fluid discharge direction. 5. Injecting into the molten metal bath a fluid that does not mix with the molten metal and has a specific gravity lower than that of the molten metal and the molten lens material, with respect to the molten lens material floating in a molten state on the molten metal bath, and 2. The method of manufacturing a concave spherical lens according to claim 1, wherein the fluid floats in a molten metal bath and eventually enters the molten lens material by utilizing buoyancy acting on the molten metal bath.
JP8501583A 1983-05-17 1983-05-17 Manufacture of concave lens Granted JPS59212225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8501583A JPS59212225A (en) 1983-05-17 1983-05-17 Manufacture of concave lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8501583A JPS59212225A (en) 1983-05-17 1983-05-17 Manufacture of concave lens

Publications (2)

Publication Number Publication Date
JPS59212225A JPS59212225A (en) 1984-12-01
JPH0370622B2 true JPH0370622B2 (en) 1991-11-08

Family

ID=13846912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8501583A Granted JPS59212225A (en) 1983-05-17 1983-05-17 Manufacture of concave lens

Country Status (1)

Country Link
JP (1) JPS59212225A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110027147B (en) * 2018-01-08 2021-10-29 阳程科技股份有限公司 Method for forming special-shaped optical glue grease

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096239A (en) * 1973-12-24 1975-07-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096239A (en) * 1973-12-24 1975-07-31

Also Published As

Publication number Publication date
JPS59212225A (en) 1984-12-01

Similar Documents

Publication Publication Date Title
CN101792249B (en) Processes for the production of glass article and optical device
KR100446051B1 (en) Method of producing glass products, method of producing press-molded products, and apparatus for producing glass mass products
JP3853622B2 (en) Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body
JPH0214839A (en) Molding of glass material and device therefor
JP2000007360A (en) Production of glass element
JP4845802B2 (en) Melt outflow nozzle
JP3077066B2 (en) Each production method of glass gob and its intermediate
US5738701A (en) Glass gob production device and production method
US2994161A (en) Method of and apparatus for casting glass
US7992412B2 (en) Process for producing glass shaped material and process for producing optical element
JPH10338530A (en) Production of softened glass and floating holder
JPH0370622B2 (en)
US6499316B2 (en) Method of producing a glass gob, method of producing a glass molded product, and apparatus for producing a glass gob
JPH09110455A (en) Method and apparatus for producing rod having cross-section having gradient composition
JP3986064B2 (en) Method for producing glass lump and method for producing optical element
JPH10182172A (en) Device for producing glass gob
US4101301A (en) Formation of spheres of thermoplastic materials, especially glass
JPH03137031A (en) Method and apparatus for producing glass lens
JP2914275B2 (en) Manufacturing method of glass gob
JPH06206730A (en) Production of glass gob
JP3965627B2 (en) Method for producing glass molded body and method for producing optical element
JP2002173328A (en) Glass gob manufacturing method and manufacturing apparatus and method of manufacturing press formed goods
JP2000302461A (en) Molding for glass element
JPS5770062A (en) Method and device for producing amorphous metallic coil
JPS57116614A (en) Lens molding method