JPH037026A - Dc power supply system - Google Patents

Dc power supply system

Info

Publication number
JPH037026A
JPH037026A JP1140720A JP14072089A JPH037026A JP H037026 A JPH037026 A JP H037026A JP 1140720 A JP1140720 A JP 1140720A JP 14072089 A JP14072089 A JP 14072089A JP H037026 A JPH037026 A JP H037026A
Authority
JP
Japan
Prior art keywords
storage battery
voltage
power supply
power
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1140720A
Other languages
Japanese (ja)
Inventor
Yutaka Kuwata
豊 鍬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1140720A priority Critical patent/JPH037026A/en
Publication of JPH037026A publication Critical patent/JPH037026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To enable the maximum energy of a storage battery to be efficiently utilized in the service interruption of an AC power by automatically selecting such that the output voltage of a DC power supply may constitute a difference between the minimum allowable voltage of a load and the minimum service voltage of a storage battery. CONSTITUTION:A stable DC power is supplied to a load 15 via a charger 12 and a storage battery 13 when a commercial AC power supply 11 is normal. On the other hand, when the service of the power supply 11 is interrupted, the power is supplied from the storage battery 13. In this case, when the voltage of the storage battery 13 drops below a value which equals to a value obtained by subtraction of the voltage drop of a diode array 14 from the upper limit of an allowable voltage on the load side, a switch 16 is closed to remove the voltage drop of the diode array 14 and the DC power of the storage battery 13 is supplied to the load 15. Thereafter, the voltage of the storage battery 13 is inputted to the DC power supply 17 and control is performed such that the sum of the voltage of the storage battery 13 and the output voltage of the power supply 17 is constant. Thus, by selecting the output voltage of the power supply 17 as a difference between the minimum allowable voltage of the load 15 and the minimum service power of the storage battery 13, energy stored in the storage battery 13 can efficiently be utilized to the maximum.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は商用電源停電時にも安定な直流電力を供給す
る直流電源システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a DC power supply system that supplies stable DC power even during a commercial power outage.

[従来の技術J 通信装置に安定な直流電力を供給する直流電源システム
としては、一般に商用交流電力を受け、48Vや21V
等の直流電圧を出力する直流電源システムが用いられて
いる。この直流電源システムの入力である商用交流電力
が停電した場合にも通信装置に直流電力を供給するため
直流電源システムに蓄電池を備えている。この蓄電池は
一般に通信装置側で必要とする電圧とするため複数の単
電池を直列に接続して用いられる。
[Prior art J] DC power supply systems that supply stable DC power to communication devices generally receive commercial AC power and are powered by 48V or 21V.
A DC power supply system that outputs a DC voltage such as the following is used. The DC power supply system is equipped with a storage battery in order to supply DC power to the communication device even in the event of a power outage of the commercial AC power input to the DC power supply system. This storage battery is generally used by connecting a plurality of single cells in series to obtain the voltage required by the communication device.

第2図に従来の直流電源システムを示す、商用交流電源
11に充電器12が接続され、充電器12の一対の出力
端子間に蓄電池13が接続され、蓄電池13の一端は1
個または複数個電圧調整用ダイオードの直列回路(以下
ダイオード列と記す)14を通じて負荷15の一端に接
続され、負荷15の他端及びM電池13の他端は互いに
接続される。
FIG. 2 shows a conventional DC power supply system. A charger 12 is connected to a commercial AC power supply 11, a storage battery 13 is connected between a pair of output terminals of the charger 12, and one end of the storage battery 13 is connected to a
It is connected to one end of a load 15 through a series circuit (hereinafter referred to as a diode string) 14 of one or more voltage regulating diodes, and the other end of the load 15 and the other end of the M battery 13 are connected to each other.

ダイオード列14は蓄電池13に対して順方向とされる
。ダイオード列14と並列にスイッチ16が接続される
The diode array 14 is in the forward direction with respect to the storage battery 13. A switch 16 is connected in parallel with the diode string 14.

充電器12は蓄電池13を充電すると共に負荷15に直
流電力を供給する。商用交流電源11が停電した時には
充電器12が停止するため蓄電池13から負荷15に直
流電力を供給する。蓄電池13の電圧が負荷15の許容
電圧範囲を越えている場合にはスイン16をオフとして
ダイオード列14を回路に直列に挿入し、ダイオード列
I4で電圧降下を生じさせ電圧調整を行うことにより負
荷15の許容電圧範囲内に押さえるように動作する。蓄
電池13が放電するにつれて電圧が低下し、負荷15の
許容電圧範囲の上限からダイオード列14の電圧降下分
より低くなるとダイオード列14をスイッチ16で短絡
し損失を小さくするように動作させていた。蓄電池13
の電圧が負荷15の許容電圧範囲の下限を割った場合に
は通信装置である負荷15はシステムダウンする。
Charger 12 charges storage battery 13 and supplies DC power to load 15 . When the commercial AC power supply 11 is out of power, the charger 12 stops, so DC power is supplied from the storage battery 13 to the load 15. If the voltage of the storage battery 13 exceeds the allowable voltage range of the load 15, the switch 16 is turned off, the diode string 14 is inserted in series in the circuit, and the voltage is adjusted by causing a voltage drop in the diode string I4. It operates to keep the voltage within the allowable voltage range of 15. As the storage battery 13 discharges, the voltage decreases, and when it becomes lower than the voltage drop of the diode string 14 from the upper limit of the allowable voltage range of the load 15, the diode string 14 is short-circuited with a switch 16 to reduce the loss. Storage battery 13
If the voltage falls below the lower limit of the allowable voltage range of the load 15, the system of the load 15, which is a communication device, goes down.

しかし、蓄電池13の電圧が負荷15の最低許容准圧に
なった場合にも蓄電池13にはエネルギーが残っており
、この残エネルギーを有効に活用できないという問題が
あった。
However, even when the voltage of the storage battery 13 reaches the minimum allowable standard pressure of the load 15, energy remains in the storage battery 13, and there is a problem that this remaining energy cannot be used effectively.

この発明の目的は交流電力停電時に蓄電池のエネルギー
を最大限に活用できる直流電源システムを供給すること
にある。
An object of the present invention is to provide a DC power supply system that can make maximum use of the energy of a storage battery during an AC power outage.

「課題を解決するための手段」 この発明によれば商用交流電源に充電器が接続され、そ
の充電器の一対の出力端子間に蓄電池が接続され、その
蓄電池の一端と負荷の一端との間に電圧調整用ダイオー
ド(ダイオード列)が接続され、蓄電池の他端と負荷の
他端とが互いに接続され、蓄電池の両端に直流電力を人
力し、直流電力を出力する直流電源の一対の入力端子が
接続され、その直流電源の一方の出力端子は蓄電池及び
ダイオードの接続点に接続されて、直流電源の出力電圧
が174池の出力電圧と加算されるようにされ、その直
2it電源の他方の出力端子とダイオード及び負荷の接
続点との間にスイッチが接続され、直′lX電源の一対
の出力端子間にこれと逆極性で第2ダイオードが接続さ
れる。つまり蓄電池と直流電源の出力側との直列接続が
スイッチを介して負荷の両端に接続される。
"Means for Solving the Problem" According to the present invention, a charger is connected to a commercial AC power source, a storage battery is connected between a pair of output terminals of the charger, and one end of the storage battery and one end of a load are connected. A voltage regulating diode (diode string) is connected to the terminal, the other end of the storage battery and the other end of the load are connected to each other, and a pair of input terminals of a DC power supply that inputs DC power to both ends of the storage battery and outputs DC power. is connected, one output terminal of the DC power supply is connected to the connection point of the storage battery and the diode, so that the output voltage of the DC power supply is added to the output voltage of the 174 battery, and the other output terminal of the DC 2IT power supply is A switch is connected between the output terminal and the connection point of the diode and the load, and a second diode with the opposite polarity is connected between the pair of output terminals of the direct current power source. That is, the series connection between the storage battery and the output side of the DC power supply is connected to both ends of the load via the switch.

「作 用J 商用交流電源が停電した時は蓄電池から負荷へ直流電力
を供給するが、蓄電池の電圧が負荷側の許容電圧範囲よ
り高い場合は電圧調整用ダイオードで電圧降下させて負
荷側の許容電圧範囲内に抑え、蓄電池の電圧が低下して
負荷の許容電圧を下回ってくるとスイッチをオンとして
蓄電池の電圧に直流電源の電圧を加えて負荷へ直流電力
を供給し、負荷の許容電圧範囲内に入るようにする。
``Function J'' When the commercial AC power supply fails, DC power is supplied from the storage battery to the load, but if the voltage of the storage battery is higher than the allowable voltage range on the load side, the voltage is lowered with a voltage adjustment diode to meet the load's allowable voltage range. When the voltage of the storage battery decreases and falls below the allowable voltage of the load, the switch is turned on and the voltage of the DC power supply is added to the voltage of the storage battery to supply DC power to the load, reducing the allowable voltage range of the load. Let it go inside.

「実施例」 第1図にこの発明の実施例を示し、第2図と対応する部
分に同一符号を付けである。この発明においては蓄電池
13の両端に直流電力を入力し、直流電力を出力する直
流型l1l17の一対の入力端子が接続され、直流電源
17の一方の出力端子は蓄電池13及びダイオード列(
電圧調整用ダイオード)14の接続点に接続され、スイ
ッチ16の蓄電池13側は切り離されて直流11i11
17の他方の出力端子に接続される。この時、M’N池
13と直流電源17の出力側との直列回路の両端電圧は
蓄電池13の電圧と直流電源17の出力電圧との和にな
るようにされである。直流電源17の一対の出力端子間
に第2ダイオード18が逆極性で接続される。つまり直
流電源17の正の出力端子側が第2ダイオード18の陰
極側とする。
Embodiment FIG. 1 shows an embodiment of the present invention, and parts corresponding to those in FIG. 2 are given the same reference numerals. In this invention, a pair of input terminals of a DC type l1l17 that inputs DC power and outputs DC power are connected to both ends of the storage battery 13, and one output terminal of the DC power supply 17 connects the storage battery 13 and the diode array (
The voltage regulating diode) 14 is connected to the connection point of the switch 16, and the storage battery 13 side of the switch 16 is disconnected to provide direct current 11i11.
It is connected to the other output terminal of 17. At this time, the voltage across the series circuit between the M'N battery 13 and the output side of the DC power source 17 is made to be the sum of the voltage of the storage battery 13 and the output voltage of the DC power source 17. A second diode 18 is connected between a pair of output terminals of the DC power supply 17 with opposite polarity. In other words, the positive output terminal side of the DC power supply 17 is the cathode side of the second diode 18.

動作について説明すると、商用交流電源llが正常な場
合には充電器12は蓄電池13を充電すると共に負荷1
5へ安定な直流電力を供給する。
To explain the operation, when the commercial AC power supply 11 is normal, the charger 12 charges the storage battery 13 and also charges the load 1.
Supply stable DC power to 5.

蓄電池13が24個組の場合、充電器12の出力電圧は
充電電圧54.5 V (2,27V/cel I X
24cel 1=54.5V)となり負荷I5の許容電
圧(43■〜53■)範囲外であるのでスイッチ16を
開放してダイオード列14で電圧降下させるように動作
し、負荷15に直流電力を供給する。
In the case of a set of 24 storage batteries 13, the output voltage of the charger 12 is a charging voltage of 54.5 V (2.27 V/cel I
24cell 1 = 54.5V), which is outside the allowable voltage range (43■ to 53■) of the load I5, so the switch 16 is opened and the diode string 14 operates to drop the voltage, supplying DC power to the load 15. do.

商用文流電tAllが停電した場合には充電器12は停
止するため負荷15へは蓄電池13から電力供給を行う
。蓄電池13の電圧が低下してきて蓄電池電圧が負荷側
の許容電圧の上限からダイオード列14の電圧降下分を
差し引いた電圧以下になるとスイッチ16を短絡させて
ダイオード列14での電圧降下をなくし、直流型1fX
17と逆並列に接続されている第2ダイオード18とを
介して蓄電池13の直流電力を負荷15へ供給する。そ
の後、直流電源17は蓄電池13の電圧を人力とし、蓄
電池13の電圧と直流型a17の出力電圧とを加えた電
圧が一定となるように制御される。従って、蓄電池13
の電圧が負荷15の最低許容電圧43V以下になっても
直流型a17の電圧により負荷15の電圧は43Vより
高い電圧に維持される。
In the event of a power outage in the commercial power supply tAll, the charger 12 will stop, so power is supplied to the load 15 from the storage battery 13. When the voltage of the storage battery 13 decreases and the storage battery voltage becomes less than the voltage obtained by subtracting the voltage drop of the diode string 14 from the upper limit of the allowable voltage on the load side, the switch 16 is short-circuited to eliminate the voltage drop in the diode string 14, and the DC Type 1fX
The DC power of the storage battery 13 is supplied to the load 15 via the second diode 18 connected in antiparallel to the second diode 17 . Thereafter, the DC power supply 17 is controlled so that the voltage of the storage battery 13 is manually controlled so that the voltage obtained by adding the voltage of the storage battery 13 and the output voltage of the DC type a17 is constant. Therefore, storage battery 13
Even if the voltage of the load 15 falls below the minimum allowable voltage of the load 15 of 43V, the voltage of the load 15 is maintained at a voltage higher than 43V by the voltage of the DC type a17.

直流電源17の出力電圧を負荷15の最低許容電圧と蓄
電池13の最低使用電圧との差に選ぶことにより、蓄電
池13の蓄積エネルギーを最大限に活用することが可能
となる。
By selecting the output voltage of the DC power supply 17 to be the difference between the minimum allowable voltage of the load 15 and the minimum working voltage of the storage battery 13, it becomes possible to make maximum use of the energy stored in the storage battery 13.

商用文流電allが回復した場合には充電器12が動作
して蓄電池13を充電することにより、蓄電池13にエ
ネルギーが蓄えられ、蓄電池13の電圧は徐々に高くな
ってくる。充電電圧は54,5■となり負荷側の許容電
圧の上限値53Vを越えてしまう、そこで、負荷側の電
圧が53Vになるとスイッチ16を開放してダイオード
列14を回路に直列に挿入することによりダイオードの
順方向電圧降下を利用して1.5■以上ドロップを生じ
させ、負荷側の許容電圧範囲内に入れるようにスイッチ
16を制2′Bする。
When all commercial power is restored, the charger 12 operates to charge the storage battery 13, so that energy is stored in the storage battery 13, and the voltage of the storage battery 13 gradually increases. The charging voltage becomes 54.5■, which exceeds the upper limit of 53V for the allowable voltage on the load side.Therefore, when the voltage on the load side reaches 53V, the switch 16 is opened and the diode string 14 is inserted in series in the circuit. The forward voltage drop of the diode is used to generate a drop of 1.5 or more, and the switch 16 is controlled 2'B so that the voltage falls within the allowable voltage range on the load side.

なお、スイッチ16をオンにしても、直流電源17は直
ちには理想的な動作状態にならず、定常状態になるには
少し時間かががる。この間第2ダイオード18を通じて
蓄電池13の直流電力が負荷15へ供給される。この時
、第2ダイオード18は直流電源17の出力側を短絡さ
せる作用をするものであって、電圧降下がなるべく小さ
い、例えばショトツキ−ダイオードが使用される。これ
に対してダイオード列14のダイオードは電圧降下させ
るために用いられるものであって降下電圧が大きい、例
えばPN接合ダイオードが用いられる。
Note that even when the switch 16 is turned on, the DC power supply 17 does not immediately reach an ideal operating state, and it takes some time for the DC power supply 17 to reach a steady state. During this time, DC power from the storage battery 13 is supplied to the load 15 through the second diode 18 . At this time, the second diode 18 acts to short-circuit the output side of the DC power supply 17, and is a Schottsky diode, for example, which has a voltage drop as small as possible. On the other hand, the diodes in the diode array 14 are used to drop the voltage, and have a large voltage drop, for example, PN junction diodes.

[発明の効果」 以上、説明したように、この発明によれば蓄電池の蓄積
エネルギーを最大限に活用でき、蓄電池の小形・計量化
が達成できる。例えば、負荷電流が100OAで蓄電池
24個組、蓄電池の保持時間が10分、配線の電圧降下
2■の場合について、従°来の直流電源システムと比較
する。
[Effects of the Invention] As explained above, according to the present invention, the energy stored in the storage battery can be utilized to the maximum, and the storage battery can be made smaller and lighter in weight. For example, a comparison will be made with a conventional DC power supply system in the case where the load current is 100 OA, a set of 24 storage batteries is used, the holding time of the storage batteries is 10 minutes, and the wiring voltage drop is 2cm.

従来システムでは負荷側の最低許容電圧になった時の単
電池の電圧は1.88 V (45V/ 24ce11
=1.88V)となり、この場合必要とされる蓄電池容
量は680AHとなる。一方、この発明のシステムでは
蓄電池放電終止電圧は1.6Vであるので、直流電源1
7の最大出力電圧を4.6v(43V−1,6V/ce
l I X 24ce11=4.6 V)とすると蓄電
池の放電終止電圧まで使用することができる。この場合
の蓄電池容量は470AHとなるので蓄電池の設備とし
ては従来の設備に比べ約3割の小形化、経済化が可能と
なる。
In the conventional system, the voltage of the single cell when the load side reaches the minimum allowable voltage is 1.88 V (45V/24ce11
= 1.88V), and the required storage battery capacity in this case is 680AH. On the other hand, in the system of this invention, the storage battery discharge final voltage is 1.6V, so the DC power source 1
7 maximum output voltage to 4.6V (43V-1,6V/ce
l I Since the storage battery capacity in this case is 470AH, the storage battery equipment can be made approximately 30% smaller and more economical than conventional equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の直流電源システムの構成例を示す接
続図、第2図は従来の直流電源システムの構成を示す接
続図である。
FIG. 1 is a connection diagram showing a configuration example of a DC power supply system of the present invention, and FIG. 2 is a connection diagram showing a configuration of a conventional DC power supply system.

Claims (1)

【特許請求の範囲】[Claims] (1)商用交流電源の交流電力が供給される充電器と、 その充電器の一対の出力端子に接続されて充電されると
共に一端が負荷の一端に接続された蓄電池と、 その蓄電池の他端と上記負荷の他端との間に順方向に接
続された電圧調整用ダイオードと、上記蓄電池の両端に
一対の入力端子が接続され、直流電力を入力し、直流電
力を出力し、その出力直流電力を上記蓄電池の出力に加
算するように一方の出力端子が上記蓄電池及びダイオー
ドの接続点に接続された直流電源と、 その直流電源の他方の出力端子と上記ダイオード及び負
荷の接続点との間に接続されたスイッチと、 上記直流電源の一対の出力端子間に逆極性で接続された
第2ダイオードとを具備する直流電源システム。
(1) A charger to which AC power from a commercial AC power supply is supplied; a storage battery connected to a pair of output terminals of the charger to be charged; and one end connected to one end of a load; and the other end of the storage battery. and the other end of the load, and a pair of input terminals are connected to both ends of the storage battery, inputting DC power, outputting DC power, and outputting DC power. A DC power supply whose one output terminal is connected to the connection point of the storage battery and the diode so as to add electric power to the output of the storage battery, and between the other output terminal of the DC power supply and the connection point of the diode and the load. A DC power supply system comprising: a switch connected to the DC power supply; and a second diode connected with opposite polarity between a pair of output terminals of the DC power supply.
JP1140720A 1989-06-02 1989-06-02 Dc power supply system Pending JPH037026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140720A JPH037026A (en) 1989-06-02 1989-06-02 Dc power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140720A JPH037026A (en) 1989-06-02 1989-06-02 Dc power supply system

Publications (1)

Publication Number Publication Date
JPH037026A true JPH037026A (en) 1991-01-14

Family

ID=15275139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140720A Pending JPH037026A (en) 1989-06-02 1989-06-02 Dc power supply system

Country Status (1)

Country Link
JP (1) JPH037026A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178849A (en) * 2015-03-23 2016-10-06 アクソンデータマシン株式会社 Power supply unit
JP2020018107A (en) * 2018-07-25 2020-01-30 株式会社オートネットワーク技術研究所 Circuit device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS442809Y1 (en) * 1965-02-28 1969-02-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS442809Y1 (en) * 1965-02-28 1969-02-03

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178849A (en) * 2015-03-23 2016-10-06 アクソンデータマシン株式会社 Power supply unit
JP2020018107A (en) * 2018-07-25 2020-01-30 株式会社オートネットワーク技術研究所 Circuit device
WO2020022037A1 (en) * 2018-07-25 2020-01-30 株式会社オートネットワーク技術研究所 Circuit device

Similar Documents

Publication Publication Date Title
US10763682B2 (en) Energy storage system and controlling method thereof
US5818199A (en) Current limited charging apparatus for lithium batteries or the like
CN102934320B (en) Battery supply set and the control method of power thereof
US20060099463A1 (en) Direct current/direct current converter for a fuel cell system
JP2015195674A (en) Power storage battery assembly control system
CN110176788B (en) Power storage system and power storage device
US3555395A (en) Multiple voltage battery regulated power supply
CN112600216B (en) Bus voltage and power control method
WO2024148806A1 (en) Direct-current power supply system having fixed output voltage
JP2002058170A (en) Uninterruptible power supply
CN106026174B (en) A kind of grid-connected photovoltaic system with intelligent power dividing function
JP6932607B2 (en) DC power supply system
JPH0965582A (en) Power supply system utilizing solar cell
US4775826A (en) Battery system for auxiliary aircraft power
CN207039235U (en) A kind of charging system
US20220181890A1 (en) Charging system and method
JPH037026A (en) Dc power supply system
KR102022321B1 (en) Energy storage system
JPH04372537A (en) Composite input station
CN113320404A (en) Fuel cell system based on hybrid power and setting method
JPH0946925A (en) Distributed power unit
JPWO2020137348A1 (en) DC power supply and DC power system
JPH03293939A (en) Dc power supply system
US12009695B2 (en) Power conversion system
JP2767947B2 (en) Battery charging circuit