JPH0368212B2 - - Google Patents

Info

Publication number
JPH0368212B2
JPH0368212B2 JP60086784A JP8678485A JPH0368212B2 JP H0368212 B2 JPH0368212 B2 JP H0368212B2 JP 60086784 A JP60086784 A JP 60086784A JP 8678485 A JP8678485 A JP 8678485A JP H0368212 B2 JPH0368212 B2 JP H0368212B2
Authority
JP
Japan
Prior art keywords
intake
port
passage
swirl
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60086784A
Other languages
Japanese (ja)
Other versions
JPS61244830A (en
Inventor
Hiroo Sakanaka
Masahiro Akeda
Tetsuo Ikejima
Kyoshi Hataura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP60086784A priority Critical patent/JPS61244830A/en
Publication of JPS61244830A publication Critical patent/JPS61244830A/en
Publication of JPH0368212B2 publication Critical patent/JPH0368212B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、内燃機関のダブル吸気通路の片通路
休止装置に関し、一方を低速時閉止用吸気通路と
し、他方の常開用吸気通路の吸気ポート部分をヘ
リカルポートで形成して、低速運転時でも強いス
ワールを確保できるものを提供する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a one-way stop device for double intake passages of an internal combustion engine, in which one intake passage is closed at low speeds and the other normally open intake passage is closed. To provide a port part formed with a helical port to ensure strong swirl even during low speed operation.

<従来技術> 内燃機関のダブル吸気通路の片通路休止装置の
基本構造を述べると、例えば、第1図に示すよう
に、内燃機関Eのシリンダ室1に常開用吸気通路
70と低速時閉止用吸気通路80とを並列状に連
通し、内燃機関Eが低速運転状態では、通路休止
装置62の休止弁81が低速時閉止用吸気通路8
0を閉じて、常開用吸気通路70のみで吸気を行
なうように構成したものである。
<Prior art> To describe the basic structure of a single passage deactivation device for a double intake passage of an internal combustion engine, for example, as shown in FIG. When the internal combustion engine E is operating at low speed, the stop valve 81 of the passage stop device 62 connects the intake passage 80 for closing at low speeds.
0 is closed and intake is performed only through the normally open intake passage 70.

一般に、低速運転時には、吸気量が少なくなつ
て吸気速度が低下するので、スワールが弱くなり
がちである。
Generally, during low-speed operation, the amount of intake air decreases and the intake speed decreases, so swirl tends to become weaker.

そこで、低速運転時にもスワール強度を確保し
ようとする従来技術として、例えば、実公昭54−
8246号公報に係るものがある。
Therefore, as a conventional technology that attempts to ensure swirl strength even during low-speed operation, for example,
There is something related to Publication No. 8246.

即ち、この従来技術は上記基本構造において、
ダブル吸気通路の両吸気ポートをダイレクトポー
トに形成するとともに、両ポート出口をそれぞれ
シリンダ室内のスワールの流れに接線方向に接続
させ、低速運転時に、片通路を休止し常開通路に
吸気を集中せしめて、ダイレクトポート内を流れ
る吸気の速度を増速させ、シリンダ室内に強いス
ワールを起こそうとするものである。
That is, this prior art has the above basic structure,
Both intake ports of the double intake passage are formed into direct ports, and both port outlets are connected tangentially to the swirl flow in the cylinder chamber, so that during low-speed operation, one passage is stopped and intake air is concentrated in the normally open passage. The aim is to increase the speed of intake air flowing through the direct port and create a strong swirl within the cylinder chamber.

<発明が解決しようとする問題点> しかしながら、上記従来装置においては、吸気
を集中せしめるのがダイレクトポートなどで、ス
ワールの旋回成分が不十分であり、小型エンジン
の場合にはシリンダが小容積なので、このスワー
ル不足が顕著になる。
<Problems to be Solved by the Invention> However, in the conventional device described above, the intake air is concentrated through a direct port, etc., and the swirl component is insufficient, and in the case of a small engine, the cylinder has a small volume. , this lack of swirl becomes noticeable.

しかも、両ポートがいずれもダイレクトポート
であるため、シリンダ室内にスワールを発生する
ように両ポート出口が接線方向に接続させてあ
る。この結果、ポート入口を開口したシリンダヘ
ツド側面から各ポート出口までの距離が大きく異
なり、従つて各ポート出口を開閉する両吸気弁は
動弁カム軸の軸心からの距離が異なることにな
り、吸気弁の開閉駆動機構が複雑となる。
Moreover, since both ports are direct ports, the outlet ports of both ports are connected in a tangential direction so as to generate a swirl within the cylinder chamber. As a result, the distance from the side of the cylinder head where the port inlet is opened to each port outlet is greatly different, and therefore the distances from the axis of the valve drive camshaft of both intake valves that open and close each port outlet are different. The opening/closing drive mechanism of the intake valve becomes complicated.

本発明は、両ポート出口をカム軸心と平行に配
置して吸気弁の開閉駆動機構を簡単な構成にする
とともに、低速運転状態でも十分なスワールを確
保することを技術的課題とする。
The technical problem of the present invention is to simplify the structure of the intake valve opening/closing drive mechanism by arranging both port outlets parallel to the cam axis, and to ensure sufficient swirl even in low-speed operating conditions.

<問題点を解決するための手段> 上記課題を解決する手段を、実施例に対応する
第1図乃至第8図を用いて説明すると、各吸気通
路70・80の吸気ポート2・3をシリンダ室1
内のスワールと同方向に旋回するヘリカルポート
の形状に形成し、常開用吸気通路70の吸気ポー
ト3を、上記のスワールが両吸気ポート出口1
1・12間を流れる方向Bを基準にして風下側に
位置させるとともに、低速時閉止用吸気通路80
の吸気ポート2よりも大きく湾曲させて、ポート
出口12を上記スワールの流れに接線方向で接続
させたものである。
<Means for Solving the Problems> The means for solving the above problems will be explained with reference to FIGS. 1 to 8 corresponding to the embodiment. Room 1
The above swirl is formed in the shape of a helical port that rotates in the same direction as the inner swirl, and the intake port 3 of the normally open intake passage 70 is
The intake passage 80 is located on the leeward side with respect to the flow direction B between 1 and 12, and the intake passage 80 is closed at low speeds.
The intake port 2 is curved to a greater extent than the intake port 2, and the port outlet 12 is connected tangentially to the swirl flow.

<作 用> 両吸気ポートをヘリカルポートに形成してある
ので、ポート出口を接線方向に接続しなくとも、
吸気は旋回成分を十分与えられてシリンダ室内に
スワールを起こしながら送り込まれる。
<Function> Since both intake ports are formed into helical ports, the port outlet can be connected without tangentially.
The intake air is given a sufficient swirling component and is sent into the cylinder chamber while creating a swirl.

しかも、常開用吸気通路のポートを大きく湾曲
させてポート出口を上記スワールの流れに接線方
向で接続させてあるので、ヘリカルポートの巻角
度が大きく形成される。この結果、低速運転状態
では、片吸気通路を休止して巻角度の大きいヘリ
カルポートに吸気が集中するので、吸気は強力な
旋回成分が十分に与えられたうえ流速が増し、吸
気はシリンダ室内へ強いスワールを起こしながら
強力に送り込まれる。
Moreover, since the port of the normally open intake passage is greatly curved and the port outlet is connected tangentially to the swirl flow, the winding angle of the helical port is formed to be large. As a result, during low-speed operation, one intake passage is stopped and the intake air is concentrated at the helical port with a large winding angle, giving the intake a strong swirling component and increasing the flow velocity, allowing the intake air to flow into the cylinder chamber. It is powerfully sent while creating a strong swirl.

<発明の効果> 本発明によれば、従来装置のようなダイレクト
ポートと異なり、ポート出口を接線方向に接続し
なくとも吸気はヘリカルポートで旋回成分が十分
与えられてシリンダ室内にスワールを起こしなが
ら送り込まれる。この結果、ポート入口を開口し
たシリンダヘツド側面と平行に両ポート出口を配
置することができ、両ポート出口をカム軸心と平
行に配置して吸気弁の開閉駆動機構を簡単な構成
にすることができる。
<Effects of the Invention> According to the present invention, unlike the direct port of conventional devices, the intake air is given a sufficient swirling component through the helical port without having to connect the port outlet in the tangential direction, causing a swirl inside the cylinder chamber. sent. As a result, both port outlets can be arranged parallel to the side surface of the cylinder head with the port inlet open, and both port outlets can be arranged parallel to the cam axis, simplifying the structure of the intake valve opening/closing drive mechanism. I can do it.

しかも、低速運転時には、吸気は巻角度の大き
いヘリカルポートで旋回成分が与えられるので、
吸気抵抗を大きくすることなくシリンダ室内に強
力なスワールを起こすことができる。
Moreover, during low-speed operation, the intake air is given a swirling component by the helical port with a large winding angle.
A strong swirl can be generated within the cylinder chamber without increasing intake resistance.

従つて、内燃機関に本発明を適用すれば、特に
排気量の小さい小型内燃機関に適用する場合であ
つても、動弁機構を簡単な構成にできるものであ
りながら、しかも、低速運転状態でもスワールを
強くして吸気の混合状態を良好にし、もつて排気
ガスを浄化するとともに燃費を向上することがで
きる。
Therefore, if the present invention is applied to an internal combustion engine, even if the present invention is applied to a small internal combustion engine with a small displacement, the valve mechanism can be made simple in structure, and moreover, it can be operated even at low speeds. The swirl is strengthened to improve the mixing condition of intake air, thereby purifying exhaust gas and improving fuel efficiency.

<実施例> 以下、本発明の実施例を図面に基いて説明す
る。
<Example> Hereinafter, an example of the present invention will be described based on the drawings.

第1図はシリンダヘツドの横断平面図、第2図
は縦型デイーゼルエンジンのシリンダヘツドの要
部平面図、第3図は吸気ロツカアーム軸周辺の要
部縦断面図、第4図は縦型デイーゼルエンジンの
要部縦断側面図であつて、縦型デイーゼルエンジ
ンEはシリンダブロツク16に所定間隔を隔てて
複数のシリンダ室1を設け、各シリンダ室1に上
下動自在にピストン17を内嵌する。
Figure 1 is a cross-sectional plan view of the cylinder head, Figure 2 is a plan view of the main part of the cylinder head of a vertical diesel engine, Figure 3 is a longitudinal cross-sectional view of the main part around the intake rocker arm axis, and Figure 4 is a vertical cross-sectional view of the cylinder head of a vertical diesel engine. This is a vertical sectional side view of the main part of the engine. In the vertical diesel engine E, a cylinder block 16 is provided with a plurality of cylinder chambers 1 at predetermined intervals, and a piston 17 is fitted into each cylinder chamber 1 so as to be vertically movable.

各シリンダ室1の前・後に吸気系及び排気系の
各動弁カム軸5,65を軸架し、動弁カム軸5を
進角装置18を介して吸気動弁装置4に、また、
動弁軸65を排気動弁装置60に各々連通する。
The valve drive camshafts 5 and 65 of the intake system and the exhaust system are mounted before and after each cylinder chamber 1, and the valve drive camshafts 5 are connected to the intake valve drive device 4 via the advance device 18, and
The valve shafts 65 are communicated with the exhaust valve train 60, respectively.

尚、符号19はシリンダブロツク16を左右に
貫く共通伝動軸で、進角装置18及び一方の吸気
ポート、例えば、後述のパーシヤリーヘリカルポ
ート3に連なる短絡路20の吸気経路装置切換弁
21を開閉駆動するものである。
Reference numeral 19 denotes a common transmission shaft passing through the cylinder block 16 from side to side, and serves to control an advance device 18 and one intake port, for example, an intake path device switching valve 21 of a short circuit 20 connected to a partially helical port 3, which will be described later. It is driven to open and close.

シリンダブロツク16上にはシリンダヘツド6
を載置固定し、シリンダヘツド6の各シリンダ室
1に対応する部位に2本の吸気ポート2・3と排
気ポート22を配置し、シリンダ室1の中心Cに
ユニツトインジエクタ取付孔24を、さらに、当
該中心Cから排気ポート22寄りにグロープラグ
取付孔25を各々空ける。
The cylinder head 6 is mounted on the cylinder block 16.
are placed and fixed, two intake ports 2 and 3 and an exhaust port 22 are placed in the portions of the cylinder head 6 corresponding to each cylinder chamber 1, and a unit injector mounting hole 24 is placed in the center C of the cylinder chamber 1. Further, glow plug mounting holes 25 are formed from the center C toward the exhaust port 22, respectively.

上記吸気ポート2・3は前記動弁カム軸5に平
行な方向Aに並列させてシリンダヘツド6に形成
され、その両ポート入口7・8をシリンダヘツド
6の同じ前側面10に開口するとともに、そのポ
ート出口11・12をシリンダ室中心Cよりもポ
ート入口7・8側に偏位する部位でカム軸心Sと
平行な方向に並べて位置させる。
The intake ports 2 and 3 are formed in the cylinder head 6 in parallel in the direction A parallel to the valve drive camshaft 5, and both port inlets 7 and 8 are opened on the same front side surface 10 of the cylinder head 6. The port outlets 11 and 12 are located side by side in a direction parallel to the cam axis S at a position that is offset from the cylinder chamber center C toward the port inlets 7 and 8.

いま、シリンダ室1内で発生させようとする吸
気のスワールがダブル吸気ポートの出口11・1
2の並列部分間15を流れる方向を符号Bで表わ
すと、この方向Bを基準にして、その風上側に位
置する吸気ポート2をピユアーヘリカルポート
に、また、風下側に位置する吸気ポート3をパー
シヤリーヘリカルポートに各々形成する。
Now, the intake swirl that is about to be generated in the cylinder chamber 1 is at the outlet 11/1 of the double intake port.
If the direction of flow between the parallel portions 15 of 2 is represented by the symbol B, then with this direction B as a reference, the intake port 2 located on the windward side is designated as a pure helical port, and the intake port 3 located on the leeward side is designated as a pure helical port. are respectively formed into partial helical ports.

上記ダブル吸気ポートのうち、風上側のピユア
ーヘリカルポート2は、第5図及び第6図に示す
ように、ポート出口11の周辺を円筒状に高く立
ち上げて、ポート入口7から流入した吸気を当該
ポート出口11でダイレクト成分を殺し、円筒内
壁11aに沿わせてシリンダ室1に略放射状に吹
き入れてスワールを発生させる(第9図参照)。
Of the above-mentioned double intake ports, the upwind pure helical port 2 has the periphery of the port outlet 11 raised high in a cylindrical shape as shown in FIGS. The direct component is killed at the port outlet 11, and it is blown into the cylinder chamber 1 approximately radially along the cylinder inner wall 11a to generate a swirl (see FIG. 9).

風下側のパーシヤリーヘリカルポート3は、ポ
ート全体を緩やかに湾曲させてポート出口12を
シリンダ室1内のスワールの流れに接線方向で接
続させてあり、このパーシヤリーヘリカルポート
3の巻き角度を大きく形成できるように構成され
ている。そして、第7図及び第8図に示すよう
に、ポート出口12の一部12aを円筒状に立ち
上げ、他の部分12bをポートの入口8から出口
12へ略上下方向に吹き抜け可能に縦長に形成し
て、吸気の一部を当該縦長部分12bからダイレ
クトにシリンダ室1に流入せしめるとともに、残
部吸気を円筒内壁12aに沿わせてスワールを発
生させる(第9図参照)。
The partially helical port 3 on the leeward side has the entire port gently curved so that the port outlet 12 is tangentially connected to the swirl flow in the cylinder chamber 1, and the winding angle of the partially helical port 3 is It is structured so that it can be formed in a large size. As shown in FIGS. 7 and 8, a part 12a of the port outlet 12 is raised up into a cylindrical shape, and the other part 12b is made vertically long so that it can blow through from the inlet 8 of the port to the outlet 12 in a substantially vertical direction. A portion of the intake air flows directly into the cylinder chamber 1 from the vertically long portion 12b, and the remaining intake air is caused to swirl along the cylindrical inner wall 12a (see FIG. 9).

一方、排気ポート22は、そのポート出口26
を共通にしてシリンダヘツド6の後側面27に開
口し、そのポート入口28・29を二つに分岐さ
せたうえでシリンダ室中心Cよりもポート出口2
6側に偏位させ、排気系の動弁カム軸心Sに平行
な方向に並べて位置させる。
On the other hand, the exhaust port 22 has its port outlet 26
are opened in the rear side 27 of the cylinder head 6, and the port inlets 28 and 29 are branched into two, and the port outlet 2 is opened from the center C of the cylinder chamber.
6 side, and position them side by side in a direction parallel to the valve train cam axis S of the exhaust system.

前記の吸気動弁装置4をタペツト30、プツシ
ユロツド31、ロツカアーム32より構成し、動
弁カム軸5の上方に位置するシリンダブロツク1
6及びシリンダヘツド6の対応箇所にプツシユロ
ツド嵌挿孔33を空ける。
The above-mentioned intake valve train 4 is composed of a tappet 30, a push rod 31, and a rocker arm 32, and the cylinder block 1 is located above the valve train camshaft 5.
6 and the cylinder head 6, a push rod insertion hole 33 is made at a corresponding location.

そして、これにプツシユロツド31を遊嵌し、
タペツト30を介して当該プツシユロツド31の
下端31bを進角装置18に接当せしめる。
Then, loosely fit the push rod 31 into this,
The lower end 31b of the push rod 31 is brought into contact with the advance device 18 via the tappet 30.

尚、排気系の動弁装置60も同様に構成する。 Note that the valve train 60 of the exhaust system is also configured in the same manner.

また、シリンダヘツド6の上壁35の前方及び
後方に各々複数のブラケツト36を介して2本の
ロツカアーム軸37・38を軸架し、前方のロツ
カアーム軸37に二股状の吸気用ロツカアーム3
2を、また、後方のロツカアーム軸38に二股状
の排気用ロツカアーム39を各シリンダ室1毎に
揺動自在に枢支する。
In addition, two rocker arm shafts 37 and 38 are mounted on the front and rear sides of the upper wall 35 of the cylinder head 6 via a plurality of brackets 36, respectively, and a bifurcated intake rocker arm 3 is attached to the front rocker arm shaft 37.
2, and a bifurcated exhaust rocker arm 39 is swingably supported on the rear rocker arm shaft 38 for each cylinder chamber 1.

上記吸気用ロツカアーム32はクラツチ機構よ
りなる通路休止装置62を介して主動アーム32
aと従動アーム32bを係脱自在に連動して構成
される。
The intake rocker arm 32 is connected to the main drive arm 32 via a passage stopping device 62 consisting of a clutch mechanism.
a and a driven arm 32b are interlocked in a detachable manner.

主動アーム32aにはロツカアーム入力部34
と出力部58が形成され、従動アーム32bには
出力部59のみが形成される。
The main arm 32a has a rocker arm input section 34.
and an output section 58 are formed, and only an output section 59 is formed on the driven arm 32b.

以下、上記通路休止装置62の構造を第3図に
基いて詳述する。
Hereinafter, the structure of the passage stopping device 62 will be explained in detail with reference to FIG. 3.

吸気用ロツカアーム軸37の中央に貫通した通
油孔44の一端をデイーゼルエンジンの潤滑油系
内に組込んだブースターポンプPに接続し、通油
孔44の中途部をロツカアーム軸の径方向に貫通
する分岐通油孔45に連通する。
One end of the oil hole 44 penetrating through the center of the intake rocker arm shaft 37 is connected to a booster pump P incorporated in the lubricating oil system of the diesel engine, and the middle part of the oil hole 44 is passed through in the radial direction of the rocker arm shaft. It communicates with a branch oil hole 45.

吸気用ロツカアーム軸37のうち、ブラケツト
36・36に挟まれた部位46の中央にユニツト
インジエクタ用ロツカアーム47を枢支し、これ
を両側から挟む形で主動アーム32a及び従動ア
ーム32bを揺動自在に枢支する。
A unit injector rocker arm 47 is pivotally supported at the center of a portion 46 of the intake rocker arm shaft 37 sandwiched between the brackets 36 and 36, and the main drive arm 32a and the driven arm 32b can swing freely by sandwiching this from both sides. It is centrally supported.

従動アーム32bの左方に油室48を設け、こ
の油室48を上記ロツカアーム軸の分岐通油孔4
5に接続するとともに、当該アーム32bの右端
にクラツチ爪50を形成する。
An oil chamber 48 is provided on the left side of the driven arm 32b, and this oil chamber 48 is connected to the branch oil passage hole 4 of the rocker arm shaft.
5, and a clutch pawl 50 is formed at the right end of the arm 32b.

また、主動アーム32aの左端にクラツチ爪5
1を形成し、このクラツチ爪51を上記従動アー
ム32bのクラツチ爪50に係合可能に構成し、
両クラツチ爪50・51の周方向複数箇所にバネ
室52を設ける。
Further, a clutch pawl 5 is provided at the left end of the main drive arm 32a.
1, and the clutch pawl 51 is configured to be engageable with the clutch pawl 50 of the driven arm 32b,
Spring chambers 52 are provided at a plurality of locations in the circumferential direction of both clutch pawls 50 and 51.

当該バネ室52には弾圧バネ53を収容し、両
アームが互いに離れ合う方向に付勢する。
A compression spring 53 is housed in the spring chamber 52 and biases both arms in a direction away from each other.

尚、符号82はバネのずれを矯正する芯材であ
る。
Incidentally, reference numeral 82 is a core material that corrects misalignment of the spring.

一方、従動アーム32bの左端にはガイド54
が外嵌し、ガイド54の左方を油室48に臨ま
せ、その右方をユニツトインジエクタ用ロツカア
ーム47の停止壁55に接当可能に構成する。
On the other hand, a guide 54 is provided at the left end of the driven arm 32b.
is fitted onto the outside, so that the left side of the guide 54 faces the oil chamber 48, and the right side thereof is constructed so as to be able to come into contact with the stop wall 55 of the unit injector rocker arm 47.

前・後のロツカアーム軸37・38の中間に
は、各シリンダ室1毎に2本の吸気弁40・41
及び2本の排気弁56・57が上下動自在に配置
され、吸気弁40の下端をピユアーヘリカルポー
トの出口11に、また、吸気弁41の下端73を
パーシヤリーヘリカルポートの出口12に各々臨
ませる。
Two intake valves 40 and 41 are provided for each cylinder chamber 1 between the front and rear rocker arm shafts 37 and 38.
And two exhaust valves 56 and 57 are arranged to be able to move up and down, and the lower end of the intake valve 40 is connected to the outlet 11 of the private helical port, and the lower end 73 of the intake valve 41 is connected to the outlet 12 of the partial helical port. Let each of you come.

そして、吸気弁40・41の上端74を吸気用
ロツカアーム32の2つの出力部58・59に接
当させる。
Then, the upper ends 74 of the intake valves 40 and 41 are brought into contact with the two output parts 58 and 59 of the intake rocker arm 32.

この場合、パーシヤリーヘリカルポート3に臨
む吸気弁41には上記主動アーム32aの出力部
58が接当し、ピユアーヘリカルポート2に臨む
吸気弁40には従動アーム32bの出力部59が
接当するが、低速時には従動アーム32bは作動
解除されることから、吸気弁40が上記通路休止
装置62の休止弁81を兼ねることになる。
In this case, the output portion 58 of the driving arm 32a is in contact with the intake valve 41 facing the partial helical port 3, and the output portion 59 of the driven arm 32b is in contact with the intake valve 40 facing the private helical port 2. However, since the driven arm 32b is deactivated at low speeds, the intake valve 40 also serves as the stop valve 81 of the passage stop device 62.

そして、前記吸気系のプツシユロツド31の上
端31aを吸気用ロツカアーム32の入力部34
に接当し、動弁カム軸5の回転により2本の吸気
弁40・41を開・閉可能に駆動する。
Then, the upper end 31a of the push rod 31 of the intake system is connected to the input part 34 of the intake rocker arm 32.
The two intake valves 40 and 41 are driven to open and close by the rotation of the valve drive camshaft 5.

このとき、吸気系のロツカアーム軸37と動弁
カム軸5と吸気ポート2・3の二つの出口11・
12とは共に平行に並ぶので、ロツカアーム32
による二つの吸気弁40・41の押圧力を均等に
できる。
At this time, the rocker arm shaft 37 of the intake system, the valve train camshaft 5, and the two outlets 11 and 2 of the intake ports 2 and 3 are connected to each other.
12 are both parallel to each other, so Rotsuka arm 32
The pressing force of the two intake valves 40 and 41 can be made equal.

一方、排気弁56・57の下端を排気ポート入
口28・29に臨ませ、この上端66を上記排気
用ロツカアーム39の二つの出力部67・68に
接当させる。
On the other hand, the lower ends of the exhaust valves 56 and 57 face the exhaust port inlets 28 and 29, and the upper ends 66 are brought into contact with the two output parts 67 and 68 of the exhaust rocker arm 39.

尚、符号69はユニツトインジエクタ嵌挿孔2
4に嵌入されるユニツトインジエクタで吸・排気
ポートの略中央に配置され、また、符号71はグ
ロープラグ嵌挿孔25に嵌入されるグロープラグ
で排気ポート22寄りに配置される。
Furthermore, the reference numeral 69 indicates the unit injector insertion hole 2.
A unit injector 4 is fitted into the unit injector and is located approximately at the center of the intake/exhaust port.A glow plug 71 is fitted into the glow plug insertion hole 25 and is located near the exhaust port 22.

そして、符号72は、吸・排気弁を閉弁付勢す
る閉弁バネである。
Reference numeral 72 is a valve closing spring that biases the intake/exhaust valves to close.

斯くしてなる片通路休止装置の機能を第3図に
より説明すると、まず、エンジン回転数が上昇し
てブースターポンプPの油圧が増大すると、通油
孔44・45を介して当該ポンプPに連通する油
室48の油圧が増す。
The function of the one-passage stop device constructed in this way will be explained with reference to FIG. 3. First, when the engine speed increases and the oil pressure of the booster pump P increases, it communicates with the pump P through the oil holes 44 and 45. The oil pressure in the oil chamber 48 increases.

従つて、エンジン回転数が、例えば、略
2300rpmを越えると、この油圧が弾圧バネ53の
付勢力に打ち克ち、従動アーム32b及びガイド
54を矢印C方向に摺動し、ガイド54がユニツ
トインジエクタ用ロツカアーム47の停止壁55
に打ち当たつて摺動を終了させたのちも、従動ア
ーム32bはC方向への摺動を続行する。
Therefore, if the engine speed is, for example, approximately
When the speed exceeds 2300 rpm, this oil pressure overcomes the biasing force of the elastic spring 53 and slides the driven arm 32b and guide 54 in the direction of arrow C, causing the guide 54 to close to the stop wall 55 of the unit injector rocker arm 47.
Even after the driven arm 32b hits and finishes sliding, the driven arm 32b continues sliding in the C direction.

そして、従動アーム32bのクラツチ爪50が
主動アーム32bのクラツチ爪51に係合してク
ラツチ機構62が作動すると、従動アーム32b
に主動アーム32aが連動し、吸気弁40・41
は両弁駆動を行なう。
Then, when the clutch pawl 50 of the driven arm 32b engages with the clutch pawl 51 of the main drive arm 32b and the clutch mechanism 62 is operated, the driven arm 32b
The main drive arm 32a is interlocked with the intake valves 40 and 41.
drives both valves.

従つて、吸気はピユアーヘリカルポート2及び
パーシヤリーヘリカルポート3の二つを通つてシ
リンダ室1内に流入する。
Therefore, intake air flows into the cylinder chamber 1 through the private helical port 2 and the partial helical port 3.

一方、エンジンの回転数が2300rpmより低い低
速運転域では、ブースターポンプPの吐出圧は低
くなるので、弾圧バネ53の付勢力が当該油室4
8の油圧に打ち克つて従動アーム32bをD方向
に移動せしめ、当該アーム32bのクラツチ爪5
0は主動アーム32bのクラツチ爪51から外れ
る。
On the other hand, in a low-speed operating range where the engine speed is lower than 2300 rpm, the discharge pressure of the booster pump P is low, so the urging force of the elastic spring 53 is applied to the oil chamber 4.
8, the driven arm 32b is moved in the D direction, and the clutch pawl 5 of the arm 32b is moved.
0 is removed from the clutch pawl 51 of the driving arm 32b.

従つて、クラツチ機構62は解除され、主動ア
ーム32aのみがプツシユロツド31で揺動さ
れ、パーシヤリーヘリカルポート3に臨む吸気弁
41が単独作動する。
Therefore, the clutch mechanism 62 is released, only the main drive arm 32a is swung by the push rod 31, and the intake valve 41 facing the partial helical port 3 is operated independently.

従つて、ダブル吸気装置は片弁作動を行ない、
パーシヤリーヘリカルポート3のみで吸気の供給
を行なうことになる。
Therefore, the double intake system performs single-valve operation,
Intake air is supplied only through the partially helical port 3.

この場合、低速運転域では、吸気量は少なくな
るがパーシヤリーヘリカルポート1本に絞るの
で、吸気は当該ヘリカルポートに集中して流速を
高めるうえ、巻き角度の大きいヘリカルポートに
より吸気を強く旋回させてスワールを強くでき
る。
In this case, in the low-speed operating range, the amount of intake air is reduced, but it is limited to one partially helical port, so the intake air is concentrated in that helical port, increasing the flow velocity, and the helical port with a large winding angle causes the intake air to be strongly swirled. You can make the swirl stronger.

又、高速運転域では、吸気管が大きくなるの
で、パーシヤリー吸びピユアーの両ヘリカルポー
トから強力なスワールをシリンダ室に引き起こす
ことができる。
Also, in high-speed operating ranges, the intake pipe becomes larger, so a strong swirl can be generated in the cylinder chamber from both helical ports of the partial suction pipe.

以上のように、本発明は、低速運転時にもスワ
ールを強化するためにダブル吸気通路のうちの片
通路を休止するものなので、常開用吸気通路70
の吸気ポート3はヘリカルポートであればピユア
ーヘリカルポート或いはパーシヤリーヘリカルポ
ートのどちらでも良い。
As described above, in the present invention, one of the double intake passages is stopped in order to strengthen the swirl even during low-speed operation, so the normally open intake passage 70
The intake port 3 may be either a pure helical port or a partial helical port as long as it is a helical port.

また、上記実施例では、一方の吸気通路を休止
する装置62を吸気用ロツカアーム32の周囲に
組込み、休止弁81を吸気弁40に兼用したが、
吸気通路の途上に通路閉止装置を設けても良い。
Further, in the above embodiment, the device 62 for stopping one intake passage is built around the intake rocker arm 32, and the stopping valve 81 is also used as the intake valve 40.
A passage closing device may be provided in the middle of the intake passage.

例えば、エンジン回転数の増減を潤滑油温若し
くは排気温から検出するセンサーと、このセンサ
ーで駆動するソレノイド弁とで通路閉止装置を構
成し、これを、低速時閉止用吸気通路80のうち
吸気ポート2の上流側に設定しても差し支えな
い。
For example, a passage closing device is composed of a sensor that detects an increase or decrease in engine speed from lubricating oil temperature or exhaust temperature, and a solenoid valve driven by this sensor, and this is connected to an intake port of the intake passage 80 for closing at low speeds. There is no problem even if it is set upstream of 2.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はシリン
ダヘツドの横断平面図、第2図は縦型デイーゼル
エンジンのシリンダヘツドの要部平面図、第3図
は吸気ロツカアーム軸周辺の要部縦断面図、第4
図は縦型デイーゼルエンジンの要部縦断側面図、
第5図はピユアーヘリカルポートの縦断正面図、
第6図は第5図の−線断面図、第7図はパー
シヤリーヘリカルポートの縦断正面図、第8図は
第7図の−線断面図、第9図はダブル吸気ポ
ートの流れを示す概略図である。 1…シリンダ室、2…低速時閉止用吸気通路の
吸気ポート、3…常開用吸気通路の吸気ポート、
11・12…吸気ポート出口、62…通路休止装
置、70…常開用吸気通路、80…低速時閉止用
吸気通路、81…休止弁、B…シリンダ室内のス
ワールが両吸気ポート出口間を流れる方向、E…
内燃機関。
The drawings show an embodiment of the present invention, in which Fig. 1 is a cross-sectional plan view of a cylinder head, Fig. 2 is a plan view of the main part of the cylinder head of a vertical diesel engine, and Fig. 3 is a longitudinal cross-section of the main part around the intake rocker arm axis. Front view, 4th
The figure is a vertical side view of the main parts of a vertical diesel engine.
Figure 5 is a longitudinal sectional front view of the Pure Helical Port.
Figure 6 is a sectional view taken along the - line in Figure 5, Figure 7 is a longitudinal sectional front view of the partially helical port, Figure 8 is a sectional view taken along the - line in Figure 7, and Figure 9 shows the flow of the double intake port. FIG. 1...Cylinder chamber, 2...Intake port of the intake passage for closing at low speeds, 3...Intake port of the normally open intake passage,
11, 12... Intake port outlet, 62... Passage stop device, 70... Normally open intake passage, 80... Intake passage for closing at low speed, 81... Stop valve, B... Swirl in the cylinder chamber flows between both intake port outlets Direction, E...
Internal combustion engine.

Claims (1)

【特許請求の範囲】 1 内燃機関Eのシリンダ室1に常開用吸気通路
70と低速時閉止用吸気通路80とを並列状に連
通し、 内燃機関Eが低速運転状態では、通路休止装置
62の休止弁81が低速時閉止用吸気通路80を
閉じて、常開用吸気通路70のみで吸気を行なう
ように構成した内燃機関のダブル吸気通路の片通
路休止装置において、 各吸気通路70・80の吸気ポート2・3をシ
リンダ室1内のスワールと同方向に旋回するヘリ
カルポートの形状に形成し、 常開用吸気通路70の吸気ポート3を、上記ス
ワールが両吸気ポート出口11・12間を流れる
方向Bを基準にして風下側に位置させるととも
に、低速時閉止用吸気通路80の吸気ポート2よ
りも大きく湾曲させて、ポート出口12を上記ス
ワールの流れに接線方向で接続させた事を特徴と
する内燃機関のダブル吸気通路の片通路休止装
置。
[Claims] 1. A normally open intake passage 70 and a low speed closing intake passage 80 are connected in parallel to the cylinder chamber 1 of the internal combustion engine E, and when the internal combustion engine E is in a low speed operating state, a passage stopping device 62 is provided. In a single-passage stop device for a double intake passage for an internal combustion engine configured such that a stop valve 81 closes a closing intake passage 80 at low speeds and intake is performed only through the normally open intake passage 70, each intake passage 70, 80 The intake ports 2 and 3 of the cylinder chamber 1 are formed in the shape of a helical port that rotates in the same direction as the swirl inside the cylinder chamber 1, and the intake port 3 of the normally open intake passage 70 is formed so that the swirl is between the two intake port outlets 11 and 12. is located on the leeward side with respect to the flow direction B, and is curved more than the intake port 2 of the intake passage 80 for closing at low speeds, so that the port outlet 12 is connected tangentially to the swirl flow. This is a single-passage shutoff device for double intake passages for internal combustion engines.
JP60086784A 1985-04-23 1985-04-23 One passage stopping device for double intake passages in internal-combustion engine Granted JPS61244830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086784A JPS61244830A (en) 1985-04-23 1985-04-23 One passage stopping device for double intake passages in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086784A JPS61244830A (en) 1985-04-23 1985-04-23 One passage stopping device for double intake passages in internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS61244830A JPS61244830A (en) 1986-10-31
JPH0368212B2 true JPH0368212B2 (en) 1991-10-25

Family

ID=13896378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086784A Granted JPS61244830A (en) 1985-04-23 1985-04-23 One passage stopping device for double intake passages in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61244830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140023584A (en) * 2012-08-16 2014-02-27 엘지이노텍 주식회사 Optical system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2580404Y2 (en) * 1990-04-28 1998-09-10 本田技研工業株式会社 Internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615539A (en) * 1984-06-20 1986-01-11 Hitachi Ltd Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142330U (en) * 1982-03-23 1983-09-26 トヨタ自動車株式会社 Internal combustion engine intake system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615539A (en) * 1984-06-20 1986-01-11 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140023584A (en) * 2012-08-16 2014-02-27 엘지이노텍 주식회사 Optical system

Also Published As

Publication number Publication date
JPS61244830A (en) 1986-10-31

Similar Documents

Publication Publication Date Title
US7644586B2 (en) Control of supercharged engine
JP5464607B2 (en) Air supply control device for piston reciprocating internal combustion engine, valve used in air supply control device for piston reciprocating internal combustion engine, and method for controlling motion of piston reciprocating internal combustion engine
JP5833170B2 (en) Partial exhaust flow extraction device and internal combustion engine comprising said device
JP2012077756A (en) Two-stroke internal combustion engine
CA2151440A1 (en) Valve Operating System for Multi-Cylinder Internal Combustion Engine
JP5919304B2 (en) Turbocharged vehicle engine and vehicle including the same
US6964270B2 (en) Dual mode EGR valve
JPH03502354A (en) internal combustion engine
JPH05263671A (en) Valve timing control device of internal-combustion engine with turbocharger
JPH0368212B2 (en)
JPS59168217A (en) Control apparatus for internal-combustion engine with supercharger
JP2007192127A (en) Internal combustion engine with turbocharger
EP0344780B1 (en) Intake control device for engine
JPS63179134A (en) Suction device for engine
JP4420706B2 (en) Cylinder deactivation internal combustion engine
JPS61250341A (en) One-side passage resting device of double suction passage for internal combustion engine
JPS60147536A (en) Intake and exhaust apparatus for four-cycle internal-combustion engine
JPH0366498B2 (en)
JPS61250340A (en) Double suction port type suction device for internal combustion engine
KR100305447B1 (en) Intake/exhaust valve device of engine
CA2471588C (en) Valve
JPS61258921A (en) One-sided passage resting device of double suction passage for internal-combustion engine
JPH0526260Y2 (en)
JP2022161532A (en) Swirl control device
JP2002004849A (en) Exhaust emission control device in engine