JPH0367964A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0367964A
JPH0367964A JP1203090A JP20309089A JPH0367964A JP H0367964 A JPH0367964 A JP H0367964A JP 1203090 A JP1203090 A JP 1203090A JP 20309089 A JP20309089 A JP 20309089A JP H0367964 A JPH0367964 A JP H0367964A
Authority
JP
Japan
Prior art keywords
refrigerant
valve
compressor
cylinder compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1203090A
Other languages
Japanese (ja)
Inventor
Shuichi Tani
秀一 谷
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1203090A priority Critical patent/JPH0367964A/en
Publication of JPH0367964A publication Critical patent/JPH0367964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To perform the capacity control operation with avoiding a reduction in the heating and cooling capacity and over-heating of a motor by a method wherein a first on-off valve which opens and closes a bypass circuit and a second on-off valve which opens and closes a refrigerant feed circuit are provided, and the first and second on-off valves are on-off controlled corresponding to the refrigerant delivery temperature of a multiple-cylinder compressor. CONSTITUTION:A portion of refrigerant discharged from a multiple-cylinder compressor 1 is returned to the inlet side of the compressor 1 through a bypass circuit 28 and an on-off valve 29 opens and closes the bypass circuit 28. In a heat exchanger 31, heat exchange takes place between a liquid refrigerant pipe 30, which is connected to room heat exchangers 12 and 15, and a refrigerant suction pipe 19 for a cylinders of the multiple-cylinder compressor 1. A liquid refrigerant feed pipe 32 connects the refrigerant suction pipe 19 on the upstream side of the heat exchanger 31 and the liquid refrigerant pipe 30 and is opened and closed by an on-off valve 33. A temperature detector 34 detects the refrigerant delivery temperature of the multiple-cylinder compressor 1. An on-off valve controller 37 opens the on-off valves 29 and 33 when the temperature detected by the temperature detector 34 is higher than a preset over- heat preventing temperature, and closes the on-off valves when it is lower.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は複数シリンダ圧IBMのシリンダへの冷媒吸
入路を開閉制御することによって容量制御を行なう空気
調和装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air conditioner that performs capacity control by controlling the opening and closing of refrigerant suction passages to cylinders with multiple cylinder pressures IBM.

〔従来の技術〕[Conventional technology]

第4図は従来の空気調和装置を示す冷媒回路図である。 FIG. 4 is a refrigerant circuit diagram showing a conventional air conditioner.

図において、(1)は同じ容量の第1シリンダ(1a)
と第2シリンダ(1h)を備え、12個のモータ(2)
により駆動され、ガス冷媒を圧縮する高圧シェル型2シ
リンダロータリ圧縮機からなる複数シリンダ圧縮機であ
り、上記モータ(2)は上記第1シリンダ(1a)と第
2シリンダ(Ib)から吐出された冷媒ガスによって冷
却される。(3)は冷媒回路を切換える四方切換弁、(
4)は室外側熱交換器(4a)と送風機(51および逆
止弁[71が並列に接続された膨張機j旧6)を備えた
室外側熱交換装置、(12)は第1の室内側熱交換器(
12a)と送風機(13)および逆止弁(9)が並列に
接続された膨張機構(8)を備えた第1の室内側熱交換
装置、(15)は第2の室内側熱交換器(15a)と送
風機(14)および逆止弁(11)が並列に接続された
膨張機構00)を備えた第2の室内側熱交換装置、(1
6)はアキュムレータで、上記(1)〜(16)は冷媒
配管で接続され冷凍サイクルを構成している。
In the figure, (1) is the first cylinder (1a) with the same capacity.
and a second cylinder (1h), and 12 motors (2)
This is a multi-cylinder compressor consisting of a high-pressure shell-type two-cylinder rotary compressor that is driven by a gas refrigerant and compresses gas refrigerant. Cooled by refrigerant gas. (3) is a four-way switching valve that switches the refrigerant circuit;
4) is an outdoor heat exchange device equipped with an outdoor heat exchanger (4a) and a blower (51 and a check valve [71 is connected in parallel with the expander j former 6); (12) is the first indoor heat exchanger; Inner heat exchanger (
12a), a first indoor heat exchanger (15) equipped with an expansion mechanism (8) to which a blower (13) and a check valve (9) are connected in parallel; 15a), an expansion mechanism 00) in which a blower (14) and a check valve (11) are connected in parallel;
6) is an accumulator, and the above (1) to (16) are connected by refrigerant piping to form a refrigeration cycle.

(+7) (18)は第1および第2の室内側熱交換装
置(12) (+5)の冷房運転時の入口側に接続され
た電磁開閉弁で、この電磁開閉弁(17) (18)の
開閉により上記第]および第2の室内側熱交換装置(1
2> <15)の作動を制御する。(19)は上記アキ
ュムレータ(16)の出口側と上記複数シリンダ圧縮機
(1)の入力側とを接続する冷媒配管からなる冷媒吸入
路で、この冷媒吸入路(1つ)は第1のシリンダに通じ
る冷媒吸入路(19a)と、開閉弁(20)を介し第2
のシリンダ(1b)に通じる冷媒吸入路(2+) (2
2)とにわかれている。<231 (24)は直列に接
続された電磁開閉弁であり、」−記電磁開閉弁(23)
は冷媒配管(25)により複数シリンダ圧11ii 機
(11の第2シリンダ(1b)の冷媒吸入路(21)に
接続され、上記電磁開閉弁(24)は冷媒配管(26)
により複数シリンダ圧111i11fi [1,1の吐
出側に接続されている。上記電磁開閉弁(23)と電磁
開閉弁(24)との直列接続点は冷媒配管(27)によ
り、上記電磁開閉弁(20〉に接続されている。
(+7) (18) is an electromagnetic on-off valve connected to the inlet side of the first and second indoor heat exchanger (12) (+5) during cooling operation, and this electromagnetic on-off valve (17) (18) The above-mentioned] and second indoor heat exchange devices (1
2> Controls the operation of <15). (19) is a refrigerant suction path consisting of a refrigerant pipe connecting the outlet side of the accumulator (16) and the input side of the multi-cylinder compressor (1), and this refrigerant suction path (one) is connected to the first cylinder. A refrigerant suction passage (19a) leading to the second
Refrigerant suction passage (2+) leading to cylinder (1b) (2
2) It is divided into two. <231 (24) is an electromagnetic on-off valve connected in series, and the electromagnetic on-off valve (23) is
is connected to the refrigerant suction passage (21) of the second cylinder (1b) of the multiple cylinder pressure machine (11) through the refrigerant pipe (25), and the electromagnetic on-off valve (24) is connected to the refrigerant pipe (26).
It is connected to the discharge side of the multiple cylinder pressure 111i11fi [1,1. A series connection point between the electromagnetic on-off valve (23) and the electromagnetic on-off valve (24) is connected to the electromagnetic on-off valve (20>) via a refrigerant pipe (27).

第5図 第6図は」1記開閉弁(20)の縦断面図であ
る。図において、(20b)は開閉弁本体<20a)の
側面に形成され、冷媒吸入路(21)を接続する第1の
結合孔、(20c)は開閉弁本体(20a)の」二端部
に形成され冷媒吸入路(22)を接続する第2の結合孔
、(20d)は開閉弁本体(20a)の下端部に形成さ
れ、冷媒配管(27)を接続する第3の結合孔であり、
これら第1の結合孔(20b)〜第3の結合孔<20d
)は連通孔(20e)により連通している。(2Of)
は上記連通孔(20e)内を摺動し上記第1の結合孔(
20h)と第2の結合孔(20c)との連通を開閉する
と共に第1と第2の結合孔(20b) (20c)と第
3の結合孔(20d)との連通を閉塞するスライダであ
る。開閉弁(20)は以−にのように構成されており、
例えば、仄縮機(1)が運転時、第4図における電磁開
閉弁(24)か閉、電(3) 磁開閉弁(23)が開とすると、冷媒配管(27〉と冷
媒吸入路(21)とは上記電磁開閉弁(23)を介し導
通し、第2のシリンダ(1b)の作動により、冷媒配管
(27L冷媒吸入i¥8(2+)内の圧力は冷媒吸入路
(22)内の圧力より低くなり、冷媒の流れによってス
ライダ(2Of)は第6図のように押し下けられて、第
1と第2の結合孔(20b) (20c)は導通し冷媒
は第1及び第2のシリンダ(Ia) (lb)に供給さ
れ、複数シリンダ圧縮機(1)番1100%の容量てフ
ル運転となる。また複数シリ〉・ダ圧縮機(↑]が運転
時、電磁開閉弁(24)が開、電磁開閉弁(23)が閉
とすると、冷媒配管(27)の圧力が吐出圧力と同しと
なり冷媒吸入路(22)における圧力より高くなり、ス
ライダ(2Of)は第5図に示されるように押し」二げ
られて、第2のシリンダ(I b )への冷媒の流れは
閉止され、複数シリンダ圧縮機(1)は第1のシリンダ
(1a)へのみ冷媒が供給され、50%の容量による体
筒運転となる。
FIG. 5 FIG. 6 is a longitudinal sectional view of the on-off valve (20) described in 1. In the figure, (20b) is the first coupling hole formed on the side surface of the on-off valve body (20a) and connects the refrigerant suction passage (21), and (20c) is the first coupling hole formed on the side surface of the on-off valve body (20a), and (20c) is the first coupling hole formed on the side surface of the on-off valve body (20a). A second coupling hole (20d) formed at the lower end of the on-off valve body (20a) and connecting the refrigerant suction passage (22) is a third coupling hole connecting the refrigerant pipe (27);
These first coupling holes (20b) to third coupling holes <20d
) are communicated through a communication hole (20e). (2Of)
slides within the communication hole (20e) and connects to the first coupling hole (20e).
20h) and the second coupling hole (20c), and also closes communication between the first and second coupling holes (20b) (20c) and the third coupling hole (20d). . The on-off valve (20) is constructed as follows,
For example, when the compressor (1) is in operation, if the electromagnetic on-off valve (24) in Fig. 4 is closed and the electromagnetic on-off valve (23) is open, the refrigerant pipe (27) and the refrigerant suction passage ( 21) through the electromagnetic on-off valve (23), and by the operation of the second cylinder (1b), the pressure in the refrigerant pipe (27L refrigerant suction i\8 (2+) is reduced to within the refrigerant suction passage (22). , the slider (2Of) is pushed down by the flow of the refrigerant as shown in Fig. 6, and the first and second coupling holes (20b) (20c) are brought into conduction and the refrigerant flows through the first and second coupling holes (20c). 2 cylinders (Ia) (lb), and the multi-cylinder compressor (1) is in full operation at 1100% capacity.Also, when the multi-cylinder compressor (↑) is in operation, the electromagnetic on-off valve ( 24) is open and the electromagnetic on-off valve (23) is closed, the pressure in the refrigerant pipe (27) is the same as the discharge pressure and higher than the pressure in the refrigerant suction passage (22), and the slider (2Of) moves as shown in Fig. 5. , the flow of refrigerant to the second cylinder (I b ) is closed and the multi-cylinder compressor (1) is only supplied with refrigerant to the first cylinder (1a). , cylinder operation will be performed at 50% capacity.

従来の空気調和装置は上記のように構成されていたため
、例えば冷房運転時、及びデフロス1ル運転時、複数シ
リンダ圧縮機(1)より吐出された高温高圧の冷媒は四
方切換弁(3)をへて、室外側熱交換器(4)に送られ
、送風18 F51より送られる空気と熱交換しここで
液化される。次に、この液化された冷媒、即ち液冷媒は
逆止弁(7)を通って電磁開閉弁(+7) (+8>を
へて膨張機構+8+ 00)て減圧され室内側熱交換器
(12) (+5)で送風i (13) (+4.)よ
り送られる空気と熱交換し再び気化される。気化された
冷媒は四方切換弁(31,アキュムレータ(16)を通
ったのら、一方は冷媒吸入路(19) (19a)をへ
て第1のシリンダ(1a)へ、もう一方はフル運転時即
ち電磁開閉弁(23> (+7) (1,8)は開、電
磁開閉弁(24)は閏においては冷媒吸入路(19) 
(22) 、開閉弁(20) 、冷媒吸入路(21)を
へて第2のシリンダ(1b)へと吸入される。
Conventional air conditioners were configured as described above, so that, for example, during cooling operation or defrosting operation, the high temperature and high pressure refrigerant discharged from the multiple cylinder compressor (1) passes through the four-way switching valve (3). Then, it is sent to the outdoor heat exchanger (4), where it exchanges heat with the air sent from the air blower 18 F51 and is liquefied here. Next, this liquefied refrigerant, that is, liquid refrigerant, passes through the check valve (7), passes through the electromagnetic on-off valve (+7) (+8>, and expands to the expansion mechanism +8+00), and is then depressurized and transferred to the indoor heat exchanger (12). (+5) exchanges heat with the air blown from (13) (+4.) and is vaporized again. After the vaporized refrigerant passes through the four-way switching valve (31) and the accumulator (16), one side passes through the refrigerant suction passage (19) (19a) to the first cylinder (1a), and the other side goes through the refrigerant suction passage (19) (19a), and the other side during full operation. That is, the electromagnetic on-off valve (23> (+7) (1, 8) is open, and the electromagnetic on-off valve (24) is connected to the refrigerant suction path (19) at the leap.
(22), the on-off valve (20), and the refrigerant suction path (21), and is sucked into the second cylinder (1b).

体筒運転時即ち電磁開閉弁(17) (18)の何れが
一方が開、他方が閉、電磁開閉弁(27+)が開、電磁
開閉弁(23)が閉においては、開閉弁(20)のスラ
イダ(2Of)によって冷媒吸入路(22)から冷媒吸
入路(21)への回路は閉止されているので、冷媒は第
2のシリンダ(1b)へは供給されず、第1のシリンダ
(Ia)へのみ供給される。このようにして冷凍サイク
ルを形成する。
During cylinder operation, that is, when one of the electromagnetic on-off valves (17) and (18) is open and the other is closed, when the electromagnetic on-off valve (27+) is open and the electromagnetic on-off valve (23) is closed, the on-off valve (20) Since the circuit from the refrigerant suction passage (22) to the refrigerant suction passage (21) is closed by the slider (2Of), the refrigerant is not supplied to the second cylinder (1b) and is supplied to the first cylinder (Ia ). In this way, a refrigeration cycle is formed.

また、暖房運転時には、冷媒回路は四方切換弁(3)に
より点線方向に切換えられ冷媒は点線矢印で示される方
向に流れる。即ち複数シリンダ圧縮機(1)より吐出さ
れた高温高圧の冷媒は四方切換弁(3)をへて室内側熱
交換器(+2)、 (+5)に送られ、送風機(13)
 (+4)より送られる空気と熱交換しここで液化され
る。次に、この液化された冷媒、即ち液冷媒はフル運転
時においては逆止弁+9HI+)を通って電磁開閉弁(
+7) (+8)をへて膨張機構(6)で減圧される。
Further, during heating operation, the refrigerant circuit is switched in the direction shown by the dotted line by the four-way switching valve (3), and the refrigerant flows in the direction shown by the dotted line arrow. That is, the high temperature and high pressure refrigerant discharged from the multiple cylinder compressor (1) passes through the four-way switching valve (3), is sent to the indoor heat exchangers (+2) and (+5), and is sent to the blower (13).
It exchanges heat with the air sent from (+4) and is liquefied here. Next, this liquefied refrigerant, that is, liquid refrigerant, passes through a check valve +9HI+) during full operation and an electromagnetic on-off valve (
+7) (+8) and is depressurized by the expansion mechanism (6).

減圧された冷媒は室外側交換器(4a)で送風機(5)
より送られる空気と熱交換し再ひ気化される。
The depressurized refrigerant is sent to the outdoor exchanger (4a) and sent to the blower (5).
It exchanges heat with the air sent in and is re-vaporized.

気化された冷媒は四方切換弁F31 、アキュムレータ
(16)を通ったのち、一方は冷媒吸入li!8(19
) (19a)をへて第1のシリンダ(1a)へ、もう
一方は冷媒吸入路<19) (22) 、開閉弁(20
)、冷媒吸入路(21)をへて第2のシリンダ゛(1b
)へと吸入される。体筒運転時は、開閉弁(20)のス
ライダ<20flによって冷媒吸入路(22)から冷媒
吸入路(21)への回路は閉止されているので、冷媒は
第2のシリンダ(1b)へは供給されず、第1のシリン
ダ(1a)へのみ供給される。
After the vaporized refrigerant passes through the four-way switching valve F31 and the accumulator (16), one side is refrigerant suction li! 8 (19
) (19a) to the first cylinder (1a), the other side is the refrigerant suction path
), the second cylinder (1b
). During cylinder operation, the circuit from the refrigerant suction passage (22) to the refrigerant suction passage (21) is closed by the slider <20fl of the on-off valve (20), so the refrigerant does not flow into the second cylinder (1b). It is not supplied and is supplied only to the first cylinder (1a).

このようにして冷凍サイクルを形成する。In this way, a refrigeration cycle is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の空気調和装置においては、体筒によ
る容量制御運転時、複数シリンダ圧縮機の所定シリンダ
(体筒)の冷媒吸入路は閉塞され冷媒は供給されないの
で、冷凍サイクルを流れる冷媒流量が大幅に減少し、複
数シリンダ圧縮機のモータの冷却効果が著しく低下し、
複数シリンダ圧縮機のモータの過熱をまねき、それによ
って複数シリンダ圧縮機の寿命を著しく縮めるという問
題点があった。
In the conventional air conditioner as described above, during capacity control operation using the cylinder, the refrigerant suction passage of a predetermined cylinder (cylinder) of the multi-cylinder compressor is blocked and no refrigerant is supplied, so the flow rate of refrigerant flowing through the refrigeration cycle is reduced. is significantly reduced, and the cooling effect of the motor of a multi-cylinder compressor is significantly reduced.
There is a problem in that it causes the motor of the multiple cylinder compressor to overheat, thereby significantly shortening the life of the multiple cylinder compressor.

この発明は、かかる問題点を解決するためなされたもの
で、複数シリンダ圧縮機のモータの過熱をまねくことな
く、がっ空気調和能力を減少させることなく容量制御運
転ができる空気調和装置を提供することを目的としてい
る。
This invention was made to solve these problems, and provides an air conditioner that can perform capacity control operation without causing overheating of the motor of a multiple cylinder compressor and without reducing the air conditioning capacity. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る空気調和装置においては、複数シリンダ
圧縮機の吐出冷媒の一部を上記複数シリ(7) (8) ンダ圧縮機の入力側にバイパスするバイパス回路と、こ
のバイパス回路を開閉する第1の開閉弁と、第1と第2
の熱交換器間を接続する冷媒配管からなる液管と上記複
数シリンダ圧縮機のシリンダへの冷媒吸入路とを熱交換
させる熱交換部と、上記熱交換部の反圧縮機側の上記冷
媒吸入路部と上記液管部とを接続する液冷媒注入回路と
、この液冷媒注入回路を開閉する第2の開閉弁と、上記
複数シリンダ圧縮機の吐出冷媒温度を検出する温度検出
器と、上記温度検出器の検出温度に応じて上記第1と第
2の開閉弁を開閉制御する開閉弁制御装置とを設けたも
のである。
The air conditioner according to the present invention includes a bypass circuit that bypasses a part of the refrigerant discharged from the multiple cylinder compressor to the input side of the multiple cylinder compressor (7), (8) cylinder compressor, and a bypass circuit that opens and closes this bypass circuit. 1 on-off valve, and the first and second valves.
a heat exchange section for exchanging heat between a liquid pipe consisting of refrigerant piping connecting between the heat exchangers and a refrigerant suction path to the cylinders of the plural cylinder compressor; and a refrigerant suction on the side opposite to the compressor of the heat exchange section. a liquid refrigerant injection circuit that connects the passage section and the liquid pipe section; a second on-off valve that opens and closes the liquid refrigerant injection circuit; a temperature detector that detects the temperature of the refrigerant discharged from the plurality of cylinder compressors; The apparatus is provided with an on-off valve control device that controls opening and closing of the first and second on-off valves according to the temperature detected by the temperature detector.

〔作  用〕[For production]

上記のように構成された空気調和装置の複数シリンダ圧
縮機の吐出冷媒温度は温度検出器で検出され、この検出
温度とあらかじめ設定された過昇防止温度とが開閉弁制
御装置において比較され高い場合は、第1と第2の開閉
弁は開がれる。第1の開閉弁の開により吐出冷媒は複数
シリンダ圧縮機の入力側にバイパスされ複数シリンダ圧
縮機の吐出冷媒圧力は低下する。これに伴い複数シリン
ダ圧縮機の吐出冷媒温度は低下し、かつ吸入圧力の低下
は防止される。一方第2の開閉弁の開により液冷媒注入
回路を通して液管部から複数シリンダ圧縮機の冷媒吸入
路に液冷媒が注入されこの液冷媒は低圧低温の液冷媒と
なり、上記第1の開閉弁の開による吐出冷媒温度の低下
との協同により複数シリンダ圧縮機のモータは冷却され
、その過熱は防止される。また冷媒吸入路を通った液冷
媒は液冷媒吸入路と液管との熱交換により液管での液冷
媒の過冷却度は増大し、膨張機構を流れる冷媒流量の増
大および上記第1の開閉弁の開による吸入圧力の低下の
防止との協同により冷暖房能力の低下は防止される。
The discharge refrigerant temperature of the multiple cylinder compressor of the air conditioner configured as above is detected by a temperature detector, and this detected temperature is compared with a preset overrise prevention temperature in the on-off valve control device. In this case, the first and second on-off valves are opened. By opening the first on-off valve, the discharged refrigerant is bypassed to the input side of the multiple cylinder compressor, and the discharge refrigerant pressure of the multiple cylinder compressor is reduced. Accordingly, the temperature of the refrigerant discharged from the multiple cylinder compressor decreases, and a decrease in suction pressure is prevented. On the other hand, when the second on-off valve is opened, liquid refrigerant is injected from the liquid pipe section into the refrigerant suction path of the multiple cylinder compressor through the liquid refrigerant injection circuit, and this liquid refrigerant becomes a low-pressure, low-temperature liquid refrigerant. In conjunction with the reduction in discharge refrigerant temperature due to opening, the motor of the multi-cylinder compressor is cooled and its overheating is prevented. In addition, the degree of subcooling of the liquid refrigerant passing through the refrigerant suction path increases in the liquid pipe due to heat exchange between the liquid refrigerant suction path and the liquid pipe, which increases the flow rate of refrigerant flowing through the expansion mechanism and the first opening/closing. In cooperation with prevention of a drop in suction pressure due to opening of the valve, a drop in heating and cooling capacity is prevented.

〔実 施 例〕〔Example〕

第1図は本発明の一実施例を示す空気調和装置の冷媒回
路図である。第1図において(1)〜(27)は上記従
来の空気調和装置と同一または相当部分を示すのでその
説明を省略する。(28)は複数シリンダ圧縮機(1)
の吐出側とアキュムレータ(16)の入力側に接続され
たバイパス回路であり、上記複数シリンダ圧縮機の吐出
冷媒の一部を上記アキュムレータ(16)の入力側にバ
イパスする。(29)は上記バイパス回路(28)を開
閉する第1の開閉弁、(30)は室外側熱交換装置(4
)と第1と第2の室内側熱交換装置(12) <15)
間を接続する冷媒配管からなる液管、(31)は上記液
管(30)内を流れる液冷媒と冷媒吸入路(1つ)内を
流れる冷媒とを熱交換させる熱交換部で、この熱交換部
(31)は液管(30)の一部を冷媒吸入管(19)に
例えば接触または近接して設けること等により形成され
ている。(32)は上記液管(30)と、上記冷媒吸入
R(19)における上記熱交換部(31)の反圧縮機側
の上記冷媒吸入路部とを接続する液冷媒注入回路、(3
3)は]−記液液冷媒注入回路32)を開閉する第2の
電磁開閉弁、(34)は吐出冷媒温度を検出する温度検
出器であり、複数シリンダ圧w4機(1)の吐出側の冷
媒配管に取付けられている。(35)は過昇防止判定回
路であり、その動作は第3図に示される通り、」1記温
度検出器(34)で検出された検出温度Tdがあらかじ
め設定された過昇防止温度Taより高い場合は過昇防止
作動信号を出力し、過昇防止作動信号を出力した後は検
出温度Tdか、あらかじめ過昇防止温度Taより低く設
定された過昇防止解除温度Tbより低くなった時、過昇
防止解除信号を出力する。(36)は過昇防止判定回路
(35)の出力信号か過昇防止信号の場合は上記第1お
よび第2の電磁開閉弁を開き、過昇防止解除信号の場合
は上記第1と第2の電磁開閉弁を閉しるよう制御する制
御回路、(37)は上記過昇防止判定回路(35)と上
記制御回路(36)とからなる開閉弁1i1J御装置で
ある。
FIG. 1 is a refrigerant circuit diagram of an air conditioner showing an embodiment of the present invention. In FIG. 1, (1) to (27) indicate the same or equivalent parts as those of the conventional air conditioner described above, and therefore the explanation thereof will be omitted. (28) is a multiple cylinder compressor (1)
The bypass circuit is connected to the discharge side of the compressor and the input side of the accumulator (16), and bypasses a part of the refrigerant discharged from the plural cylinder compressor to the input side of the accumulator (16). (29) is the first on-off valve that opens and closes the bypass circuit (28), and (30) is the outdoor heat exchange device (4).
) and the first and second indoor heat exchange devices (12) <15)
The liquid pipe (31) consisting of refrigerant pipes connecting the liquid pipes (31) is a heat exchange part that exchanges heat between the liquid refrigerant flowing in the liquid pipe (30) and the refrigerant flowing in the refrigerant suction passage (one). The exchange part (31) is formed by, for example, providing a part of the liquid pipe (30) in contact with or in close proximity to the refrigerant suction pipe (19). (32) is a liquid refrigerant injection circuit that connects the liquid pipe (30) and the refrigerant suction path section on the opposite compressor side of the heat exchange section (31) in the refrigerant suction R (19);
3) is a second electromagnetic on-off valve that opens and closes the liquid-liquid refrigerant injection circuit 32), and (34) is a temperature detector that detects the discharge refrigerant temperature, on the discharge side of the multiple cylinder pressure w4 machine (1). is installed in the refrigerant piping. (35) is an over-rise prevention judgment circuit, and its operation is as shown in FIG. If it is high, an overheat prevention activation signal is output, and after outputting the overheat prevention activation signal, when the temperature becomes lower than the detection temperature Td or the overheat prevention release temperature Tb, which is set lower than the overheat prevention temperature Ta in advance, Outputs overheat prevention release signal. (36) is the output signal of the over-rise prevention judgment circuit (35) or opens the above-mentioned first and second electromagnetic on-off valves in the case of the over-rise prevention signal, and in the case of the over-rise prevention release signal, the above-mentioned first and second A control circuit (37) for controlling the electromagnetic on-off valve to close is an on-off valve 1i1J control device consisting of the above-mentioned over-rise prevention judgment circuit (35) and the above-mentioned control circuit (36).

第2図は上記過昇防止判定回路(35)、制御回路(3
6)からなる開閉弁制御装置(37)のフローチャート
である。先ずステップ(38)にて過昇防止作動信号を
出力しているかを判定し、出力していない場合はステッ
プ(39)に、出力している場合はステップ(42)に
進む。ステップ(39)では検出温度Tdが過昇防止温
度Taより大きいかを判定し、大きい場合はステップ(
40)て過昇防止作動信号を出力し、ステップ(41)
で第1の電磁開閉弁(29)及び第2の電(11) (12〉 磁開閉弁(33)を開にしてステップ(38)にもどる
Figure 2 shows the overheat prevention judgment circuit (35) and the control circuit (35).
6) is a flowchart of the on-off valve control device (37). First, in step (38), it is determined whether the overrise prevention activation signal is being outputted. If not, the process proceeds to step (39), and if it is being outputted, the process proceeds to step (42). In step (39), it is determined whether the detected temperature Td is higher than the overrise prevention temperature Ta, and if it is, step (39) is determined.
40) to output an over-rise prevention activation signal, and step (41)
Then, open the first electromagnetic on-off valve (29) and the second electromagnetic on-off valve (11) (12) and return to step (38).

ステップク39)の判定結果か大きくない場合はステッ
プ(38)にもどる。一方ステップ(42)では検出温
度Tdが過昇防止解除温度Tbより小さいかを判定し、
小さい場合はステップ(43)で過昇防止解除信号を出
力し、ステップ(44)て第1の電磁開閉弁(2つ)及
び第2の電磁開閉弁(33)を閉にしてステップ(38
)にもどる。ステップ(42)の判定結果が小さくない
場合はステップ(38)にもどる。
If the judgment result in step 39) is not large, the process returns to step (38). On the other hand, in step (42), it is determined whether the detected temperature Td is smaller than the overrise prevention release temperature Tb,
If it is smaller, an overrise prevention release signal is output in step (43), the first electromagnetic on-off valve (two) and the second electromagnetic on-off valve (33) are closed in step (44), and step (38) is performed.
Return to ). If the determination result in step (42) is not small, the process returns to step (38).

上記のように構成された空気調和装置においては、複数
シリンダ圧縮機(1)の吐出冷媒温度が高い場合、温度
検出器(34)が吐出冷媒温度を検出温度Tdとして検
出し、過昇防止判定口1i’a(35)、制御回路(3
6)によって上述の第2図のフローチャートに基づき第
1の電磁開閉弁(29)及び第2の電磁開閉弁(33)
が開となる。
In the air conditioner configured as described above, when the discharge refrigerant temperature of the multiple cylinder compressor (1) is high, the temperature detector (34) detects the discharge refrigerant temperature as the detected temperature Td, and determines whether to prevent excessive rise. Mouth 1i'a (35), control circuit (3
6), the first electromagnetic on-off valve (29) and the second electromagnetic on-off valve (33) are installed based on the flowchart in FIG.
becomes open.

第2の電磁開閉弁(33)が開となることで、冷房運転
時は室外側熱交換器(4a)にて、暖房運転時は室内側
熱交換器(12a) (15a)にて、凝縮した高圧の
液冷媒は液管(30)から液冷媒注入回路(32)、第
2の電磁開閉弁(33)をへて冷媒吸入路(1つ)へ注
入され低圧低温の液冷媒となり、この液冷媒は熱交換部
(31)を通して複数シリンダ圧1 fi (11に供
給される。このように複数シリンダ圧縮機(1)の吐出
冷媒温度があらかじめ設定した過昇防止温度Taより高
くなった場合は複数シリンダ圧m機(1)に液冷媒が注
入され、複数シリンダ圧縮機(1)のモーフ(2)の過
熱は防止される。
By opening the second electromagnetic on-off valve (33), condensation occurs in the outdoor heat exchanger (4a) during cooling operation, and in the indoor heat exchanger (12a) (15a) during heating operation. The high-pressure liquid refrigerant is injected from the liquid pipe (30) through the liquid refrigerant injection circuit (32) and the second electromagnetic on-off valve (33) into the refrigerant suction passage (one), becoming a low-pressure and low-temperature liquid refrigerant. The liquid refrigerant is supplied to the multiple cylinder pressure 1 fi (11) through the heat exchanger (31).In this way, when the discharge refrigerant temperature of the multiple cylinder compressor (1) becomes higher than the preset overrise prevention temperature Ta Liquid refrigerant is injected into the multiple cylinder pressure m machine (1), and overheating of the morph (2) of the multiple cylinder compressor (1) is prevented.

さらに、液管(30)から液冷媒吸入路(19)に供給
された液冷媒が低圧低温の液冷媒として冷媒吸入路(1
9)から熱交換部(31)を通ることによって、液管(
30)から熱交換部(31)を通る高圧の液冷媒を冷却
し過冷却度を増大させる。これによって冷媒運転時は膨
張機構F8) QOI 、暖房運転時は膨張機構(6)
を流れる冷媒流量が過冷却度の増大によって増加し、液
冷媒注入回路(32)に冷媒を流すことによって膨張機
構+8] (10)又は膨張機m (61を流れる冷媒
流量が減少するを防き、冷房能力又は暖房能力か減少す
るのを防止することがてきる。また第2の電磁開閉弁(
33)を開にすることで冷房運転時には室内側熱交換器
(12a) (15a)、暖房運転時には室外側熱交換
器(4a)へ供給される冷媒が減少して吸入圧力か低下
し室内側熱交換器(12a) (15a)、室外側熱交
換器(4a)が凍結するのを防11;することかできる
Furthermore, the liquid refrigerant supplied from the liquid pipe (30) to the liquid refrigerant suction path (19) is supplied as a low-pressure, low-temperature liquid refrigerant to the refrigerant suction path (19).
9) through the heat exchange section (31), the liquid pipe (
30) and passes through the heat exchange section (31), the high-pressure liquid refrigerant is cooled to increase the degree of supercooling. As a result, the expansion mechanism (F8) is activated during refrigerant operation, and the expansion mechanism (6) is activated during heating operation.
The flow rate of refrigerant flowing through the expansion mechanism +8] (10) or expander m (61) is prevented from decreasing by causing the refrigerant to flow through the liquid refrigerant injection circuit (32). , it is possible to prevent the cooling capacity or heating capacity from decreasing.Also, the second electromagnetic on-off valve (
By opening 33), the refrigerant supplied to the indoor heat exchanger (12a) (15a) during cooling operation and to the outdoor heat exchanger (4a) during heating operation decreases, reducing the suction pressure and reducing the indoor side heat exchanger. It is possible to prevent the heat exchangers (12a) (15a) and the outdoor heat exchanger (4a) from freezing.

また第1の電磁開閉弁(2つ)が開となることで、複数
シリンダ圧縮機(1)の吐出冷媒か複数シリンダ圧縮機
(1)の吸入側にバイパスされ、複数シリンダ圧縮機(
1)の吐出圧力は低下し、吸入圧力が上昇するので、複
数シリンダ圧縮機(1)の冷媒循環量は増加し、冷暖房
能力の低下は防止されると共に、上記吸入圧力の上昇に
より蒸発圧力の低下は防止され蒸発器となる熱交換器の
凍結は防止され、かつ」1記吐出圧力の低下により、複
数シリンダ圧縮機の吐出冷媒温度は低下し複数シリンダ
圧縮機のモータの過熱は防止される。
Also, by opening the first electromagnetic on-off valves (two), the refrigerant discharged from the multiple cylinder compressor (1) is bypassed to the suction side of the multiple cylinder compressor (1), and the refrigerant is bypassed to the suction side of the multiple cylinder compressor (1).
1) The discharge pressure decreases and the suction pressure increases, so the refrigerant circulation amount of the multi-cylinder compressor (1) increases, preventing a decrease in cooling and heating capacity, and the increase in suction pressure increases the evaporation pressure. 1. Due to the decrease in the discharge pressure, the discharge refrigerant temperature of the multiple cylinder compressor decreases and the motor of the multiple cylinder compressor is prevented from overheating. .

以上のように冷暖房能力を低下及びモータを過熱させる
ことなく空気調和運転かなされる。
As described above, air conditioning operation can be performed without reducing the heating and cooling capacity or overheating the motor.

なお、上記実施例ては、圧縮後の冷媒で、圧縮機のモー
タを冷却する高圧シェル型2シリンダロータリ圧縮機を
用いた空気調和装置について述へたが、圧縮前の冷媒で
圧縮機のモータを冷却する低圧シェル型2シリンダロー
タリ圧縮機であっても良く、またシリンダが2つ以上の
圧縮機であっても良い。
In the above embodiment, an air conditioner using a high-pressure shell type 2-cylinder rotary compressor was described in which the compressor motor is cooled with compressed refrigerant, but the compressor motor is cooled with uncompressed refrigerant. It may be a low-pressure shell type two-cylinder rotary compressor that cools the air, or it may be a compressor with two or more cylinders.

〔発明の効果〕〔Effect of the invention〕

本発明は複数シリンダ圧縮機の吐出冷媒の一部を上記複
数シリンダ圧縮機の入力側にバイパスするバイパス回路
と、このバイパス回路を開閉する第1の開閉弁と、一方
が凝縮器となり他方か蒸発器となる第1と第2の熱交換
器間を接続する冷媒配管からなる液管と上記複数シリン
ダ圧縮機の冷媒吸入回路とを熱交換する熱交換部と、上
記液管と上記熱交換部の反圧縮i側の上記冷媒吸入路部
とを接続する液冷媒注入回路と、この液冷媒注入回路を
開閉する第2の開閉弁とを設け、」二液複数シリンダ圧
縮機の吐出冷媒温度に応して上記第1と第2の開閉弁を
開閉制御し、この制御による」二液バイパス回路から複
数シリンダ圧縮機の入力側への吐出冷媒のバイパスと、
冷媒注入回路からの冷媒吸入路への液冷媒注入との協同
で複数シリン(15) 夕圧縮機のモータの冷却を行なうと共に、上記バイパス
回路からの複数シリンダ圧縮機の入力側への吐出冷媒の
バイパスおよび液管と冷媒吸入路との熱交換との協同に
よる冷暖房能力の低下を防止しているので、効果的なモ
ータの冷却及び冷暖房能力低下の防止がなされ体筒によ
る容量制御運転を冷暖房能力減少およびモータの過熱な
く行なえ、空気調和装置の信頼性か向上する。
The present invention includes a bypass circuit that bypasses a portion of the refrigerant discharged from a multiple cylinder compressor to the input side of the multiple cylinder compressor, a first on-off valve that opens and closes this bypass circuit, one of which is a condenser and the other is an evaporator. a heat exchange section for exchanging heat between a liquid pipe consisting of a refrigerant pipe connecting between a first and second heat exchanger serving as a heat exchanger and a refrigerant suction circuit of the plural cylinder compressor; and a heat exchange section between the liquid pipe and the heat exchange section. A liquid refrigerant injection circuit that connects the refrigerant suction passage section on the opposite side of the compression i, and a second on-off valve that opens and closes this liquid refrigerant injection circuit, are provided, and the temperature of the discharge refrigerant of the two-liquid multiple cylinder compressor is controlled. Accordingly, the first and second on-off valves are controlled to open and close, and by this control, the discharged refrigerant is bypassed from the two-liquid bypass circuit to the input side of the multiple cylinder compressor;
In cooperation with liquid refrigerant injection from the refrigerant injection circuit to the refrigerant suction path, the motor of the multiple cylinder compressor (15) is cooled, and the refrigerant discharged from the bypass circuit to the input side of the multiple cylinder compressor is cooled. This prevents the cooling and heating capacity from decreasing due to the heat exchange between the bypass and the liquid pipe and the refrigerant suction path, which effectively cools the motor and prevents the cooling and heating capacity from decreasing. This can be done without overheating of the motor and the reliability of the air conditioner is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す空気調和装置の冷媒
回路図、第2図は第1図に示される開閉弁制御装置の動
作を示すフローチャー1〜、第3図は第1図に示されろ
過昇防止判定回路の動作説明図、第4図は従来の空気調
和装置の冷媒回路図、第5図および第6図は第4図に示
される開閉弁の詳細構造を示す縦断面図である。 図において、(28)はバイパス回路、(2つ)は第1
の電磁開閉弁、(31)は熱交換部、(32)は液冷媒
注入回路、(33)は第2の電磁開閉弁、(34)は温
度検出器、(37)は開閉弁制御装置である。 なお、図中同一符号は同一または相当部分を示ず。
Fig. 1 is a refrigerant circuit diagram of an air conditioner showing an embodiment of the present invention, Fig. 2 is a flowchart 1 to 1 showing the operation of the on-off valve control device shown in Fig. 1, and Fig. 3 is a diagram similar to that shown in Fig. 1. 4 is a refrigerant circuit diagram of a conventional air conditioner, and FIGS. 5 and 6 are longitudinal sections showing the detailed structure of the on-off valve shown in FIG. 4. It is a diagram. In the figure, (28) is the bypass circuit, (2) is the first
(31) is a heat exchange part, (32) is a liquid refrigerant injection circuit, (33) is a second electromagnetic on-off valve, (34) is a temperature detector, and (37) is an on-off valve control device. be. Note that the same reference numerals in the figures do not indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 複数のシリンダを有する複数シリンダ圧縮機と、四方切
換弁と、第1の熱交換器と、熱膨張機構と、第2の熱交
換器とを順次冷媒配管で接続してなる冷凍サイクルを備
え、上記複数シリンダ圧縮機の所定のシリンダへの冷媒
吸入路を開閉制御することにより容量制御を行なうよう
にしたものにおいて、上記複数シリンダ圧縮機の吐出冷
媒の一部を上記複数シリンダ圧縮機の入力側にバイパス
するバイパス回路と、このバイパス回路を開閉する開閉
弁と、上記第1と第2の熱交換器間を接続する上記冷媒
配管からなる液管と上記複数シリンダ圧縮機の冷媒吸入
路とを熱交換させる熱交換部と、上記熱交換部の反圧縮
機側の上記冷媒吸入路部と上記液管部とを接続する液冷
媒注入回路と、この液冷媒注入回路を開閉する第2の開
閉弁と、上記複数シリンダ圧縮機の吐出冷媒温度を検出
する温度検出器と、上記温度検出器の検出温度に応じて
上記第1と第2の開閉弁を開閉制御する開閉弁制御装置
とを設けたことを特徴とする空気調和装置。
A refrigeration cycle including a plurality of cylinder compressors having a plurality of cylinders, a four-way switching valve, a first heat exchanger, a thermal expansion mechanism, and a second heat exchanger sequentially connected by refrigerant piping, Capacity control is performed by controlling the opening and closing of a refrigerant suction passage to a predetermined cylinder of the multiple cylinder compressor, wherein a part of the refrigerant discharged from the multiple cylinder compressor is transferred to the input side of the multiple cylinder compressor. a bypass circuit that bypasses the bypass circuit, an on-off valve that opens and closes the bypass circuit, a liquid pipe consisting of the refrigerant pipe that connects the first and second heat exchangers, and a refrigerant suction path of the multiple cylinder compressor. a heat exchange section for exchanging heat; a liquid refrigerant injection circuit that connects the refrigerant suction path section on the side opposite to the compressor of the heat exchange section and the liquid pipe section; and a second opening/closing circuit that opens and closes the liquid refrigerant injection circuit. A temperature detector that detects the temperature of the refrigerant discharged from the multiple cylinder compressor, and an on-off valve control device that controls opening and closing of the first and second on-off valves according to the temperature detected by the temperature detector. An air conditioner characterized by:
JP1203090A 1989-08-05 1989-08-05 Air conditioner Pending JPH0367964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1203090A JPH0367964A (en) 1989-08-05 1989-08-05 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1203090A JPH0367964A (en) 1989-08-05 1989-08-05 Air conditioner

Publications (1)

Publication Number Publication Date
JPH0367964A true JPH0367964A (en) 1991-03-22

Family

ID=16468204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1203090A Pending JPH0367964A (en) 1989-08-05 1989-08-05 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0367964A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022301A (en) * 2000-07-05 2002-01-23 Fujitsu General Ltd Air conditioner
JP2008275249A (en) * 2007-04-27 2008-11-13 Hitachi Appliances Inc Refrigerating cycle
JP2011117725A (en) * 2011-03-16 2011-06-16 Mitsubishi Electric Corp Refrigerating cycle device
US10823448B2 (en) 2016-03-23 2020-11-03 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchange system, air conditioning control system, and air conditioning system control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022301A (en) * 2000-07-05 2002-01-23 Fujitsu General Ltd Air conditioner
JP4539792B2 (en) * 2000-07-05 2010-09-08 株式会社富士通ゼネラル Air conditioner
JP2008275249A (en) * 2007-04-27 2008-11-13 Hitachi Appliances Inc Refrigerating cycle
JP2011117725A (en) * 2011-03-16 2011-06-16 Mitsubishi Electric Corp Refrigerating cycle device
US10823448B2 (en) 2016-03-23 2020-11-03 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchange system, air conditioning control system, and air conditioning system control method

Similar Documents

Publication Publication Date Title
KR101698261B1 (en) Air conditioner and control method thereof
JP4410980B2 (en) Refrigeration air conditioner
WO2006028218A1 (en) Refrigerating apparatus
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
KR20040066028A (en) Refrigerator
WO2007102345A1 (en) Refrigeration device
JP4449139B2 (en) Refrigeration equipment
JP2989491B2 (en) Air conditioner
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
JP2001235245A (en) Freezer
JP2010002112A (en) Refrigerating device
JPH0367964A (en) Air conditioner
JP3138154B2 (en) Air conditioner
CN114080529B (en) Refrigerating device
JP2005214442A (en) Refrigerator
JP2002340390A (en) Air conditioner for multiple rooms
JP2889762B2 (en) Air conditioner
JP2002213839A (en) Multichamber air conditioner
JP2757689B2 (en) Refrigeration equipment
JPH03170758A (en) Air conditioner
JPH04263742A (en) Refrigerator
KR20070054948A (en) Air conditioner and therefor control process
JPH0387576A (en) Air conditioner
JPS6017639Y2 (en) Heat pump air conditioner
JP2543182B2 (en) Cooling / heating hot water supply system