JPH0367672B2 - - Google Patents

Info

Publication number
JPH0367672B2
JPH0367672B2 JP59153733A JP15373384A JPH0367672B2 JP H0367672 B2 JPH0367672 B2 JP H0367672B2 JP 59153733 A JP59153733 A JP 59153733A JP 15373384 A JP15373384 A JP 15373384A JP H0367672 B2 JPH0367672 B2 JP H0367672B2
Authority
JP
Japan
Prior art keywords
acid
epa
algae
eicosapentaenoic acid
enzymatic production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59153733A
Other languages
Japanese (ja)
Other versions
JPS6131092A (en
Inventor
Hikari Shikayama
Mitsumasa Manso
Yoshifumi Hachiman
Kazunori Kuwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IKEDA TOKA KOGYO KK
Original Assignee
IKEDA TOKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IKEDA TOKA KOGYO KK filed Critical IKEDA TOKA KOGYO KK
Priority to JP59153733A priority Critical patent/JPS6131092A/en
Publication of JPS6131092A publication Critical patent/JPS6131092A/en
Publication of JPH0367672B2 publication Critical patent/JPH0367672B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (発明の利用分野) 本発明はエイコサペンタエン酸(以下「EPA」
と略称する)の酵素的生産方法、さらに詳述すれ
ば、藻類中の多不飽和脂肪酸合成酵素による
EPA前駆体からのEPAの特異的合成活性を利用
して、ドコセン酸及びドコサヘキサエン酸夾雑量
の少ない高純度のEPA含有油脂を酵素的に生産
する方法に関する。 (従来技術) EPAに代表される多不飽和脂肪酸は、生体膜
の構成成分として重要な役割を担つている。ま
た、胆汁酸の分泌を促進し、中性脂肪の合成を抑
制し、血漿コレステロールの低下作用を有する。
さらに、プロスタグランジン一族の生成に際し基
質となり、ヒトを含む高等哺乳動物の体内で必須
的な機能を発揮する。特にEPAはタイプ3のプ
ロスタグランジンの生成の際の基質として重要で
あつて、ドコサヘキサエン酸(以下「DHA」と
略称する)と共に血小板の凝集抑制作用があり、
血栓症の治療及び予防剤としての応用が検討され
ている。さらにEPAは、血漿コレステロールレ
ベルの低下に寄与する多不飽和脂肪酸の中でも特
にその活性が高く、通常の植物油中に含まれるリ
ノール酸などよりも遥に有効である。 このように、EPAがその血栓防止作用に基づ
く健康食品あるいは医薬品としての可能性がデン
マークのダイヤーベルグ(Am.J.Clin.Nutr,28
958頁、1975年)の疫学的調査により明らかにさ
れて以来、わが国においてもEPAを多く含有す
るイワシ、サバ、サンマ及びイカナゴ等の魚の摂
食が推奨されるようになつてきた。 今日、健康食品として市販されているEPAは、
煮取法によつて得られた魚油の分別物であつて、
そのEPA含量は10〜30%であり、同時に含まれ
るDHAのそれと合計しても40%を越えるものは
少ない〔注〕。煮取法によつて抽出される魚油は
構成脂肪酸として多種類の脂肪酸を含む混合グリ
セリドであつて、抽出時の熱及び水との接触等に
よりEPA、DHA等の多不飽和脂肪酸の変質の恐
れや、抽出中に若干量残存する水分による酸化
(過酸化)等の不安がある。さらに、これら魚油
EPAの分別に使用されたアセトン、メチルエチ
ルケトンなど各種の有機溶剤は通常減圧下に除去
されるが、その完全除去は技術的及びコスト的に
問題点が多い。 (注) 中性脂肪(主としてトリグリセリド)の
まま分別、濃縮してもEPAの含量を30〜40%
以上に高めるのは理論的に困難であろうと推定
される。 医薬品としてのEPAは、様々な方法によつて
抽出された魚油を酵素的に若しくはアルカリ条件
下で処理して遊離脂肪酸まで加水分解するか又は
該遊離酸をメチル若しくはエチルエステルに変じ
た後、これらを低温分別結晶法、尿素付加法、減
圧蒸留法又は逆相クロマト法等によりさらに精製
してEPA濃度を90%以上としたものが多い。し
かし、これらの方法を用いて得られたEPA濃縮
物は、工程中に(アセトンなどの)各種の有機溶
媒が使用されたり又は200℃近い高熱を加えられ
たりするため、有機溶媒の残留やEPAの重合、
異性化及び/又は酸化等による変質の懸念をはら
んでいる。さらに、魚油等をEPAの原料として
用いた場合、心臓疾患の原因の一つとして疑われ
ているドコセン酸(慣用名、エルシン酸)の除去
が困難であるため、健康食品、医薬品等に利用す
る上で問題点を含む。加えて、魚油中に多く含ま
れているDHAとEPAの相互分離も困難であつ
て、最終商品中にすらDHAが相当量混在してい
るのが実情である。因にDHAの生理学上の意義
は、EPAに類似していると考えられてはいるも
のの、EPAそのものを目的とした商品中に他種
類の脂肪酸が多量に混在していることは必ずしも
望ましいことではない。 (本発明の解決せんとする問題点) 以上述べてきたように、健康食品又は医薬品と
して考えられているEPAには幾つかの問題点が
あることから、本発明者らは残留溶媒や変質の心
配のない安全なEPAを高濃度に得る方法を鋭意
研究した結果、藻類中に多く含まれているEPA
合成酵素を利用して、ドコセン酸、DHA等を殆
ど含まない高純度EPAを酵素的に生産するのに
成功した。 (問題点を解決するための手段) 本発明は、以上述べた通り、藻類中に多く含ま
れているEPA合成酵素を利用して酵素反応的に
高純度のEPAを生産することを骨子とするもの
である。ここに「EPA合成酵素」とは、後に説
明するように、各種のEPA前駆体を相互交換し
て最終的にEPAの合成に至るまでに関与する一
切の酵素の集合体を意味する。一般に、植物によ
る脂肪酸合成酵素活性は動物の1/100以下と言わ
れているが、本発明者の知見によれば、意外なこ
とに、藻類におけるEPA合成酵素活性は著しく
高く、充分実用化能であることが判明した。 ところで、藻類中に含まれる脂質含量は、通常
乾物中約0.2〜3.0%と少ないが、スサビノリ
Porphyra yezoensis)、ナラワスサビノリ(P.
y.narawaensis、アサクサノリ(tenera)等
の紅藻類中には、その全脂肪酸の実に40〜60%も
のEPAが含まれている。緑藻類のアオノリ
Enteromorpha intestinalis)やアオサ(Ulva
Lactuca)、褐藻類のコンブ(Laminaria
Saccharina)、アイヌワカメ(Alaria
esculenta)、ヒバマタ(Fucus spiralis)及びエ
ゾイシゲ(Pelvetia canaliculate)等にも、全
脂肪酸中、季節的及び地域的変化を考慮に入れて
も、5〜30%ものEPAが含まれており、いずれ
もドコセン酸、DHA等を殆ど含んでいない。ま
た、微小藻類、例えばクロレラ(Chlorella
minutissima,C.vulgarisNannochloris
coccoides Nauman)、カゲヒゲムシ
Cryptomonas erosa EHRENBERG)及び
ユーグレナ(Euglena gracilis)などでは、
EPA含量は全脂肪酸中約5〜40%に達する。 従つて、EPAを高純度に含有する藻類から脂
質を直接抽出しても、魚油由来のEPA製品と同
等かそれ以上の商品価値を有するものが得られる
筈であるが、元来天然の藻類中に含まれる脂質含
量そのものが先述の通り少量であるから、抽出設
備、ランニングコスト及び藻類自体の価格等の要
因を考慮すれば、EPAの生産を目的として藻類
中の脂質を抽出することはあまり得策とは言えな
い。 とまれ、前述にように、通常の高等植物及び微
生物等にはEPAは全く含まれていないが、単細
胞及び多細胞藻類中には、特異的に多量のEPA
を含むものがある。上述の藻類はいずれも強力な
多不飽和脂肪酸合成酵素、特にEPA合成酵素系
を有するので、本発明に用いる酵素源として使用
できるが、EPA合成酵素活性はEPA含量の多い
藻類程強くなる傾向が認められた。 最近になつて脂肪酸の初生合成の機構がよく研
究され、脂肪酸の鎖長延長、不飽和化等の機作に
ついてもかなり明らかにされてきた。高等植物に
おける脂肪酸合成は一般にアセチルCoAカルボ
キシラーゼ、アシル運搬タンパク質(ACP)の
関与する飽和脂肪酸の合成酵素及びメチル基側へ
の不飽和化酵素(植物型)によつて行なわれ、主
としてオレイン酸からリノール酸及びリノレン酸
へと変換する。しかし、藻類においては、さらに
リノレン酸からEPAへの変換経路(動物型)が
存在すると考えられる。 本発明者らはスサビノリを用いて試験管内及び
生体内条件下におけるEPA合成を研究し、いず
れも市販品として入手できる 14Cラベルの酢酸、
酪酸、ミリスチン酸、パルミチン酸、パルミトオ
レイン酸、ステアリン酸、オレイン酸、リノール
酸及びリノレン酸中の放射能がEPA中に有意的
に取り込まれることを確認したが、最も効率良く
EPA中に取り込まれる基質はリノレン酸であつ
た。即ち下図に示されるように、EPAの直接の
前駆体はリノレン酸由来のエイコサテトラエン酸
であるので、リノレン酸はEPA合成のため試験
に供した基質中では最も効率の良い基質といえる
が、リノレン酸の前駆体でもある酢酸、酪酸、ミ
リスチン酸、パルミチン酸、パルミトオレイン
酸、ステアリン酸、オレイン酸及びリノール酸な
ども最終的に種々の生化学的変換過程を経てリノ
レン酸を介してEPA中に取り込まれる。 【表】 ↓ ↓
ω−3,6,9,12−エイコサテトラエン酸
(C 20:4ω3)
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to eicosapentaenoic acid (hereinafter referred to as "EPA")
(abbreviated as ), and more specifically, by using polyunsaturated fatty acid synthase in algae.
The present invention relates to a method for enzymatically producing highly pure EPA-containing fats and oils with a small amount of docosenoic acid and docosahexaenoic acid contamination by utilizing the specific synthesis activity of EPA from EPA precursors. (Prior Art) Polyunsaturated fatty acids represented by EPA play an important role as a constituent of biological membranes. It also promotes the secretion of bile acids, suppresses the synthesis of neutral fats, and has the effect of lowering plasma cholesterol.
Furthermore, it serves as a substrate for the production of the prostaglandin family, and exerts essential functions in the bodies of higher mammals, including humans. In particular, EPA is important as a substrate for the production of type 3 prostaglandin, and together with docosahexaenoic acid (hereinafter abbreviated as "DHA"), it has an inhibitory effect on platelet aggregation.
Application as a therapeutic and preventive agent for thrombosis is being considered. Furthermore, EPA is particularly active among polyunsaturated fatty acids that contribute to lowering plasma cholesterol levels, and is far more effective than linoleic acid, which is found in ordinary vegetable oils. In this way, the possibility of EPA as a health food or medicine based on its antithrombotic effect was demonstrated by the Danish company Am.J.Clin.Nutr, 28 .
Since the discovery of EPA in an epidemiological study (p. 958, 1975), it has become recommended in Japan to consume fish such as sardines, mackerel, saury, and sand eel, which contain large amounts of EPA. EPA, which is commercially available as a health food today, is
A fractionated product of fish oil obtained by the boiling method,
Its EPA content is 10 to 30%, and even when combined with the DHA contained at the same time, it rarely exceeds 40% [Note]. Fish oil extracted by the boiling method is a mixed glyceride containing many types of fatty acids as constituent fatty acids, and there is a risk that polyunsaturated fatty acids such as EPA and DHA may deteriorate due to heat during extraction and contact with water. There are concerns about oxidation (peroxidation) due to a small amount of water remaining during extraction. Additionally, these fish oils
The various organic solvents used in EPA separation, such as acetone and methyl ethyl ketone, are usually removed under reduced pressure, but their complete removal poses many technical and cost problems. (Note) Even if the neutral fats (mainly triglycerides) are separated and concentrated, the EPA content will be reduced by 30-40%.
It is presumed that it would be theoretically difficult to increase it above this level. EPA as a pharmaceutical product is produced by treating fish oil extracted by various methods enzymatically or under alkaline conditions to hydrolyze it to free fatty acids, or converting the free acids into methyl or ethyl esters. In many cases, the EPA concentration is further purified by low-temperature fractional crystallization, urea addition, vacuum distillation, reversed phase chromatography, etc. to reach an EPA concentration of 90% or higher. However, the EPA concentrate obtained using these methods uses various organic solvents (such as acetone) or is heated to nearly 200°C during the process, resulting in residual organic solvents and EPA. polymerization of
There are concerns about deterioration due to isomerization and/or oxidation. Furthermore, when fish oil is used as a raw material for EPA, it is difficult to remove docosenoic acid (commonly known as erucic acid), which is suspected to be one of the causes of heart disease. Including the problems above. In addition, it is difficult to separate DHA and EPA, which are abundantly contained in fish oil, and the reality is that a considerable amount of DHA is mixed even in the final product. Incidentally, although the physiological significance of DHA is thought to be similar to that of EPA, it is not necessarily desirable for products intended for EPA to contain large amounts of other types of fatty acids. do not have. (Problems to be solved by the present invention) As stated above, there are several problems with EPA, which is considered as a health food or medicine. As a result of intensive research into a method to obtain a high concentration of safe and worry-free EPA, we found that EPA, which is abundant in algae,
Using a synthetic enzyme, we succeeded in enzymatically producing high-purity EPA containing almost no docosenoic acid, DHA, etc. (Means for Solving the Problems) As described above, the main point of the present invention is to produce highly pure EPA through an enzymatic reaction using EPA synthase, which is abundantly contained in algae. It is something. Here, the term "EPA synthase" refers to a collection of all enzymes involved in the mutual exchange of various EPA precursors and the final synthesis of EPA, as will be explained later. It is generally said that the fatty acid synthase activity in plants is less than 1/100 of that in animals, but according to the findings of the present inventors, surprisingly, the EPA synthase activity in algae is extremely high and is sufficient for practical use. It turned out to be. By the way, the lipid content contained in algae is usually low at about 0.2 to 3.0% based on dry matter, but it is found in algae such as Porphyra yezoensis and P.
Red algae such as Y. narawaensis and P. tenera contain 40 to 60% EPA of their total fatty acids. The green algae Enteromorpha intestinalis and Ulva
Lactuca ), brown algae kelp ( Laminaria
Saccharina), Ainu seaweed ( Alaria
esculenta), Fucus spiralis , and Pelvetia canaliculate , etc., also contain 5 to 30% EPA in total fatty acids, even taking into account seasonal and regional variations, and all of them contain docosen. Contains almost no acids, DHA, etc. It also contains microalgae, such as Chlorella ( Chlorella
minutissima, C.vulgaris , Nannochloris
coccoides Nauman), Cryptomonas erosa EHRENBERG , and Euglena gracilis .
The EPA content amounts to about 5-40% of the total fatty acids. Therefore, even if lipids are directly extracted from algae that contain high-purity EPA, it should be possible to obtain products with commercial value equal to or greater than EPA products derived from fish oil. Since the lipid content itself contained in algae is small as mentioned above, it is not a good idea to extract lipids from algae for the purpose of producing EPA, considering factors such as extraction equipment, running costs, and the price of the algae itself. It can not be said. As mentioned above, normal higher plants and microorganisms do not contain any EPA, but unicellular and multicellular algae specifically contain large amounts of EPA.
There are some that include. All of the above-mentioned algae have strong polyunsaturated fatty acid synthases, especially the EPA synthase system, so they can be used as enzyme sources for the present invention, but the EPA synthase activity tends to be stronger in algae with higher EPA content. Admitted. Recently, the mechanism of initial biosynthesis of fatty acids has been extensively studied, and the mechanisms of fatty acid chain elongation, desaturation, etc. have also been largely clarified. Fatty acid synthesis in higher plants is generally carried out by acetyl CoA carboxylase, a saturated fatty acid synthesizing enzyme involving acyl transport protein (ACP), and a methyl group desaturase (plant type), mainly converting oleic acid to linoleic acid. Converts to acid and linolenic acid. However, in algae, it is thought that there is an additional conversion pathway (animal type) from linolenic acid to EPA. The present inventors studied the synthesis of EPA under in vitro and in vivo conditions using C. japonica, and found that 14 C-labeled acetic acid, which is commercially available,
It was confirmed that radioactivity in butyric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid was significantly incorporated into EPA, but most efficiently.
The substrate incorporated into EPA was linolenic acid. In other words, as shown in the figure below, the direct precursor of EPA is eicosatetraenoic acid derived from linolenic acid, so linolenic acid can be said to be the most efficient substrate among the substrates tested for EPA synthesis. The precursors of linolenic acid, such as acetic acid, butyric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, and linoleic acid, are finally converted to linolenic acid through various biochemical conversion processes. Incorporated into EPA. [Table] ↓ ↓
ω-3,6,9,12-eicosatetraenoic acid
(C 20:4ω3)

Claims (1)

【特許請求の範囲】 1 リノレン酸又はリノレン酸を含む油脂を基質
としてエイコサペンタエン酸を含有する藻類中の
エイコサペンタエン酸合成酵素を作用させること
を特徴とするエイコサペンタエン酸の酵素的生産
方法。 2 酵素反応液中に該リノレン酸の4〜80重量%
量の酢酸を加える特許請求の範囲第1項記載のエ
イコサペンタエン酸の酵素的生産方法。 3 酵素反応液の最終的な水素イオン濃度をPH3
〜10に調整するに当り、PH調整剤として炭酸水素
ナトリウムを使用する特許請求の範囲第1項又は
第2項記載のエイコサペンタエン酸の酵素的生産
方法。 4 特許請求の範囲第1項記載のリノレン酸を基
質とする方法において、生産物として得られる総
脂質中に含まれるドコセン酸及びドコサヘキサエ
ン酸の含有量が共に3.0重量%以下であることを
特徴とするエイコサペンタエン酸の酵素的生産方
法。
[Scope of Claims] 1. A method for the enzymatic production of eicosapentaenoic acid, which comprises causing eicosapentaenoic acid synthase in algae containing eicosapentaenoic acid to act on linolenic acid or fats and oils containing linolenic acid as a substrate. 2 4 to 80% by weight of the linolenic acid in the enzyme reaction solution
A method for the enzymatic production of eicosapentaenoic acid as claimed in claim 1, wherein an amount of acetic acid is added. 3 Set the final hydrogen ion concentration of the enzyme reaction solution to PH3.
3. The method for enzymatic production of eicosapentaenoic acid according to claim 1 or 2, wherein sodium hydrogen carbonate is used as a pH adjuster in adjusting the pH to 10 to 10. 4. The method using linolenic acid as a substrate according to claim 1, characterized in that the content of docosenoic acid and docosahexaenoic acid contained in the total lipid obtained as a product is 3.0% by weight or less. A method for enzymatic production of eicosapentaenoic acid.
JP59153733A 1984-07-23 1984-07-23 Method for enzymic production of eicosapentaenoic acid Granted JPS6131092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59153733A JPS6131092A (en) 1984-07-23 1984-07-23 Method for enzymic production of eicosapentaenoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153733A JPS6131092A (en) 1984-07-23 1984-07-23 Method for enzymic production of eicosapentaenoic acid

Publications (2)

Publication Number Publication Date
JPS6131092A JPS6131092A (en) 1986-02-13
JPH0367672B2 true JPH0367672B2 (en) 1991-10-23

Family

ID=15568905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153733A Granted JPS6131092A (en) 1984-07-23 1984-07-23 Method for enzymic production of eicosapentaenoic acid

Country Status (1)

Country Link
JP (1) JPS6131092A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU602376B2 (en) * 1986-12-26 1990-10-11 Sagami Chemical Research Center Process for production of eicosapentaenoic acid
JPS63185390A (en) * 1987-01-27 1988-07-30 Suntory Ltd Production of eicosapentaenoic acid by algae
JPS63185389A (en) * 1987-01-27 1988-07-30 Suntory Ltd Production of highly unsaturated fatty acid by microbial conversion
WO2015011418A1 (en) * 2013-07-25 2015-01-29 Roquette Freres Method for optimising the production efficiency, organoleptic quality and stability over time of a protein-rich microalgae biomass

Also Published As

Publication number Publication date
JPS6131092A (en) 1986-02-13

Similar Documents

Publication Publication Date Title
EP1642983B1 (en) Arachidonic acid and methods for the production and use thereof
US9200236B2 (en) Omega 7 rich compositions and methods of isolating omega 7 fatty acids
US20080175975A1 (en) Method For Producing a Dha-Containing Fatty Acid Composition
AU2014202880A1 (en) Production and purification of esters of polyunsaturated fatty acids
CA2627832A1 (en) Preparation of microbial polyunsaturated fatty acid containing oil from pasteurised biomass
BRPI0311916B1 (en) process for the production of a microbial oil comprising arachidonic acid
TW200404893A (en) Process for production of transesterified oils/fats or triglycerides
WO2011112412A1 (en) Docosahexaenoic acid bound in phospholipids and method of recovering same from a natural source
CN105925627B (en) Microbial oil and preparation method thereof
JP7259034B2 (en) Very long chain fatty acid composition
AU2011350073A1 (en) Omega-3 concentrate
JPH0367672B2 (en)
TW202000034A (en) ALA enriched polyunsaturated fatty acid compositions
CN108431203B (en) Method for enriching protists with lipids enriched in polyunsaturated fatty acids, more particularly in the omega 3 class of polyunsaturated fatty acids, and implementation for producing these lipids
KR20220107225A (en) Microbial oil composition fortified with polyunsaturated fatty acids
JPH0913075A (en) Oil and fat for diminishing lipid in blood
CN110150666B (en) Grease composition and preparation method thereof
JPH11290094A (en) Production of fatty acid ester of astaxanthin
TWI821982B (en) Dha enriched polyunsaturated fatty acid compositions
US20230151297A1 (en) Method for the fractionation of fatty acids with a difference of two carbons by molecular distillation
TWI774897B (en) Vegetble-based lipid composition, and process for producing the same
JP3544247B2 (en) Pharmaceutical composition for inhibiting platelet aggregation
JP2021527434A (en) Polyunsaturated fatty acid composition enriched with DHA
CN105713936B (en) The preparation method of microbial oil
Upadhyay et al. Alpha linolenic acid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term