JPH0367630A - Biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film

Info

Publication number
JPH0367630A
JPH0367630A JP20529389A JP20529389A JPH0367630A JP H0367630 A JPH0367630 A JP H0367630A JP 20529389 A JP20529389 A JP 20529389A JP 20529389 A JP20529389 A JP 20529389A JP H0367630 A JPH0367630 A JP H0367630A
Authority
JP
Japan
Prior art keywords
film
stretching
mol
longitudinal direction
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20529389A
Other languages
Japanese (ja)
Inventor
Shigehiro Masuda
成裕 増田
Yujiro Fukuda
裕二郎 福田
Shinobu Suzuki
忍 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP20529389A priority Critical patent/JPH0367630A/en
Publication of JPH0367630A publication Critical patent/JPH0367630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To improve heat resistance, strength, continuity in film making and a draw ratio of a longitudinal direction, by a method wherein the subject film is made into a polyester film wherein at least specific ratio of an acid ingredient and glicol ingredient are constituted respectively of terephthalic acid and 1,4- cyclohexanedimethanol, and density, a birefringent index and Young's modulus of a longitudinal direction of the film are limited. CONSTITUTION:At least 80 mol% of an acid ingredient of a film is constituted of terephthalic acid, preferably at least 90 mol%, preferably further at least 95 mol%. Then at least 90 mol% in a glycol ingredient is constituted of 1,4- cyclohexanedimethanol, preferably at least 95 mol%, preferably further at least 97 mol%. Density of the film is made so as to fall within a range of 1.220-1.250 g/cm<2>, preferably a range of 1.224-1.240 g/cm<2>. A birefringence index (DELTAn) and Young's modulus of a longitudinal direction of the film are made so as to fall respectively within range of 0.010-0.040 and 310-370 kg/mm<2>.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性、機械的強度および製膜連続性に優れ
た二軸配向ポリエステルフィルムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a biaxially oriented polyester film that has excellent heat resistance, mechanical strength, and film formation continuity.

〔従来の技術および発明が解決しようとする課題〕ポリ
(1,4−シクロヘキサンジメチレンテレフタレート)
(以下PCTと略す)は、ポリエチレンテレフタレート
(以下PETと略す)と比べ融点(Tm)が5〜35°
C高く、またガラス転移温度(Tg)も5〜25°C高
いことが報告されている(J、Polymer  Sc
i、C06,17、(1964))。すなわち、PCT
フィルムはPETフィルムよりも耐熱性の点で優れたフ
ィルムである。
[Prior art and problems to be solved by the invention] Poly(1,4-cyclohexane dimethylene terephthalate)
(hereinafter abbreviated as PCT) has a melting point (Tm) of 5 to 35° compared to polyethylene terephthalate (hereinafter abbreviated as PET).
It has been reported that the glass transition temperature (Tg) is 5 to 25°C higher (J, Polymer Sc
i, C06, 17, (1964)). That is, P.C.T.
The film has better heat resistance than PET film.

しかしながら強度に関しては、PCTフィルムはPET
フィルムよりもかなり低く、例えばヤング率で比較する
と、PETフィルムが6.8X105psj (= 4
80 kg/mm” )であるのに対し、PCTフィル
ムは4.OX 10’ psi(>280kg/mm”
 )であり、PETの6割程度の強度であることが報告
されている(Soc、Plastics  Engrs
、J、ユ1083 (1961))。フィルムの強度、
特にヤング率は工業的にフィルムを連続加工する際には
非常に重要なファクターであり、ヤング率が小さい場合
には巻き出し、巻き取り、あるいは種々の加工時に加わ
る張力により、フィルムが不可逆的に伸びてしまうこと
もある。
However, in terms of strength, PCT film is comparable to PET film.
It is much lower than that of film, for example, when comparing Young's modulus, PET film has 6.8X105 psj (= 4
80 kg/mm”), while PCT film has a 4.OX 10’ psi (>280 kg/mm”)
), and it is reported that the strength is about 60% that of PET (Soc, Plastics Engrs
, J. Yu 1083 (1961)). film strength,
In particular, Young's modulus is a very important factor when continuously processing films industrially, and if Young's modulus is small, the tension applied during unwinding, winding, or various processing may cause irreversible damage to the film. It may even stretch.

このため、特にフィルムの長平方向のヤング率は大きい
程好ましいが、PCTフィルムでは、従来280 kg
/n++i”程度のヤング率のものしか知られていなか
った。
For this reason, the Young's modulus in the longitudinal direction of the film is preferably as large as possible;
Only those having a Young's modulus of about /n++i'' were known.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記課題を解決すべく検討を行なった結
果、ある特定の密度及び複屈折率を有するフィルムが、
耐熱性に優れ、しかも従来知られているPCTフィルム
よりも高強度であることを見出し、本発明を完成するに
至った。
The present inventors conducted studies to solve the above problems, and found that a film having a certain density and birefringence index is
The present inventors have discovered that the film has excellent heat resistance and has higher strength than conventionally known PCT films, leading to the completion of the present invention.

すなわち本発明の要旨は、酸成分の80モル%以上がテ
レフタル酸、グリコール成分の90モル%以上が1,4
−シクロヘキサンジメタノールで構成されたポリエステ
ルフィルムであって、該フィルムの密度が1.220〜
1.250 g/d、複屈折率が0.010〜0.04
0であり、かつフィルム長手方向のヤング率が310〜
4” OOkg/ ms”であることを特徴とする二軸
配向ポリエステルフィルムに存する。
That is, the gist of the present invention is that 80 mol% or more of the acid component is terephthalic acid, and 90 mol% or more of the glycol component is 1,4
- A polyester film composed of cyclohexanedimethanol, the film having a density of 1.220 to
1.250 g/d, birefringence 0.010-0.04
0, and the Young's modulus in the longitudinal direction of the film is 310~
4"OOkg/ms".

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のポリエステルフィルムは、その酸成分の80モ
ル%以上がテレフタル酸で構成されたフィルムであり、
好ましくは90モル%以上、更に好ましくは95モル%
以上がテレフタル酸で構成されたフィルムである。酸成
分中のテレフタル酸含有量が80モル%未満である場合
にはポリマーの結晶性を低下させてしまい、耐熱性に悪
影響を及ぼす。なお、上記範囲を満せば、第3成分とし
て、イソフタル酸、2.6−あるいは2,7−ナフタレ
ンジカルボン酸、4,4′−ビフェニルジカルボン酸等
の芳香族ジカルボン酸、あるいはp−ヒドロキシ安息香
酸等の芳香族ヒドロキシ酸を共重合成分としてポリマー
中に含有していてもよい。
The polyester film of the present invention is a film in which 80 mol% or more of the acid component is composed of terephthalic acid,
Preferably 90 mol% or more, more preferably 95 mol%
The above is a film made of terephthalic acid. If the terephthalic acid content in the acid component is less than 80 mol%, the crystallinity of the polymer will be reduced, which will have an adverse effect on heat resistance. In addition, as long as the above range is satisfied, aromatic dicarboxylic acids such as isophthalic acid, 2,6- or 2,7-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, or p-hydroxybenzoic acid can be used as the third component. Aromatic hydroxy acids such as acids may be contained in the polymer as a copolymerization component.

また、本発明のポリエステルフィルムはそのグリコール
成分中の90モル%以上がシクロヘキサンジメタノール
で構成されていることが必要であり、グリコール成分の
シクロヘキサンジメタノールの含有量は好ましくは95
モル%以上、更に好ましくは97モル%以上である。グ
リコール成分中のシクロヘキサンジメタノールの含有量
が90モル%未満では、酸成分の場合と同様にポリマー
の結晶性が低下し、耐熱性に悪影響が及ぶ。
Further, in the polyester film of the present invention, it is necessary that 90 mol% or more of the glycol component is composed of cyclohexanedimethanol, and the content of cyclohexanedimethanol in the glycol component is preferably 95% by mole.
It is mol% or more, more preferably 97 mol% or more. If the content of cyclohexanedimethanol in the glycol component is less than 90 mol %, the crystallinity of the polymer decreases, as in the case of the acid component, and the heat resistance is adversely affected.

本発明における1、4−シクロヘキサンジメタノールの
シス−トランス分率は、50モル%以上がトランスであ
ることが好ましい、シス体が多い場合には、特に融点の
低下が著しく、高温での耐熱性が不足してしまう。
The cis-trans fraction of 1,4-cyclohexanedimethanol in the present invention is preferably 50 mol% or more trans.If the cis-trans fraction is large, the melting point will be particularly low, and the heat resistance at high temperatures will be reduced. will be in short supply.

本発明におけるPCTポリマーの重合方法は、公知のポ
リエステルの溶融重合方法を用いることができるが、熱
劣化を最小に抑えるため、溶融重合と固相重合を併用し
て所望の重合度とする方法も採用できる。また、本発明
のフィルムの重合度は、その極限粘度、すなわちフェノ
ール:テトラクロルエタン=1:1(重量比)の溶液中
30℃で測定しHiiggins定数を0.33とした
値が0.45以上好ましくは0.60以上であることが
好ましい。極限粘度が0.45未満である場合には、二
軸配向フィルムを得ようとする際に延伸性が劣るので好
ましくない。
The method of polymerizing the PCT polymer in the present invention can be a known polyester melt polymerization method, but in order to minimize thermal deterioration, a method of combining melt polymerization and solid phase polymerization to achieve the desired degree of polymerization is also possible. Can be adopted. The degree of polymerization of the film of the present invention is determined by its intrinsic viscosity, which is 0.45 when measured at 30°C in a solution of phenol:tetrachloroethane=1:1 (weight ratio) and assuming Higgins' constant as 0.33. More preferably, it is 0.60 or more. If the intrinsic viscosity is less than 0.45, it is not preferable because the stretchability is poor when attempting to obtain a biaxially oriented film.

本発明のポリエステルフィルムには、ポリエステルに対
して不活性な微粒子を必要に応じて含有させることがで
きる。この微粒子には、無機あるいは有機の粒子、具体
的にはカオリン、タルク、二酸化ケイ素、炭酸カルシウ
ム、フッ化リチウム、二酸化チタン、ゼオライト、テレ
フタル酸カルシウム、架橋性高分子等から選択でき、ま
たその含有量、平均粒径も用途・必要に応じて適宜選択
できる。
The polyester film of the present invention can contain fine particles that are inactive with respect to polyester, if necessary. These fine particles can be selected from inorganic or organic particles, specifically kaolin, talc, silicon dioxide, calcium carbonate, lithium fluoride, titanium dioxide, zeolite, calcium terephthalate, crosslinked polymers, etc. The amount and average particle size can also be selected as appropriate depending on the application and necessity.

本発明のポリエステルフィルムは、その密度が1.22
0〜1.250 g/aAの範囲であり、好ましくは1
.224〜1.240g/cjの範囲一である。密度が
1.220g/d未満である場合には、結晶化が不足し
て充分な耐熱性を得ることができない。
The polyester film of the present invention has a density of 1.22
The range is 0 to 1.250 g/aA, preferably 1
.. The range is 224 to 1.240 g/cj. If the density is less than 1.220 g/d, sufficient heat resistance cannot be obtained due to insufficient crystallization.

また1、250g/c+aを超えることは通常困難では
あるが、製造したとしても結晶化が進行し過ぎ、フィル
ム自体が脆くなり、実用的でない。
Although it is usually difficult to exceed 1,250 g/c+a, even if it is produced, crystallization will progress too much and the film itself will become brittle, making it impractical.

本発明のポリエステルフィルムの複屈折率(Δn)は0
.010〜0.040の範囲であることが必要である。
The birefringence index (Δn) of the polyester film of the present invention is 0
.. It needs to be in the range of 0.010 to 0.040.

この複屈折率(Δn)は、abbeの屈折計でフィルム
の長手方向及びそれと直角方向の屈折率を測定し、その
差を算出することで求めることができる。複屈折率(Δ
n)が、0.010より小さい場合には、長平方向の強
度が不足であり、複屈折率(Δn)が0.040を超え
る場合には、フィルムの製膜時に、幅方向の延伸性が著
しるしく低下し、好ましくない。本発明のポリエステル
フィルムの複屈折率(Δn)は0.015〜0゜030
の範囲が更に好ましい。
This birefringence (Δn) can be determined by measuring the refractive index of the film in the longitudinal direction and in the direction perpendicular thereto using an ABBE refractometer, and calculating the difference therebetween. Birefringence (Δ
When n) is smaller than 0.010, the strength in the longitudinal direction is insufficient, and when the birefringence index (Δn) exceeds 0.040, the stretchability in the width direction is insufficient during film formation. This is a significant decrease, which is not desirable. The birefringence (Δn) of the polyester film of the present invention is 0.015 to 0°030
The range is more preferable.

次に本発明の二軸配向ポリエステルの製造方法を詳述す
る。
Next, the method for producing biaxially oriented polyester of the present invention will be described in detail.

本発明のポリエステルフィルムは、長平方向に充分に分
子配向させることが必要であるため、この方向の延伸は
、通常二段階で行われるが、更に多段で行うことも可能
である。例えば二段階で延伸する処方は、大別して2種
類の方法が可能である。まず1つの方法は、未延伸シー
トをロール延伸により長手方向に延伸する際に、二段延
伸を行う方法である。この場合、1段目の延伸を、フィ
ルムの実質温度が100〜120°Cの範囲となるよう
に加熱し、1.5〜3.0倍に延伸する。次いで2段目
の延伸を、1段目より低温且つフィルムの実質温度が9
0〜105°Cの範囲となるように加熱し、1.4〜2
.5倍に延伸する。この際に長手方向の総合延伸倍率は
、3.3〜5.0倍に設定するのが好ましく、5.0倍
を超えると幅方向の延伸性が悪くなり、また3、3倍未
満では充分な分子配向が得られない。1段目と2段目の
延伸倍率の分配は、より低温で延伸を行う2段目の倍率
を大きくすると、フィルム内に微少なりランクやボイド
ができ易くなるため、2段目の倍率を総合延伸倍率の5
0%を超えて設定するのは好ましくない。また、延伸時
のフィルムの実質温度は、フィルムの厚み、ラインスピ
ード等によって最適温度が異るが、般的にフィルムが厚
く、ラインスピードが速い時は、やや高めに温度を設定
すると良い。さらに1段目の延伸が終了直後、フィルム
の実質温度がガラス転移点温度以下になるよう冷却し、
次いで2段目の延伸のための予熱を行うことが、温度制
御の容易さ及びフィルムの結晶化防止の点で好ましい。
Since it is necessary for the polyester film of the present invention to have sufficient molecular orientation in the longitudinal direction, stretching in this direction is usually carried out in two stages, but it can also be carried out in more stages. For example, two-stage stretching formulations can be broadly classified into two types. First, one method is to perform two-stage stretching when stretching an unstretched sheet in the longitudinal direction by roll stretching. In this case, in the first stage of stretching, the film is heated so that the actual temperature of the film is in the range of 100 to 120°C, and the film is stretched 1.5 to 3.0 times. Next, the second stage of stretching is carried out at a temperature lower than that of the first stage and the actual temperature of the film is 9.
Heat to a temperature in the range of 0 to 105°C, 1.4 to 2
.. Stretch 5 times. At this time, it is preferable to set the overall stretching ratio in the longitudinal direction to 3.3 to 5.0 times; if it exceeds 5.0 times, the stretchability in the width direction will deteriorate, and if it is less than 3 times, it will be insufficient. molecular orientation cannot be obtained. The distribution of the stretching ratios in the first and second stages is such that if the stretching ratio in the second stage, which is stretched at a lower temperature, is increased, small ranks or voids are likely to be formed in the film, so the ratio in the second stage should be Stretching ratio of 5
It is not preferable to set it above 0%. Further, the optimum actual temperature of the film during stretching differs depending on the thickness of the film, line speed, etc., but in general, when the film is thick and the line speed is fast, it is better to set the temperature a little higher. Immediately after the first stage of stretching is completed, the film is cooled to a temperature below the glass transition temperature.
Next, it is preferable to perform preheating for the second stage of stretching in terms of ease of temperature control and prevention of crystallization of the film.

またこれらの延伸の際に、加熱ロールが高温であるとフ
ィルムがロールに粘着してしまうことがあるが、このよ
うな時には、ロールの材質を非粘着性のものに変えて延
伸することも可能である。
Also, during stretching, if the heating roll is at a high temperature, the film may stick to the roll, but in such cases it is also possible to change the material of the roll to a non-adhesive material and stretch. It is.

非粘着ロールには、表面がマット加工された硬質クロム
メツキロールやセラミック製のロール及びエラストマー
ロール、フッ素樹脂ロール等が使用できる。
As the non-adhesive roll, a hard chrome plated roll with a matte surface, a ceramic roll, an elastomer roll, a fluororesin roll, etc. can be used.

かくして得られた、長平方向に2段階で延伸した後のフ
ィルムは、その複屈折率(Δn)が0.070−0.1
00、かつ、フィルムの平均屈折率が1、5550〜1
.5610の範囲にあることが好ましい。この範囲にあ
るフィルムは、後述する幅方向の延伸を行った後に、強
度に優れたフィルムになる他、厚みの均一性に優れ、し
かも幅方向の延伸性も良好なものとなる。
The thus obtained film after being stretched in two steps in the longitudinal direction has a birefringence index (Δn) of 0.070-0.1.
00, and the average refractive index of the film is 1,5550-1
.. It is preferably in the range of 5610. A film within this range, after being stretched in the width direction as described below, will not only have excellent strength but also excellent uniformity in thickness and good stretchability in the width direction.

幅方向の延伸は、通常いわゆるテンター法で行い、設定
倍率は3.5〜4.0倍の範囲から選択し、延伸後の実
質倍率ができるだけ設定倍率に近くなるように延伸温度
を決めると良い。この延伸温度は通常95〜115°C
の範囲から選択できるが、一般的にフィルムが厚い程、
高い延伸温度が必要となる。
Stretching in the width direction is usually carried out by the so-called tenter method, the set magnification is selected from the range of 3.5 to 4.0 times, and the stretching temperature is preferably determined so that the actual magnification after stretching is as close to the set magnification as possible. . This stretching temperature is usually 95-115°C
You can choose from a range of , but generally speaking, the thicker the film, the
High stretching temperatures are required.

このようにして得られた二軸配向ポリエステルフィルム
は、次に熱固定することで、耐熱性を飛躍的に向上させ
ることができる。熱固定には、幅方向の延伸と同様にテ
ンター法で行なうことが一般的であり、その条件は、1
80〜260°C1好ましくは220〜250°Cの温
度で、1秒〜5分間熱風を当てて、フィルムの密度が1
.220〜1゜250g/c+a、好ましくは1.22
4〜1.240 g/ c+llの範囲となるよう行う
。またこの際に幅方向の熱収縮率を改善する目的で、熱
固定をしながら、幅方向に3〜5%の弛緩処理を行うこ
とも可能である。熱固定温度については、PCTの融点
がPETと比べて高いことに関係して、PCTフィルム
では250″C程度までは後述するフィルムの面配向(
ΔP)を低下させずに熱固定することができる。PET
フィルムでは、240″Cの熱固定温度ではフィルム面
配向(ΔP)が低下し始めることが知られており、PC
Tフィルムの場合は上述のように熱固定温度を高く設定
できるため、良好な耐熱性が得られると考えられる。
The biaxially oriented polyester film obtained in this manner can be then heat-set to dramatically improve its heat resistance. Heat setting is generally carried out by the tenter method, similar to the width direction stretching, and the conditions are 1.
Apply hot air at a temperature of 80 to 260°C, preferably 220 to 250°C, for 1 second to 5 minutes to reduce the density of the film to 1.
.. 220~1゜250g/c+a, preferably 1.22
It is carried out so that it is in the range of 4 to 1.240 g/c+ll. Further, at this time, for the purpose of improving the heat shrinkage rate in the width direction, it is also possible to perform a relaxation treatment of 3 to 5% in the width direction while heat setting. As for the heat setting temperature, since the melting point of PCT is higher than that of PET, PCT film can be heated up to about 250"C due to the film's planar orientation (described later).
Heat fixation can be performed without reducing ΔP). PET
It is known that film plane orientation (ΔP) begins to decrease at a heat setting temperature of 240″C, and PC
In the case of T film, the heat setting temperature can be set high as described above, so it is thought that good heat resistance can be obtained.

かくして得られる二軸配向ポリエステルフィルムは、長
手方向のヤング率が310〜370kg/m−であり、
従来知られているPCTフィルムよりも10〜30%程
度強度に優れるものとなる。
The biaxially oriented polyester film thus obtained has a Young's modulus in the longitudinal direction of 310 to 370 kg/m,
The strength is about 10 to 30% better than conventionally known PCT films.

また、フィルムの長手方向へ分子配向を付与する方法と
して、二輪延伸を行い、次いで低い温度で熱固定を行な
った後のフィルムを、再度長手方向に延伸(以後再延伸
と略称する)する方法もある。この場合、再延伸をする
ための二輪延伸フィルムの配向は、複屈折率(Δn)で
−o、oio〜0、030であるような縦横バランスフ
ィルム乃至は長手方向にやや優位に配向しているものが
好ましい。複屈折率(Δn)が−0,010未満である
二輪延伸フィルムでは、再延伸を行なってもヤング率が
310 kg/mn+”を超えないことがあり、また、
0.030を超える複屈折率(Δn)を有する二輪延伸
フィルムでは、既に長手方向に高配向しており、更なる
再延伸より長手方向に非常に裂は易いフィルムとなって
好ましくない。再延伸を行うための二輪延伸フィルムの
製造方法は、従来から知られている、縦・横1段ずつで
行う遂時二軸延伸または同時二輪延伸によって製造され
たものでもよいし、前述したような、長手方向に2段階
で延伸しである二輪延伸フィルムであってもよい。
Another method for imparting molecular orientation in the longitudinal direction of a film is to perform two-wheel stretching, then heat set at a low temperature, and then stretch the film again in the longitudinal direction (hereinafter referred to as re-stretching). be. In this case, the orientation of the two-wheel stretched film for re-stretching is a vertically and horizontally balanced film with a birefringence index (Δn) of -0, oio to 0,030, or a slightly predominant orientation in the longitudinal direction. Preferably. In a two-wheel stretched film with a birefringence index (Δn) of less than -0,010, the Young's modulus may not exceed 310 kg/mn+'' even after re-stretching, and
A two-wheel stretched film having a birefringence index (Δn) exceeding 0.030 is already highly oriented in the longitudinal direction, and further re-stretching results in a film that is extremely susceptible to tearing in the longitudinal direction, which is undesirable. The two-wheel stretched film for re-stretching may be produced by conventionally known final biaxial stretching or simultaneous two-wheel stretching performed in one vertical and one horizontal step, or as described above. Alternatively, it may be a two-wheel stretched film that is stretched in two stages in the longitudinal direction.

特に後者の方法で、0.010〜0.020の複屈折率
(△n)を有するフィルムを再延伸した場合、再延伸も
含めた製膜連続性が良好で、しかも長手方向の強度・ヤ
ング率に優れたフィルムとなり好ましい。
In particular, when a film with a birefringence (△n) of 0.010 to 0.020 is re-stretched using the latter method, the continuity of film formation including re-stretching is good, and the strength in the longitudinal direction and the This is preferable since it becomes a film with excellent ratio.

再延伸により、強度・ヤング率を向上させるには、二軸
延伸したフィルムをあらかじめ120〜140 ’Cの
低い温度で1秒〜1分間熱固定することが必要である。
In order to improve the strength and Young's modulus by re-stretching, it is necessary to heat set the biaxially stretched film in advance at a low temperature of 120 to 140'C for 1 second to 1 minute.

この熱固定温度が120°C未満では、フィルムの結晶
化が不足して、再延伸の効果が不充分であり、140°
Cを超える場合には逆に結晶化が促進され過ぎて、再延
伸することができなくなる。
If this heat setting temperature is less than 120°C, the crystallization of the film will be insufficient and the effect of re-stretching will be insufficient;
If it exceeds C, on the contrary, crystallization is promoted too much and re-stretching becomes impossible.

再延伸には、ロール延伸法を用いることが好ましく、こ
の場合、フィルムの実質温度を前述した低温度での熱固
定温度よりも5〜15°C低い温度になるよう加熱ある
いは冷却した後、1.05〜1゜30倍の倍率で長手方
向に延伸すると良い。この際に、延伸時の応力により、
延伸ロールの表面をフィルムが滑る現象が見られるとき
には、延伸ロールの適当な位置に、ゴム材質でできた対
向ロールを設置するか、あるいは、静電印加装置を設置
して、フィルムを延伸ロールに密着させて再延伸を行う
必要がある。上記方法のうち、特に静電印加により密着
させる方法は、フィルム表面にキズをつけることが少な
く好ましい。
It is preferable to use a roll stretching method for re-stretching. In this case, the film is heated or cooled to a temperature 5 to 15°C lower than the above-mentioned low temperature heat-setting temperature, and then 1 It is preferable to stretch in the longitudinal direction at a magnification of .05 to 1.30 times. At this time, due to stress during stretching,
If the phenomenon of the film slipping on the surface of the stretching roll is observed, install a counter roll made of rubber material at an appropriate position on the stretching roll, or install an electrostatic application device to prevent the film from sliding on the stretching roll. It is necessary to bring them into close contact and re-stretch them. Among the above methods, the method of adhesion by electrostatic application is particularly preferable because it causes less damage to the film surface.

再延伸を行なったフィルムは、次にテンター内で180
〜260℃、好ましくは220〜250°Cの温度で、
1秒〜5分間熱風を当てて、熱固定を行う。この時熱固
定後のフィルムの密度が1.220〜1.250 g/
ctA好ましくは1.224〜1.240g/c+aの
範囲となるように熱固定を施す。また、必要に応じて、
フィルムの幅方向に弛緩処理を行うこともできる。
The re-stretched film is then heated to 180° in a tenter.
at a temperature of ~260°C, preferably 220-250°C,
Heat-fix by applying hot air for 1 second to 5 minutes. At this time, the density of the film after heat setting is 1.220 to 1.250 g/
Heat setting is performed so that the ctA is preferably in the range of 1.224 to 1.240 g/c+a. Also, if necessary,
Relaxation treatment can also be performed in the width direction of the film.

かくして得られた二軸配向ポリエステルフィルムは、長
手方向のヤング率が310〜400kg/IIIII+
2となり、従来知られているPCTフィルムよりも10
〜40%程度、高強度のものとなる。また、再延伸によ
り長平方向のヤング率を向上させた場合には、前述した
長手方向に2段延伸を行なってヤング率を向上させた場
合と比べて、幅方向のヤング率の低下が少ない場合が多
く好ましい。
The thus obtained biaxially oriented polyester film has a longitudinal Young's modulus of 310 to 400 kg/III+
2, which is 10 times higher than the conventionally known PCT film.
It has a high strength of about 40%. In addition, when the Young's modulus in the longitudinal direction is improved by re-stretching, the decrease in the Young's modulus in the transverse direction is smaller than when the Young's modulus is improved by performing two-step stretching in the longitudinal direction as described above. It is preferable because there are many.

本発明の二軸延伸ポリエステルフィルムは、ヤング率が
大きいため、特に厚みが25μm以下の薄いフィルムに
おいては、工業的に有利となるが、25μm以上の厚み
を有するフイ、ルムであってもその効果は充分発揮され
る。
Since the biaxially stretched polyester film of the present invention has a large Young's modulus, it is industrially advantageous, especially for thin films with a thickness of 25 μm or less, but even films with a thickness of 25 μm or more have no effect. is fully demonstrated.

〔実施例〕〔Example〕

以下、実施例により、更に具体的に本発明を説明するが
、本発明は、その要旨を越えない限り以下の実施例に限
定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

なお、本発明のフィルムの特性評価法を下記に示す。The method for evaluating the characteristics of the film of the present invention is shown below.

(1)複屈折率(Δn)1面配向度(ΔP)、平均屈折
率n) アタゴ光学社製abbe式屈折計を用い、フィルム面内
の長手方向の屈折率をnMD、それに直角方向(幅方向
)の屈折率をnto、及びフィルムの厚さ方向の屈折率
をnc、とじて測定し、次式より各々のパラメーターを
求めた。なお、屈折率の測定は、ナトリウムD線を用い
、23°Cで行なった。
(1) Birefringence (Δn) degree of one-plane orientation (ΔP), average refractive index n) Using an ABBE refractometer manufactured by Atago Optical Co., Ltd., the refractive index in the longitudinal direction in the film plane is nMD, and the direction perpendicular to it (width The refractive index in the film thickness direction was measured as nto, and the refractive index in the thickness direction of the film as nc, and each parameter was determined from the following equation. Note that the refractive index was measured using sodium D line at 23°C.

複屈折率(Δn)−n、n  nTD 面配向度(ΔP ) = ((nMD+ nTD)/2
 )  n &平均屈折率(n) =(n、t++ny
o+nz)/3(2)フィルム密度 n−へブタン−四塩化炭素の混合液を満たした密度勾配
管を用い、25°Cで測定した。
Birefringence (Δn) - n, nTD plane orientation degree (ΔP) = ((nMD+nTD)/2
) n & average refractive index (n) = (n, t++ny
o+nz)/3(2) Film density Measured at 25°C using a density gradient tube filled with a mixture of n-hebutane and carbon tetrachloride.

(3)フィルムのヤング率 インテスコ株製引張試験機インテスコモデル2001型
を用いて、温度23°C湿度5o%RHに調節された室
内において、長さ300mm幅20mmの試料フィルム
を、10%/minのひずみ速度で引張り、引張応力−
ひすみ曲線の初めの直線部分を用いて次の式によって計
算した。
(3) Young's Modulus of Film Using a tensile tester Intesco Model 2001 manufactured by Intesco Co., Ltd., a sample film with a length of 300 mm and a width of 20 mm was tested at 10% Tensile at a strain rate of min, tensile stress -
It was calculated using the following formula using the first straight line part of the helix curve.

なお、試料フィルムは、測定時と同温度、同湿度にて2
4時間以上調温・調湿したものを使用した。
In addition, the sample film was incubated at the same temperature and humidity as during the measurement.
The temperature and humidity were controlled for at least 4 hours before use.

(4)フィルムの破断強度 インテスコ■製引張試験機インテスコモデル2001型
を用いて、温度23°C湿度50%RHに調節された室
内において、長さ50mm1、幅151の試料フィルム
を、200 mm/minの速度で引張り、下記式より
求めた。
(4) Breaking strength of film Using a tensile tester Intesco Model 2001 manufactured by Intesco ■, a sample film with a length of 50 mm1 and a width of 151 mm was tested in a room controlled at a temperature of 23° C. and a humidity of 50% RH. It was calculated from the following formula by pulling at a speed of /min.

破断強度−F/S(kg/mm2) (5)熱収縮率 無張力状態で200°C(±2°C)の雰囲気中10分
間熱処理し、その前後のサンプルの長さを測定し、次式
で算出した。
Breaking strength - F/S (kg/mm2) (5) Heat shrinkage rate Heat treated in an atmosphere of 200°C (±2°C) for 10 minutes under no tension, measured the length of the sample before and after that, and then It was calculated using the formula.

×l Oo 実施例1 (ポリマーの作成) ジカルボン酸成分としてテレフタル酸単位を95モル%
、イソフタル酸単位を5モル%、グリコール成分として
cis:trans比が1:3の14−シクロヘキサン
ジメタノールを100%用い、触媒として酸化チタンを
酸化成分に対して0.06モル%添加して、重合槽中で
撹拌下加熱してエステル化した。ここで滑剤として平均
粒径1゜30μmのサイロイドをポリマー中0.20w
t%となるように添加した後、重縮合を行い、[η]=
0.65のポリ(1,4−シクロヘキサンジメチレンテ
レフタレート)共重合体を得た。このポリマーをチップ
化した後、窒素気流下で固相重合を行い最終的に[η]
=1.05のポリエステルを得た。
×l Oo Example 1 (Preparation of polymer) 95 mol% of terephthalic acid unit as dicarboxylic acid component
, using 5 mol% of isophthalic acid units, 100% of 14-cyclohexanedimethanol with a cis:trans ratio of 1:3 as the glycol component, and adding 0.06 mol% of titanium oxide to the oxidized component as a catalyst. Esterification was carried out by heating in a polymerization tank while stirring. Here, as a lubricant, 0.20w of thyroid with an average particle size of 1°30μm was added to the polymer.
After adding so that it becomes t%, polycondensation is performed, [η]=
A poly(1,4-cyclohexane dimethylene terephthalate) copolymer of 0.65 was obtained. After this polymer is made into chips, it is subjected to solid phase polymerization under a nitrogen stream and finally [η]
=1.05 polyester was obtained.

(フィルムの製膜) 上記のポリエステル乾燥した後、305°Cで溶融押出
し、40゛Cに保持したキャスティングドラム上へ静電
印加冷却法を用いて密着させ、厚さ約80μmの未延伸
シートを得た。この未延伸シートを、表面がフッ素系樹
脂で非粘着加工され、110’Cに調節されたロール上
に接触させ予熱した後、赤外線ヒーターを照射しつつ周
速差のあるロール間で2.50倍長手方向に延伸した。
(Film production) After drying the above polyester, it was melt-extruded at 305°C and adhered to a casting drum maintained at 40°C using an electrostatic cooling method to form an unstretched sheet with a thickness of approximately 80 μm. Obtained. This unstretched sheet was brought into contact with a roll whose surface was treated with a non-adhesive fluororesin and was adjusted to 110'C and preheated, and then heated at 2.50°C between the rolls with a difference in circumferential speed while irradiating with an infrared heater. Stretched twice in the longitudinal direction.

この時、延伸区間にあるフィルムの実質温度を輻射温度
計にて測定したところ110°Cであった。この延伸フ
ィルムを一旦ガラス転移点温度以下に冷却した後、再び
90°Cに調節された金属ロール上に接触させて予熱し
、赤外線ヒーターを照射しつつ、1゜80倍長手方向に
更に延伸した。この時のフィルムの実質温度は90 ’
Cであった。この2段延伸後のフィルムの複屈折率(Δ
n)は0.096で、平均屈折率(n)は1.5581
であった。次にこの延伸フィルムをテンターに導き、1
00℃で3.60倍幅方向に延伸した。更に続けて、2
50’Cで約10秒間熱固定を行い、厚さ5μmの二軸
配向フィルムを得た。また、熱固定時に幅方向に3%の
弛緩処理を行なった。このフィルム物性を表1に示す。
At this time, the actual temperature of the film in the stretching section was measured with a radiation thermometer and found to be 110°C. After this stretched film was once cooled to below the glass transition temperature, it was again brought into contact with a metal roll adjusted to 90°C to preheat it, and further stretched 1°80 times in the longitudinal direction while irradiating it with an infrared heater. . The actual temperature of the film at this time is 90'
It was C. The birefringence index (Δ
n) is 0.096 and the average refractive index (n) is 1.5581
Met. Next, this stretched film is introduced into a tenter and 1
The film was stretched 3.60 times in the width direction at 00°C. Continuing further, 2
Heat setting was performed at 50'C for about 10 seconds to obtain a biaxially oriented film with a thickness of 5 μm. Further, during heat setting, a 3% relaxation treatment was performed in the width direction. The physical properties of this film are shown in Table 1.

実施例2 実施例1において使用したポリマーを用いて、実施例1
と同様に溶融押出・シート化を行い、厚さ約70t1m
の未延伸シートを得た。この未延伸シートを、実施例1
で使用した非粘着ロールを用い、110″Cで予熱を行
なった後、赤外線ヒーターを照射しつつ長手方向に2.
00倍延伸した。この時、延伸区間のフィルム実質温度
は110″Cであった。この延伸フィルムを一旦Tg以
下に冷却した後、再び90″Cに調節された金属ロール
上に接触させて予熱し、赤外線ヒーターを照射しつつ、
2.00倍長手方向に更に延伸した。この時のフィルム
の実質温度は90°Cであった。この2段延伸後のフィ
ルムの複屈折率(Δn)は0.091で、平均屈折率(
n)は1.5583であった。次にこの延伸フィルムを
テンターに導き、110°Cで3゜60倍幅方向に延伸
した。更に続けて、250″Cで約10秒間熱固定を行
い、厚さ5μmの二軸配向フィルムを得た。また熱固定
時に、幅方向に3%の弛緩処理を行なった。このフィル
ムの物性を表1に示す。
Example 2 Using the polymer used in Example 1, Example 1
Melt extrusion and sheeting were carried out in the same manner as above, and the thickness was approximately 70t1m.
An unstretched sheet was obtained. This unstretched sheet was prepared in Example 1.
After preheating at 110"C using the non-adhesive roll used in 2.2.
00 times stretched. At this time, the actual temperature of the film in the stretching section was 110"C. After the stretched film was once cooled to below Tg, it was again brought into contact with a metal roll adjusted to 90"C and preheated, and an infrared heater was turned on. While irradiating
It was further stretched 2.00 times in the longitudinal direction. The actual temperature of the film at this time was 90°C. The birefringence index (Δn) of the film after this two-step stretching was 0.091, and the average refractive index (
n) was 1.5583. Next, this stretched film was introduced into a tenter and stretched 3.times.60 times in the width direction at 110.degree. Further, heat setting was carried out at 250''C for about 10 seconds to obtain a biaxially oriented film with a thickness of 5 μm.Furthermore, during heat setting, a relaxation treatment of 3% in the width direction was performed.The physical properties of this film were It is shown in Table 1.

実施例3 実施例1において使用したポリマーを用いて、実施例1
と同様に溶融押出・シート化を行い、厚さ約60μmの
未延伸シートを得た。この未延伸シートを100″Cに
調節された金属ロール上に接触させ予熱した後、赤外線
ヒーターを照射しつつ3、00倍長手方向に延伸した。
Example 3 Using the polymer used in Example 1, Example 1
Melt extrusion and sheet formation were carried out in the same manner as above to obtain an unstretched sheet with a thickness of about 60 μm. This unstretched sheet was brought into contact with a metal roll adjusted to 100''C and preheated, and then stretched 3,00 times in the longitudinal direction while being irradiated with an infrared heater.

この時、延伸区間のフィルム実質温度は100℃であっ
た。また、この延伸フィルムの複屈折率(Δn)は0.
081で、平均屈折率(n)は1.5586であった0
次にこのフィルムをテンターに導き、110°Cで3゜
60倍幅方向に延伸した。更に続けて130℃で約5秒
間熱固定を行なった。この時のフィルムの複屈折率は−
0,002であった。この二軸延伸フィルムを更に長手
方向に再延伸すべく、120°Cに調節された金属ロー
ルで予熱した後、1.15倍延伸を行なった。この際に
、静電密着法を用いて延伸ロール上をフィルムが滑らな
いよう密着させて行なった。また再延伸の延伸区間での
フィルム実質温度は120°Cであった。この再延伸を
行なったフィルムを再びテンターに導き、250℃で約
10秒間熱固定を行ない、厚さ5pmの二軸配向フィル
ムを得た。また熱固定時に、幅方向に3%の割合で弛緩
処理を行なった。このフィルムの物性を表1に示す。
At this time, the actual temperature of the film in the stretching section was 100°C. Moreover, the birefringence index (Δn) of this stretched film is 0.
081, and the average refractive index (n) was 1.5586.
Next, this film was introduced into a tenter and stretched at 110°C by 3°60 times in the width direction. Further, heat fixation was continued at 130° C. for about 5 seconds. The birefringence of the film at this time is -
It was 0,002. In order to further re-stretch this biaxially stretched film in the longitudinal direction, it was preheated with a metal roll adjusted to 120°C and then stretched 1.15 times. At this time, an electrostatic adhesion method was used to bring the film into close contact with the stretching roll so that it would not slip. Further, the actual temperature of the film in the stretching section of the re-stretching was 120°C. This re-stretched film was introduced into the tenter again and heat-set at 250° C. for about 10 seconds to obtain a biaxially oriented film with a thickness of 5 pm. Further, during heat setting, relaxation treatment was performed at a rate of 3% in the width direction. Table 1 shows the physical properties of this film.

比較例1 実施例3において、長手方向の再延伸を行なわずに、幅
方向の延伸が終了した後、続けてテンター内で250℃
で約10秒間熱固定を行なって、厚さ5.8μmの二軸
配向フィルムを得た。また、熱固定時に幅方向に3%の
弛緩処理を行なった。
Comparative Example 1 In Example 3, after the stretching in the width direction was completed without re-stretching in the longitudinal direction, the stretching was continued at 250°C in a tenter.
Heat setting was performed for about 10 seconds to obtain a biaxially oriented film with a thickness of 5.8 μm. Further, during heat setting, a 3% relaxation treatment was performed in the width direction.

このフィルムの物性を表1に示す。Table 1 shows the physical properties of this film.

比較例2 実施例1において、二輪延伸後の熱固定温度を160°
Cとする以外は、すべて実施例1と同様に行ない、厚さ
5μmの二軸配向フィルムを得た。
Comparative Example 2 In Example 1, the heat setting temperature after two-wheel stretching was set at 160°.
A biaxially oriented film having a thickness of 5 μm was obtained by carrying out everything in the same manner as in Example 1 except for using C.

このフィルムの物性を表1に示す。Table 1 shows the physical properties of this film.

比較例3 平均粒径1.30μmのサイロイドをポリマー中0.2
0wt%となるように添加して、常法に従い100%ポ
リエチレンテレフタレートを重合した。
Comparative Example 3 Thyroid with an average particle size of 1.30 μm was mixed into a polymer with a diameter of 0.2 μm.
0 wt % was added, and 100% polyethylene terephthalate was polymerized according to a conventional method.

このポリマーの極限粘度[η]は0.66であった。The intrinsic viscosity [η] of this polymer was 0.66.

このポリマーを用いて、樹脂温290°Cとしてあとは
実施例1と同様に溶融押出・シート化を行い、厚さ約7
5μmの未延伸シートを得た。この未延伸シートを、表
面温度84℃に調節された金属ロールで予熱した後、赤
外線ヒーター照射しつつ長手方向に3.80倍延伸した
。この時、延伸区間のフィルム実質温度は84°Cであ
り、また延伸後のフィルムの複屈折率(△n)は0.1
20であった。
Using this polymer, melt extrusion and sheet formation were performed in the same manner as in Example 1 at a resin temperature of 290°C.
An unstretched sheet of 5 μm was obtained. This unstretched sheet was preheated with a metal roll whose surface temperature was adjusted to 84° C., and then stretched 3.80 times in the longitudinal direction while being irradiated with an infrared heater. At this time, the actual temperature of the film in the stretching section was 84°C, and the birefringence index (△n) of the film after stretching was 0.1
It was 20.

次にこの延伸フィルムをテンターに導き、110°Cで
3.94倍幅方向に延伸した。更に続けて235°Cで
約10秒間熱固定を行い、厚さ5μmの二軸配向フィル
ムを得た。なお、熱固定時に幅方向に3%の弛緩処理を
行なった。このフィルムの物性を表1に示す。
Next, this stretched film was introduced into a tenter and stretched 3.94 times in the width direction at 110°C. Further, heat setting was performed at 235° C. for about 10 seconds to obtain a biaxially oriented film with a thickness of 5 μm. Note that during heat setting, a 3% relaxation treatment was performed in the width direction. Table 1 shows the physical properties of this film.

〔発明の効果〕〔Effect of the invention〕

本発明の二軸配向ポリエステルフィルムは、優れた耐熱
性を有し、その強度は、従来知られているPCTフィル
ムと比べ10〜40%程度大きいため、連続加工中に伸
びを生ずることが少なくなり、工業用フィルムとして有
利なものである。
The biaxially oriented polyester film of the present invention has excellent heat resistance, and its strength is about 10 to 40% higher than that of conventionally known PCT films, so it is less likely to elongate during continuous processing. , which is advantageous as an industrial film.

また、本発明の二軸配向ポリエステルフィルムは、製膜
連続性が良好であり、しかも長手方向の延伸倍率を上げ
られることから生産性の点で利点を有し、その工業的価
値は高い。
Furthermore, the biaxially oriented polyester film of the present invention has good film forming continuity and can increase the stretching ratio in the longitudinal direction, so it has advantages in terms of productivity, and its industrial value is high.

出 願 人 ダイアホイル株式会社Applicant: Diafoil Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)酸成分の80モル%以上がテレフタル酸、グリコ
ール成分の90モル%以上が1,4−シクロヘキサンジ
メタノールで構成されたポリエステルフィルムであって
、該フィルムの密度が1.220〜1.250g/cm
^3、複屈折率が0.010〜0.040であり、かつ
フィルム長手方向のヤング率が310〜400kg/m
m^2であることを特徴とする二軸配向ポリエステルフ
ィルム。
(1) A polyester film in which 80 mol% or more of the acid component is terephthalic acid and 90 mol% or more of the glycol component is 1,4-cyclohexanedimethanol, and the film has a density of 1.220 to 1.22%. 250g/cm
^3, the birefringence is 0.010 to 0.040, and the Young's modulus in the longitudinal direction of the film is 310 to 400 kg/m
A biaxially oriented polyester film characterized in that m^2.
JP20529389A 1989-08-08 1989-08-08 Biaxially oriented polyester film Pending JPH0367630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20529389A JPH0367630A (en) 1989-08-08 1989-08-08 Biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20529389A JPH0367630A (en) 1989-08-08 1989-08-08 Biaxially oriented polyester film

Publications (1)

Publication Number Publication Date
JPH0367630A true JPH0367630A (en) 1991-03-22

Family

ID=16504572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20529389A Pending JPH0367630A (en) 1989-08-08 1989-08-08 Biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JPH0367630A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6848360B2 (en) 2002-04-30 2005-02-01 Miyakoshi Printing Machinery Co., Ltd. Form dampening roller driving apparatus
JP2008524396A (en) * 2004-12-16 2008-07-10 イーストマン ケミカル カンパニー Biaxially stretched copolyester film and laminate comprising copper
WO2017209218A1 (en) * 2016-05-31 2017-12-07 大日本印刷株式会社 Battery packaging material, production method therefor, battery, and polyester film
WO2019167815A1 (en) * 2018-03-02 2019-09-06 三菱ケミカル株式会社 Biaxially oriented film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6848360B2 (en) 2002-04-30 2005-02-01 Miyakoshi Printing Machinery Co., Ltd. Form dampening roller driving apparatus
JP2008524396A (en) * 2004-12-16 2008-07-10 イーストマン ケミカル カンパニー Biaxially stretched copolyester film and laminate comprising copper
KR20220025279A (en) * 2016-05-31 2022-03-03 다이니폰 인사츠 가부시키가이샤 Battery packaging material, production method therefor, battery, and polyester film
CN109219898A (en) * 2016-05-31 2019-01-15 大日本印刷株式会社 Battery use packing material and its manufacturing method, battery and polyester film
KR20190013806A (en) * 2016-05-31 2019-02-11 다이니폰 인사츠 가부시키가이샤 Packing material for battery, production method thereof, battery, and polyester film
JPWO2017209218A1 (en) * 2016-05-31 2019-04-04 大日本印刷株式会社 Packaging material for battery, method for producing the same, battery, and polyester film
JP2021193666A (en) * 2016-05-31 2021-12-23 大日本印刷株式会社 Battery packaging material, production method therefor, battery, and polyester film
WO2017209218A1 (en) * 2016-05-31 2017-12-07 大日本印刷株式会社 Battery packaging material, production method therefor, battery, and polyester film
US11370160B2 (en) 2016-05-31 2022-06-28 Dai Nippon Printing Co., Ltd. Battery packaging material, production method therefor, battery, and polyester film
CN114725589A (en) * 2016-05-31 2022-07-08 大日本印刷株式会社 Battery packaging material, method for producing same, battery, and polyester film
JP2023011590A (en) * 2016-05-31 2023-01-24 大日本印刷株式会社 Package material for battery, manufacturing method thereof, battery, and polyester film
US11707880B2 (en) 2016-05-31 2023-07-25 Dai Nippon Printing Co., Ltd. Battery packaging material, production method therefor, battery, and polyester film
WO2019167815A1 (en) * 2018-03-02 2019-09-06 三菱ケミカル株式会社 Biaxially oriented film
JPWO2019167815A1 (en) * 2018-03-02 2021-03-04 三菱ケミカル株式会社 Biaxially stretched film

Similar Documents

Publication Publication Date Title
TWI633993B (en) Polyester film
US20130123459A1 (en) Heat setting optical films
JPS62135801A (en) Uniaxially highly oriented film comprising polyethylene naphthalate for polarizing plate
JPS62135338A (en) Monoaxially high-orientated film of polyethylene-naphthalate for liquid crystal panel substrate
JP2009288395A (en) Optical film having optical anisotropy and method for manufacturing the same
JP2001329078A (en) Releasing film
JPH0367630A (en) Biaxially oriented polyester film
JPH1017683A (en) Polyester film for large-sized molded transfer foil
JP3852979B2 (en) Polyester film for transfer foil
JP2611421B2 (en) Method for producing polyester film
JP3316900B2 (en) Polyester film molding method
KR20160116702A (en) Polyester and manufacturing method thereof
JP2569471B2 (en) Method for producing toughened polyester film
JP2788775B2 (en) Method for producing biaxially stretched polyester film
JPH0367629A (en) Biaxially oriented polyester film for molding
JP2010013569A (en) Longitudinally monoaxially oriented polyethylene naphthalate film and method for producing the same
JPH0196641A (en) Biaxial oriented polyester film for photoresist
JPH02130125A (en) Production of polyester film
JPH03215B2 (en)
JPH0516258A (en) Heat-treating method of polyester film
JP2555707B2 (en) Process for producing polyethylene 2,6-naphthalate film
JPH03161319A (en) Manufacture of biaxially-oriented polyester film
JPS6374622A (en) Production of film
JPH02270532A (en) Manufacture of law shrinkable polyester film
JPS6360731A (en) Preparation of biaxially oriented polyethylene-2,6-naphthalate film having high strength in longitudinal direction