JPH0367466A - Seal structure for solid electrolyte fuel cell - Google Patents

Seal structure for solid electrolyte fuel cell

Info

Publication number
JPH0367466A
JPH0367466A JP1202646A JP20264689A JPH0367466A JP H0367466 A JPH0367466 A JP H0367466A JP 1202646 A JP1202646 A JP 1202646A JP 20264689 A JP20264689 A JP 20264689A JP H0367466 A JPH0367466 A JP H0367466A
Authority
JP
Japan
Prior art keywords
section
seal
sealing
solid electrolyte
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1202646A
Other languages
Japanese (ja)
Inventor
Tatsuo Kahata
達雄 加幡
Satoshi Uchida
聡 内田
Sumio Moriguchi
森口 澄夫
Katsumi Nagata
勝巳 永田
Hiroshi Tsukuda
洋 佃
Tatsuro Miyazaki
達郎 宮崎
Yoshiaki Inoue
好章 井上
Katsuhiko Takita
勝彦 田北
Toyoaki Ono
小野 豊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1202646A priority Critical patent/JPH0367466A/en
Publication of JPH0367466A publication Critical patent/JPH0367466A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To continue the gas sealing function for a long period by coating a filler on the lower layer of a seal section, and coating a liquid seal agent on the surface of the seal section for sealing. CONSTITUTION:A fuel cell is constituted of a power generating section 1 consisting of a fuel electrode 2, a solid electrolyte 3 and an oxygen electrode 4 and an inner connector section 8. A filler is coated on the lower layer of a seal section, and a liquid seal agent is coated on the surface of the seal section for the seal structure of either a connection section between the power generating section 1 and a power generating section support structure body 7 or a connection section between the inner connector section 8 and an inner connector section support structure body 12 in this fuel cell. Gas sealing can be surely performed, and the gas sealing function can be continued for a long period.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解質燃料電池の高温がスシール部の構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a high-temperature seal portion of a solid electrolyte fuel cell.

本発明は固体電解質電解装置や固体電解質酸素センサー
等の固体電解質のイオノ導電性を利用する機器全般に利
用できる。
The present invention can be used in general devices that utilize the ionoconductivity of solid electrolytes, such as solid electrolyte electrolyzers and solid electrolyte oxygen sensors.

〔従来の技術〕[Conventional technology]

平板形の固体電解質燃料電池は、例えば第4図に示すよ
うな構造となる0発電部1は、燃料電極2、固体電解質
(以下電解質という)3釦よび酸素電極4の3層の固体
層を接合積層した構造となる0発電部1は、燃料流路5
と酸素流路6とにはさまれ、燃料電極側は燃料流路を通
る燃料に、酸素電極側は酸素流路を通る酸素あるいは空
気に曝される位置に配置される。発電部1の縁は1発電
部支持構造体7で、支持される。固体電解質燃料電池は
、発電部1を直列あるいは並列に複数個接合して発電ユ
ニットを構成することが多い。複数の発電部1を接合す
る場合は、隣接する発電部10間に電気を導通する機能
と燃料流路5を流れる燃料と酸素流路6を流れる酸素あ
るいは空気との2種のガスを隔離する機能とを有するイ
ンタコネクタ部8を設ける。インタコネクタ部8は燃料
流路渡り部9.ガス隔離部10.釦よび酸素流路渡シ部
1ノで構成される。ガス隔離部10は縁部でインタコネ
クタ部支持構造体12で支持される。
A flat plate solid electrolyte fuel cell has a structure as shown in FIG. The power generation unit 1 having a bonded and laminated structure has a fuel flow path 5.
and the oxygen flow path 6, and is placed at a position where the fuel electrode side is exposed to the fuel passing through the fuel flow path, and the oxygen electrode side is exposed to oxygen or air passing through the oxygen flow path. The edges of the power generation section 1 are supported by a power generation section support structure 7. In solid electrolyte fuel cells, a power generation unit is often constructed by connecting a plurality of power generation sections 1 in series or in parallel. When a plurality of power generation sections 1 are connected, the function is to conduct electricity between adjacent power generation sections 10 and to isolate two types of gases: fuel flowing through the fuel flow path 5 and oxygen or air flowing through the oxygen flow path 6. An interconnector section 8 having the following functions is provided. The interconnector section 8 includes a fuel flow path crossing section 9. Gas isolation section 10. It consists of a button and an oxygen flow path crossing section. The gas separator 10 is supported at the edges by an interconnect support structure 12 .

燃料と酸素あるいは空気と會隔離する部分の接合部には
ガスシールの機能を持つ材料・接合法を用いる必要があ
る。第4図の例では発電部1と発電部支持構造体7との
間の接合部、インタコネクタ(がス隔離部)J(+とイ
ンタコネクタ部支持構造体12との間の接合部1発電部
支持構造体7とインタコネクタ部支持構造体12との間
の接合部、が、ガスシール機能を必要とする接合部に該
当する。
It is necessary to use materials and bonding methods that have a gas sealing function for the joints of the parts that isolate the fuel and oxygen or air. In the example shown in FIG. The joint between the interconnector support structure 7 and the interconnector support structure 12 corresponds to a joint that requires a gas sealing function.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

固体電解質燃料電池は800℃〜1100℃の高温で運
転されることが多い。高温で運転されかつ酸化雰囲気に
曝されるため発電部支持構造体7およびインタコネクタ
部支持構造体12には金属を用いることが困難で、酸化
物系セラミックスの焼結体を用いることが多い。筐た発
電部1の構造的骨格を形成する電解質3は、例えばイツ
トリア安定化シリコニアのような酸化物系セラミックス
であることが多い。また、インクコネクタ(ガス隔離部
)10には例えばランタンクロマイト(LaCrO3)
のような電子導電性を持つセラミックスを用いることが
多い。この場合、ガスシールの機能を要する接合部は異
種セラミックス相互間の接合となる。
Solid electrolyte fuel cells are often operated at high temperatures of 800°C to 1100°C. Since they are operated at high temperatures and exposed to an oxidizing atmosphere, it is difficult to use metal for the power generation section support structure 7 and the interconnector section support structure 12, and sintered bodies of oxide ceramics are often used. The electrolyte 3 forming the structural framework of the power generating section 1 is often an oxide-based ceramic such as yttria-stabilized siliconia. In addition, the ink connector (gas isolation part) 10 is made of, for example, lanthanum chromite (LaCrO3).
Ceramics with electronic conductivity, such as , are often used. In this case, the joint that requires a gas sealing function is a joint between different types of ceramics.

各々のセラミックス材料は、熱膨張率が必ずしも一致し
てkらず、また、運転状態では温度の不均一も生じ得る
ので、部品により熱膨張による伸びは異なる。熱膨張の
異なるセラミックスを剛に接合すると、部材内に熱応力
が発生し1発電部1が破損するかそれがある。そのため
、接合部では。
Each ceramic material does not necessarily have the same coefficient of thermal expansion, and non-uniformity in temperature may occur during operating conditions, so elongation due to thermal expansion differs depending on the component. If ceramics having different thermal expansions are rigidly joined, thermal stress will be generated within the members and the power generation section 1 may be damaged or damaged. Therefore, at the joint.

変位拘束をできるだけ少なくするようにすることが望ま
しい。
It is desirable to minimize displacement constraints as much as possible.

第4図の例での発電部縁のシール部13、インタコネク
タ部縁のシール部14、支持構造体相互間のシール部1
5のような接合部ではガス・シールの機能を有し、かつ
変位拘束のできるだけ少ないような接合材料接合法を採
用する必要がある。
In the example shown in FIG. 4, the seal portion 13 on the edge of the power generation section, the seal portion 14 on the edge of the interconnector portion, and the seal portion 1 between the supporting structures
For joints such as No. 5, it is necessary to adopt a joining method using a joining material that has a gas sealing function and minimizes displacement restriction as much as possible.

従来の構造としては、接合部にセラミックス接着剤を塗
布し焼付ける構造がとられているがセラミックス接着剤
は、焼付ける時に多孔質体になるために、変位拘束は比
較的弱くなり、がスシールの機能は十分ではない。
The conventional structure is to apply ceramic adhesive to the joint and bake it, but since ceramic adhesive becomes porous when baked, displacement restraint is relatively weak, making it difficult to seal. function is not sufficient.

また、接合部に釉薬を塗布する方法もとられることがあ
るが、釉薬はガラス系の材料で運転温度付近では溶融し
、運転時には液体となる。そのため変位拘束はほとんど
なくがスシールの機能もすぐれているが、長時間使用し
ているうちに流失してガスシール機能をそこなう訃それ
がある。また、液体となるので、滴下するような場所に
は使用できず、水平面内での接合に限られる。
Alternatively, a method of applying glaze to the joint may be used, but the glaze is a glass-based material that melts near the operating temperature and becomes liquid during operation. Therefore, there is almost no displacement restriction and the gas seal function is excellent, but there is a risk that the gas seal function will be lost due to water loss after long-term use. Also, since it is a liquid, it cannot be used in places where it will drip, and is limited to joining in a horizontal plane.

他方電解質の板は製造時にうねり波うちが生ずることが
あり、液体シール単独使用の場合、1面程度以上の大き
なすき壕があると液体シール剤の溶融液膜が破断し、が
スシールの機能を維持することができなくなるかそれが
ある。そのため電解質の板のうねり波うちを液膜破断が
生じない8度に抑えることが必要となり、を解質板製造
時の品質管理基準を高めたり、平坦度金玉げるための矯
5正工程を追加することが必要になる。
On the other hand, electrolyte plates may cause undulations during manufacturing, and if a liquid seal is used alone, if there is a large groove on one side or more, the molten liquid film of the liquid sealant will break and the seal will no longer function. It may become impossible to maintain it. Therefore, it is necessary to suppress the undulation of the electrolyte plate to 8 degrees, which does not cause liquid film breakage, and to improve the quality control standards when manufacturing the electrolyte plate, and to improve the flatness of the plate. It will be necessary to add.

また、燃料ガスと、酸素または空気ガスとの間に差圧が
あると液体シール剤が吹き飛びやすく、運転時に差圧を
最小限に抑えるような制御が必要となる。
Further, if there is a pressure difference between the fuel gas and oxygen or air gas, the liquid sealant is likely to be blown away, and control to minimize the pressure difference during operation is required.

本発明はこれらの問題を解決する燃料電池のシール構造
を提供することを目的とする。
An object of the present invention is to provide a seal structure for a fuel cell that solves these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る固体電解質燃料電池のシール構造は。 The seal structure of the solid electrolyte fuel cell according to the present invention is as follows.

(1)燃料電極2と固体電解質3と酸素電極4からなる
発電部1とインタコネクタ部81に具備する燃料電池に
おいて1発電部1と発電部支持構造体7の接合部訃よび
インタコネクタ部8とインタコネクタ部支持構造体12
の接合部のいずれかのシール構造としてシール部の下層
には充填剤を塗布し、シール部の表面には液体シール剤
t−塗布することによυシールすることを%徴とする。
(1) In a fuel cell equipped with a power generation section 1 consisting of a fuel electrode 2, a solid electrolyte 3, and an oxygen electrode 4, and an interconnector section 81, the junction between the power generation section 1 and the power generation section support structure 7 and the interconnector section 8 and interconnector support structure 12
As a sealing structure for any of the joints, a filler is applied to the lower layer of the sealing part, and a liquid sealant is applied to the surface of the sealing part to form a seal.

(2)前記(1)の固体電解質燃料電池のシール構造に
おいて、シール部に充填剤と液体シール剤を予め混合し
て塗布することによりシールすることを特徴とする。
(2) The solid electrolyte fuel cell seal structure of (1) above is characterized in that sealing is achieved by applying a mixture of a filler and a liquid sealant to the seal portion in advance.

(3)前記(1)又は(2)の固体電解質燃料電池のシ
ール構造において、充填剤には多孔質の接着剤を使用し
、液体シール剤には釉薬および高温運転時に液体状にな
る金属のいずれかを使用することを特徴とする。
(3) In the seal structure of the solid electrolyte fuel cell described in (1) or (2) above, a porous adhesive is used as the filler, and a glaze and a metal that becomes liquid during high-temperature operation are used as the liquid sealant. It is characterized by the use of either.

(4)前記(3)の固体電解質燃料電池のシール構造に
おいて、接合部のシール構造として、液体シール剤を保
持するための液体溜めを設けることを特徴とする。
(4) In the seal structure for a solid electrolyte fuel cell as described in (3) above, the seal structure for the joint portion is characterized in that a liquid reservoir for holding a liquid sealant is provided.

〔作用〕[Effect]

(1)第2図に示すようにセラミックス接着剤のような
多孔質の充填剤は、焼きつけられると、多孔質の骨格と
なり、接合部の比較的大きなすき間を埋める。釉薬のよ
うな液体シール剤は、常温では粉状の固体で、充填剤の
表層あるいは内部に存在している。運転時に800℃〜
1100℃程度の高温にすると、液体シール剤が溶融し
、充填剤骨格の細孔に浸透し1表層を埋める。そこで両
者を併用することにより骨格が多孔質であるので接合部
の変位拘束は比較的弱くなう、各部品の破損を防止し、
液体シール剤が多孔質骨格の細孔を埋めるので、液体シ
ール剤単独使用の場合と同様にガスシールの機能を確保
できる。筐た。多孔質骨格が、液体シール剤の担持体と
して機能するので、液体シール剤の流失が抑制されるの
で長時間の使用み耐えるようになる。また、担持体があ
るために、鉛直な接合線に対しても適用てきる。
(1) As shown in FIG. 2, when a porous filler such as a ceramic adhesive is baked, it becomes a porous skeleton and fills a relatively large gap in the joint. A liquid sealant such as a glaze is a powdery solid at room temperature, and exists on the surface or inside the filler. 800℃~ during operation
When the temperature is raised to a high temperature of about 1100° C., the liquid sealant melts, penetrates into the pores of the filler skeleton, and fills the first surface layer. Therefore, by using both together, since the skeleton is porous, the displacement restraint of the joint is relatively weak, preventing damage to each part,
Since the liquid sealant fills the pores of the porous skeleton, the gas sealing function can be ensured in the same way as when the liquid sealant is used alone. It was a cabinet. Since the porous skeleton functions as a carrier for the liquid sealant, the liquid sealant is prevented from flowing away, so that it can be used for a long time. Furthermore, since there is a carrier, it can also be applied to vertical joining lines.

(2)  がスシールを必要とする接合部すなわち発電
部縁のシール部、インタコネクタ部縁のシール部、及び
支持構造体相互間のシール部に、それぞれ液体溜めを設
け、常温の状態で、各液体溜めに、ガラス系釉薬あるい
は常温では固体であるが運転温度付近で溶融し液体とな
る金属を液体シール剤として充填するため運転時には液
体シール剤が溶融し、液体溜めを満たし、毛細管現象に
よりがスシールを必要とする接合部のすき11−埋めが
スシールの機能を持つようになる。そして、液体溜めが
あることによう液体シール剤が安定に保持され。
(2) Liquid reservoirs are provided at the joints where seals are required, that is, the seals at the edges of the power generation section, the seals at the edges of the interconnector, and the seals between the supporting structures, and each The liquid reservoir is filled with a glass-based glaze or a metal that is solid at room temperature but melts and becomes liquid near the operating temperature as a liquid sealant. During operation, the liquid sealant melts and fills the liquid reservoir, causing capillary action. Filling the gap 11 at a joint that requires a seal has the function of a seal. The presence of the liquid reservoir ensures that the liquid sealant is stably retained.

また燃料ガスと酸素あるいは空気がスとの間の差圧変動
等によシすき筐の液体シール剤が一時的に喪失しても、
毛細管現象により液体溜めからすきまに自動的に液体シ
ール剤が補給され、長時間にわたって良好ながスシール
機能全維持することができる。
In addition, even if the liquid sealant in the casing is temporarily lost due to fluctuations in the differential pressure between the fuel gas and oxygen or air,
Liquid sealing agent is automatically replenished from the liquid reservoir into the gap due to capillary action, making it possible to maintain good sealing function over a long period of time.

また、運転時には、発電部等と発電部支持構造体等との
間が液体シール剤を介して接触するため、発電部等と発
電部支持構造体等との間の変位拘束はほとんどない。そ
のため熱膨張率の異なる材料の使用が可能になる。
Furthermore, during operation, since the power generation section and the power generation section support structure and the like come into contact via the liquid sealant, there is almost no displacement restriction between the power generation section and the power generation section support structure and the like. This allows the use of materials with different coefficients of thermal expansion.

〔実施例〕〔Example〕

本発明の実施例を第1図〜第3図に示す。 Examples of the present invention are shown in FIGS. 1 to 3.

第1図は本発明の第1実施例を示す。第1図にかいて電
解質3は1例えばイツトリア安定化ジルフェアの厚さ0
.01〜1m程度の板である。電解質3と発電部支持構
造体7との間等のがスシール機能を必要とする接合部に
は、本発明のシール構造が適用できる。シール部の下層
にはセラミックス接着剤のような充填材を焼きつけて製
造する多孔質骨格16がある。骨格を製造するのに使用
する接着剤はできるだけ電解質3や発電部支持構造体7
と熱膨張率が近いことが望ましい。多孔質骨格16の表
層にはガラス系釉薬のような液体シール剤17を塗布す
る。この液体シール剤17は運転時には溶融して、多孔
質骨格160表層及び内部に浸透し、担持される。
FIG. 1 shows a first embodiment of the invention. In Figure 1, the electrolyte 3 is 1, for example, the thickness of yttria-stabilized silphea is 0.
.. The board is about 0.01 to 1 m long. The seal structure of the present invention can be applied to joints that require a sealing function, such as between the electrolyte 3 and the power generation part support structure 7. The lower layer of the sealing portion has a porous skeleton 16 manufactured by baking a filler such as a ceramic adhesive. The adhesive used to manufacture the skeleton should be as close to the electrolyte 3 and the power generation part support structure 7 as possible.
It is desirable that the coefficient of thermal expansion is close to that of A liquid sealant 17 such as a glass glaze is applied to the surface layer of the porous skeleton 16. This liquid sealant 17 melts during operation, penetrates into the surface layer and inside of the porous skeleton 160, and is supported.

本発明の第2実施例を第3図に示す。it電解質は例え
ばイツトリア安定化ジルコニア(イツトリア比率7〜1
0mo1%程度のもの)の厚さ0.O1〜1++ll+
程度の板である。i解質3と発電部支持構造体7との間
、インタコネクタ(ガス隔離部)10とインタコネクタ
部支持構造体12との間及び発電部支持構造体7とイン
タコネクタ部支持構造体12との間のがスシールを必要
とする接合部には、本発明のシール方法が適用できる。
A second embodiment of the invention is shown in FIG. The it electrolyte is, for example, an ittria stabilized zirconia (ittria ratio 7 to 1).
Thickness of about 0mo1%) is 0. O1~1++ll+
It is a board of about. i Between the solute 3 and the power generation part support structure 7, between the interconnector (gas isolation part) 10 and the interconnector part support structure 12, and between the power generation part support structure 7 and the interconnector part support structure 12. The sealing method of the present invention can be applied to joints that require a seal between the two.

シール部には各々液体溜め16,17.18f設ける。Liquid reservoirs 16, 17, and 18f are provided in the seal portions, respectively.

液体溜めの形状は浅く広いことが望筐しい。例えばシー
ル部の濡れ級長が200鴎程度の場合は。
It is desirable that the shape of the liquid reservoir be shallow and wide. For example, if the wettability length of the seal part is about 200 mm.

深さ1〜2 m 、幅3〜10m8度の矩形溝形の液体
溜めを設けるとよい。また、第3園の例の発電部支持構
造体7とインタコネクタ支持構造体12との間の接合部
のように印籠形のはめ合いと液体溜めとを兼ねる場合に
は、凹部と凸部とのすき筐を1〜2mとシ液体溜めとす
るとよい。液体シール剤の初期充填量は、溶融時に液体
溜めを満たし、ガスシールを必要とするすきまを埋める
のに十分な量とする。
It is preferable to provide a rectangular groove-shaped liquid reservoir with a depth of 1 to 2 m and a width of 3 to 10 m and 8 degrees. In addition, when the joint between the power generation unit support structure 7 and the interconnector support structure 12 in the example of the third garden serves both as an inro-shaped fitting and a liquid reservoir, the concave portion and the convex portion It is best to make the space for the liquid reservoir 1 to 2 meters long. The initial filling amount of liquid sealant is sufficient to fill the liquid reservoir when melted and fill any gaps requiring gas sealing.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように構成されているので、以下に記載
するような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

(1)固体電解質燃料電池のがスシールの機能を要する
接合部についてガスシールを確実に行うことができ接合
部での変位拘束が弱く発電部等の損*を誘発するかそれ
が少なく、がスシールの機能が長時間にわたって持続で
きるような接合を実施することができる。
(1) Solid electrolyte fuel cells can reliably perform gas sealing at joints that require a seal function, and the displacement restraint at the joints is weak, causing or minimizing damage to power generation parts, etc., and sealing is possible. It is possible to create a bond that allows the function of the device to continue for a long period of time.

(2)鉛直方向の接合線に対しても1本発明のシール方
法を適用することができるため、設計、部品製造過程で
の自由度が増す。例えば発電部支持構造体は、セラミッ
クスの複雑な成形品となるが、比較的単純な形状の部品
に分割して部品金製造し、その後本発明のシール方法を
適用して組立てるというような製造過8を採用すること
ができるようになる。
(2) Since the sealing method of the present invention can also be applied to vertical joining lines, the degree of freedom in the design and parts manufacturing process is increased. For example, the power generation part support structure is a complex ceramic molded product, but it can be manufactured by dividing it into parts with relatively simple shapes, manufacturing the parts, and then assembling them by applying the sealing method of the present invention. 8 can be adopted.

(3)  vtL解質の板の製造時のうねり波うちによ
るすきまは数tlIIIiで許容できるようになシミ解
質の板の生産工程の簡略化と歩留まbの向上をはかるこ
とができる。
(3) The gap due to undulating waves during the manufacture of vtL solute plates can be tolerated at several tlIIIi, thereby simplifying the production process of stain solute plates and improving the yield b.

(4)接合される部品相互間は液体シール剤を介して接
触するだけであるので、変位拘束がほとんどなく熱膨張
率の異なる材料をそれぞれに使用することができるよう
になる。例えば、電解質には。
(4) Since the parts to be joined come into contact only through the liquid sealant, there is almost no displacement restriction, and materials with different coefficients of thermal expansion can be used for each part. For example, electrolytes.

導電特性に優れるイツ) IJア安定化ジルコニア(イ
ツトリア比率7〜10 mo1%程度のもの、熱膨張率
約10 X 10”” Vm℃)、インタコネクタ(ガ
ス@離部)には耐酸化・還元雰囲気特性に優れるランタ
ンクロマイト(LaCrO31熱膨張率約10 X 1
0−6m/m℃)、支持構造体には、強度・加工性によ
び原料粉の経済性に優れるアルミナ(熱膨張率約7 X
 10””m/m ℃) 、というような材料の組合せ
を選定することができるようになシ、全体として電気特
性経済性に優れる固体電解質燃料電池を構成できる。
IJA-stabilized zirconia (with a ratio of about 7 to 10 mo1%, thermal expansion coefficient of about 10 x 10" Vm℃), oxidation-resistant and reduction-resistant for interconnectors (gas @ isolated parts) Lanthanum chromite (LaCrO31 thermal expansion coefficient of approximately 10 x 1
0-6m/m℃), and the support structure is made of alumina (coefficient of thermal expansion of approximately 7
By being able to select a combination of materials such as 10"" m/m (°C), it is possible to construct a solid electrolyte fuel cell that has excellent electrical properties and economy as a whole.

(5)接合部のすき筐の液体シール剤が破断しても、液
体溜めから液体シール剤が毛細管現象により自動的に補
給されるという自己修復機能があるために、長時間のシ
ール持続機能がありシールを要する縁の長尺化もできる
ようになシ、設計製作運転維持上の自由度を増すことが
できる。
(5) Even if the liquid sealant in the joint gap casing breaks, it has a self-repairing function in which liquid sealant is automatically replenished from the liquid reservoir by capillary action, so the seal can be maintained for a long time. The edges that require dovetail sealing can be made longer, increasing the degree of freedom in design, manufacturing, operation and maintenance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す図、第2図は第1実
施例のシール部の断面模式図、第3図は本発明の第2実
施例金示す図、第4図は従来のシール方法を示す図であ
る。 1・・・発電部、2・・・燃料電極、3・・・電解質、
4・・・酸素電極、5・・・燃料流路、6・・・酸素流
路27・・・発電部支持構造体、8・・・イ/タコネク
タ部、9・・・インタコネクタ(燃料流路渡υ部)、1
0・・・インタコネクタ(ガス隔離部)、11・・・イ
ンタコネクタ(酸素流路渡り部)、12・・・インタコ
ネクタ部支持構造体、13・・・発電部数のシール邪、
14・・・インタコネクタ部数のシール部、15・・・
支持構造体相互間のシール部、16・・・シール部の多
孔質骨格、17・・・シール部の液体シール剤表層、1
16・・・発電部数のシール部の液体溜め、117・・
・インタコネクタ部数のシール部の液体溜め、118・
・・支持°構造体相互間のシール部の液体溜め、1 9・・・液 体シール剤。
Fig. 1 is a diagram showing the first embodiment of the present invention, Fig. 2 is a schematic cross-sectional view of the seal portion of the first embodiment, Fig. 3 is a diagram showing the second embodiment of the invention, and Fig. 4 is a diagram showing the seal portion of the first embodiment. FIG. 3 is a diagram showing a conventional sealing method. 1... Power generation section, 2... Fuel electrode, 3... Electrolyte,
4...Oxygen electrode, 5...Fuel flow path, 6...Oxygen flow path 27...Power generation part support structure, 8...I/interconnector part, 9...Interconnector (fuel flow Michiwata υbe), 1
0... Interconnector (gas isolation part), 11... Interconnector (oxygen flow path crossing part), 12... Interconnector part support structure, 13... Seal for the number of power generation parts,
14... Seal portion of the number of interconnectors, 15...
Sealing portion between supporting structures, 16... Porous skeleton of sealing portion, 17... Liquid sealant surface layer of sealing portion, 1
16...Liquid reservoir in the seal part of the power generation unit, 117...
・Liquid reservoir of seal part of interconnector part, 118・
...Liquid reservoir in the sealing part between supporting structures, 19...Liquid sealing agent.

Claims (4)

【特許請求の範囲】[Claims] (1)燃料電極(2)と固体電解質(3)と酸素電極(
4)からなる発電部(1)とインタコネクタ部(8)を
具備する燃料電池において、 発電部(1)と発電部支持構造体(7)の接合部および
インタコネクタ部(8)とインタコネクタ部支持構造体
(12)の接合部のいずれかのシール構造として、 シール部の下層には充填剤を塗布し、シール部の表面に
は液体シール剤を塗布することによりシールすることを
特徴とする固体電解質燃料電池のシール構造。
(1) Fuel electrode (2), solid electrolyte (3) and oxygen electrode (
4) In a fuel cell comprising a power generation section (1) and an interconnector section (8), the joint section between the power generation section (1) and the power generation section support structure (7) and the interconnector section (8) and the interconnector section. The sealing structure for any of the joints of the support structure (12) is characterized in that a filler is applied to the lower layer of the sealing part, and a liquid sealing agent is applied to the surface of the sealing part to achieve sealing. Seal structure for solid electrolyte fuel cells.
(2)シール部に充填剤と液体シール剤を予め混合して
塗布することによりシールすることを特徴とする請求項
(1)記載の固体電解質燃料電池のシール構造。
(2) The sealing structure for a solid electrolyte fuel cell according to claim (1), wherein the sealing is performed by mixing a filler and a liquid sealant in advance and applying the mixture to the sealing portion.
(3)充填剤には多孔質の接着剤を使用し、液体シール
剤には釉薬および高温運転時に液体状になる金属のいず
れかを使用することを特徴とする請求項(1)又は(2
)記載の固体電解質燃料電池のシール構造。
(3) A porous adhesive is used as the filler, and either a glaze or a metal that becomes liquid during high-temperature operation is used as the liquid sealant.
) Seal structure of the solid electrolyte fuel cell described.
(4)接合部のシール構造として、液体シール剤を保持
するための液体溜めを設けることを特徴とする請求項(
3)記載の固体電解質燃料電池のシール構造。
(4) Claim (4) characterized in that a liquid reservoir for holding a liquid sealant is provided as the seal structure of the joint part (
3) Seal structure of the solid electrolyte fuel cell described.
JP1202646A 1989-08-04 1989-08-04 Seal structure for solid electrolyte fuel cell Pending JPH0367466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202646A JPH0367466A (en) 1989-08-04 1989-08-04 Seal structure for solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202646A JPH0367466A (en) 1989-08-04 1989-08-04 Seal structure for solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH0367466A true JPH0367466A (en) 1991-03-22

Family

ID=16460794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202646A Pending JPH0367466A (en) 1989-08-04 1989-08-04 Seal structure for solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH0367466A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174658A (en) * 2003-12-09 2005-06-30 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2007323957A (en) * 2006-05-31 2007-12-13 Dainippon Printing Co Ltd Solid oxide fuel cell, and its manufacturing method
US7569298B2 (en) 2001-06-08 2009-08-04 Toyota Jidosha Kabushiki Kaisha Separator seal structure for a fuel cell
JP2012182069A (en) * 2011-03-02 2012-09-20 Ngk Spark Plug Co Ltd Solid oxide fuel cell
JP2018032514A (en) * 2016-08-24 2018-03-01 本田技研工業株式会社 Fuel cell stack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569298B2 (en) 2001-06-08 2009-08-04 Toyota Jidosha Kabushiki Kaisha Separator seal structure for a fuel cell
JP2005174658A (en) * 2003-12-09 2005-06-30 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2007323957A (en) * 2006-05-31 2007-12-13 Dainippon Printing Co Ltd Solid oxide fuel cell, and its manufacturing method
JP2012182069A (en) * 2011-03-02 2012-09-20 Ngk Spark Plug Co Ltd Solid oxide fuel cell
JP2018032514A (en) * 2016-08-24 2018-03-01 本田技研工業株式会社 Fuel cell stack

Similar Documents

Publication Publication Date Title
JP3775436B2 (en) Solid electrolyte fuel cell
JP2006236980A (en) Sealing method of solid electrolyte fuel cell
JP2005183376A (en) Fuel cell assembly
JP5985769B2 (en) Fuel cell stack structure
JP3495654B2 (en) Cell tube seal structure
JP2021527298A (en) Solid oxide fuel cell stack with low leakage unit cells
JPH0367466A (en) Seal structure for solid electrolyte fuel cell
JP2019515415A (en) Solid oxide fuel cell
JP5475682B2 (en) Sealed flexible link between metal substrate and ceramic substrate, method of forming the link, application of the method to a sealed high-temperature electrolytic cell and a fuel cell
JP2013143188A (en) Manufacturing method of cell tube for solid electrolyte fuel cell
JP6043455B1 (en) Fuel cell stack structure
ATE179283T1 (en) FUEL CELL WITH CERAMIC COATED BIPOLAR PLATES AND THEIR PRODUCTION
JP6134048B1 (en) Manifold and fuel cell stack structure
JPH06215782A (en) Supporter of solid electrolytic fuel cell
ES2361565T3 (en) SOLID BOARD OBTAINED THROUGH THERMAL PROJECTION.
JP2621863B2 (en) Molten carbonate fuel cell
JP6043456B1 (en) Fuel cell stack structure
JPH08124591A (en) Manufacture of solid electrolyte type fuel cell
JP6640360B2 (en) Gasket for molten carbonate fuel cell with oxide-based electrolyte migration barrier layer formed
CN100429803C (en) Electrolyte creepage birrier for liquid electrolyte fuel cells
JPH04272663A (en) Supporting body solid electrolyte fuel cell
JP5925399B1 (en) Fuel cell stack structure
JPH01124964A (en) Flat plate type solid electrolyte fuel cell
JP2771578B2 (en) Solid electrolyte fuel cell
JP3105717B2 (en) Flat electrolyte fuel cell