JPH0367461A - Manufacture of electrode for laminated battery - Google Patents

Manufacture of electrode for laminated battery

Info

Publication number
JPH0367461A
JPH0367461A JP1204306A JP20430689A JPH0367461A JP H0367461 A JPH0367461 A JP H0367461A JP 1204306 A JP1204306 A JP 1204306A JP 20430689 A JP20430689 A JP 20430689A JP H0367461 A JPH0367461 A JP H0367461A
Authority
JP
Japan
Prior art keywords
plastic plate
electrode
insulating frame
carbon plastic
insert injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1204306A
Other languages
Japanese (ja)
Inventor
Yasuo Ando
保雄 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1204306A priority Critical patent/JPH0367461A/en
Publication of JPH0367461A publication Critical patent/JPH0367461A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To strengthen the engagement between a carbon plastic plate and an insulating frame by insert injection-molding the insulating frame on the carbon plastic plate while insert injection molding dies are heated in a specific temperature range. CONSTITUTION:Injection molding dies 31 and 32 insert injection-molding a carbon plastic plate 27 and an insulating frame 28 are constituted controllably at a constant temperature. The temperature of dies 31 and 32 at the time of injection molding is kept at 70-90 deg.C. The frame 28 is insert injection-molded around the plastic plate 27 in the constant-temperature state of dies 31 and 32. In an intermediate electrode 23 formed by such a means, the melting property between the peripheral section of the plastic plate 27 and the insulating frame 28 is improved, an electrolyte is prevented from being leaked from a biting portion, and the binding strength at this portion is improved.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は積層構造の電池に用いる電極のインサート射
出成型による製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a method for manufacturing electrodes for use in batteries with a laminated structure by insert injection molding.

B0発明の概要 本発明は、積層構造の電池用電極の製造方法において、 インサート射出成型金型を約70℃〜約90℃にした状
態でカーボンプラスチック板に絶縁枠を射出成形するこ
とにより、 かみつき部分の水密を確実にした電極を製造するように
したものである。
B0 Summary of the Invention The present invention is a method for manufacturing a battery electrode having a laminated structure, by injection molding an insulating frame on a carbon plastic plate with an insert injection mold at a temperature of about 70°C to about 90°C. The electrode is manufactured to ensure that the part is watertight.

C1従来の技術 近時、電池電力貯蔵システムの開発が促進されており、
その−環として第2図乃至第6図に例示する如き電解液
循環型金属ハロゲン積層二次電池が開発されている。
C1 Conventional technology Recently, the development of battery power storage systems has been promoted.
As a part of this, electrolyte circulation type metal halogen stacked secondary batteries as illustrated in FIGS. 2 to 6 have been developed.

これは、主に電池本体、タンク及び配管系で構成するも
のであり、第2図の構成原理図に示すように、電池本体
1をイオン交換膜または多孔質膜からなるセパレータ2
で陽極室3と陰極室4とに区画し、この両極室にそれぞ
れ電解液を循環させるための送波管5,6と返液管7.
8により接続された電解液タンク9.lOを設け、臭化
亜鉛(Z n B r 2)の電解液をそれぞれの電極
室に循環させるようにしたものである。尚、11は陽極
、12は陰極、13.14は共に送液ポンプ、15は弁
である。
This mainly consists of a battery body, a tank, and a piping system, and as shown in the structural principle diagram in Figure 2, the battery body 1 is separated by a separator 2 made of an ion exchange membrane or a porous membrane.
The anode chamber 3 and the cathode chamber 4 are divided into an anode chamber 3 and a cathode chamber 4, and there are wave transmitting tubes 5, 6 and a liquid return tube 7 for circulating the electrolyte in the two electrode chambers, respectively.
Electrolyte tank connected by 8 9. 1O was provided, and an electrolytic solution of zinc bromide (Z n B r 2) was circulated to each electrode chamber. In addition, 11 is an anode, 12 is a cathode, 13 and 14 are both liquid feeding pumps, and 15 is a valve.

しかして、充電時には、電解液が図の矢印の方向に循環
し、陰極12ではZn”+2e−−Zn、陽極11では
2Br−−+Br” +2eの反応を生じ、陽極11で
生成された臭素は分子となり、電解液中に混じり、一部
溶解し、大部分は陽極液中の錯化剤によって錯化物とな
り、陽極室側の電解液タンクlO内に沈澱して蓄積され
る。又、放電時には、電解液が循環した状態で各電極1
1,12ではそれぞれ前記反応式と逆の反応を生じ、析
出物(Zn、Br、)  が各電極11.12上で消費
(酸化、還元)され、電気エネルギーが放出されるよう
にしたものである。
During charging, the electrolytic solution circulates in the direction of the arrow in the figure, and the reaction of Zn"+2e--Zn occurs at the cathode 12 and 2Br--+Br"+2e at the anode 11, and the bromine produced at the anode 11 is It becomes a molecule, mixes in the electrolyte, partially dissolves, and mostly becomes a complex with the complexing agent in the anolyte, and is precipitated and accumulated in the electrolyte tank IO on the anode chamber side. Also, during discharge, each electrode 1 is connected with the electrolyte circulating.
1 and 12, a reaction opposite to the above reaction formula occurs, and the precipitates (Zn, Br,) are consumed (oxidized, reduced) on each electrode 11.12, and electrical energy is released. be.

また、上述のような構成原理の亜鉛−臭素電池には、第
3図に例示するような積層電池の要素として多数のセル
積層構造のスタックが用いられている。これは、スタッ
ク全体を両側端からボルト。
Further, in the zinc-bromine battery having the above-mentioned construction principle, a stack of a large number of cell laminated structures is used as an element of a laminated battery as illustrated in FIG. This bolts the entire stack from both ends.

ナツト等を用いて挟むように押さえるための一対の締付
端板16.16と、そのそれぞれ、の内側に配置する押
さえ部材である積層端板17,17との間に、例えば3
0セル積層して構成する。すなわち、一方の外部電気系
と接続するカーボンプラスチックの端板電極18の集電
メツシュ19の次にパツキン20を介してセパレータ板
21を重ね、所定間隔保持用のスペーサメツシュ22を
重ね、カーボンプラスチック製平板中間電極23を重ね
、さらにパツキン20を重ねるといった順序で積層し、
最後に他方の外部電気系と接続するカーボンプラスチッ
ク製端板電極18を重ねて、バイポーラ接続とし、全体
で30セル積層する如く構成する。
For example, there is a
Constructed by stacking 0 cells. That is, a separator plate 21 is placed next to the current collection mesh 19 of the end plate electrode 18 made of carbon plastic connected to one external electrical system via a gasket 20, a spacer mesh 22 for maintaining a predetermined distance is placed, and the carbon plastic The flat plate intermediate electrodes 23 are stacked, and the packing 20 is stacked, and so on.
Finally, the carbon plastic end plate electrode 18 connected to the other external electrical system is overlapped to form a bipolar connection, so that a total of 30 cells are laminated.

このように積層構成したスタックには、その四隅角部に
流液孔である正極マニホールド24と負極マニホールド
25とを穿設する。
A positive electrode manifold 24 and a negative electrode manifold 25, which are liquid flow holes, are provided at the four corners of the stack thus laminated.

また、各セパレータ板21は、微多孔質膜より成るセパ
レータ2の周囲に枠板21aを一体成形して構成したも
ので、その両手面部上下にはそれぞれ表裏対称形状にマ
イクロチャンネル26を設置して成る。この−側面の実
線で示すマイクロチャンネル26は、それぞれ対角線上
の正極マニホールド24から導入した電解液を均一に広
げてセパレータ2の全面に流し、又はこれより液を回収
する。また、他側面の破線で示すマイクロチャンネル2
6は、負極マニホールド25からの電解液を導入9回収
するものである。
Furthermore, each separator plate 21 is constructed by integrally molding a frame plate 21a around the separator 2 made of a microporous membrane, and microchannels 26 are installed in a symmetrical shape on both sides of the upper and lower sides of the separator plate 21. Become. The microchannels 26 shown by solid lines on the negative side of the microchannels 26 uniformly spread the electrolytic solution introduced from the positive electrode manifold 24 on the diagonal line and flow it over the entire surface of the separator 2, or collect the solution therefrom. In addition, the microchannel 2 shown by the broken line on the other side
6 is for introducing and recovering the electrolytic solution from the negative electrode manifold 25.

このようにして、各セパレータ板21の両側面部にそれ
ぞれ配置された電極との間において、第2図に例示した
単位電池となるセルを構成し、スタックとしては、この
セルが30個直列接続されるよう構成するものである。
In this way, between the electrodes arranged on both side surfaces of each separator plate 21, cells that become the unit battery illustrated in FIG. 2 are constructed, and 30 of these cells are connected in series to form a stack. It is configured so that

また上述のようなスタックの中間電極23は、第4図に
例示するように導電性を有するカーボンプラスチック板
27の周囲にプラスチック製絶縁枠28を射出成形して
構成していた。
The intermediate electrode 23 of the stack as described above was constructed by injection molding a plastic insulating frame 28 around a conductive carbon plastic plate 27, as illustrated in FIG.

この中間電極23の製造に当たっては、まずカ−ボンプ
ラスチック平板材を電極の寸法形状に切断してカーボン
プラスチック板27を形成し、これをインサートとして
射出成型金型内に入れ、溶融プラスチック材を射出し、
第5図に例示するように、カーボンプラスチック板27
の周囲が全周均等な幅で絶縁枠28内に入り込む、いわ
ゆるかみつき部分で結合するようにして、第4図にも示
す如く一体形成するようにしていた。
In manufacturing this intermediate electrode 23, first, a carbon plastic plate 27 is formed by cutting a carbon plastic flat plate material into the dimensions and shape of the electrode, and this is placed in an injection mold as an insert, and the molten plastic material is injected. death,
As illustrated in FIG. 5, the carbon plastic plate 27
As shown in FIG. 4, they are integrally formed so that they are joined at a so-called hooked portion that extends into the insulating frame 28 with a uniform width all around the circumference.

D0発明が解決しようとする課題 上述のような従来の中間電極23では、カーボンプラス
チック板27の周縁部を、絶縁枠28で内包するように
モールドした部分(いわゆるかみつき部分)の溶着かう
まくいかず、このかみつき部分に隙間を生じ易い。
D0 Problems to be Solved by the Invention In the conventional intermediate electrode 23 as described above, the welding of the part (so-called biting part) where the peripheral edge of the carbon plastic plate 27 is molded so as to be enclosed by the insulating frame 28 is not successful. , this biting part tends to create a gap.

このようなかみつき部分に隙間があるような中間電極を
用いて電池を構成すると、この中間電極23で分離隔絶
している陽極電解液と、陰極電解液とが、この中間電極
23の表面側又は裏面側に流れ込んで混ざり合う液絡を
生じ、電池性能が低下してしまうという問題があった。
When a battery is constructed using such an intermediate electrode with a gap in the biting part, the anode electrolyte and the cathode electrolyte, which are separated by the intermediate electrode 23, are separated from each other by the surface side of the intermediate electrode 23 or the catholyte electrolyte. There was a problem in that a liquid junction was formed in which the liquids flowed into the back side and mixed, resulting in a decrease in battery performance.

本発明は、上述の点に鑑み、カーボンプラスチック板の
周側部と絶縁枠とが確実に溶着するようにする積層電池
の電極の製造方法を新たに提供することを目的とする。
In view of the above-mentioned points, it is an object of the present invention to provide a new method for manufacturing an electrode for a laminated battery, in which the peripheral side of a carbon plastic plate and an insulating frame are reliably welded together.

81課題を解決するための手段 本発明の積層電池の電極の製造方法は、カーボンプラス
チック板に絶縁枠をインサート射出成形するための射出
成型用金型を、加熱して約70℃〜約90℃にした状態
で、インサート射出成形加工を実行するようにしたこと
を特徴とする。
81 Means for Solving the Problems The method for manufacturing an electrode for a laminated battery of the present invention is to heat an injection mold for insert injection molding an insulating frame into a carbon plastic plate to about 70°C to about 90°C. The insert injection molding process is performed in this state.

10作用 上述のような方法によることにより絶縁枠用のプラスチ
ック材が射出成形用金型内に射出された際、これが金型
によってあまり冷やされないうちにカーボンプラスチッ
ク板に到達し、このカーボンプラスチック板のかみつき
部分を十分に溶かすようにして確実強固に溶着せしめる
ようにするという作用を奏する。
10 Effects By using the method described above, when the plastic material for the insulating frame is injected into the injection mold, it reaches the carbon plastic plate before it is cooled down by the mold, and the carbon plastic plate is heated. It has the effect of sufficiently melting the biting part to ensure a strong weld.

G、実施例 以下、本発明の積層電池の電極の製造方法の一実施例を
第1図によって説明する。
G. Example Hereinafter, an example of the method for manufacturing an electrode for a laminated battery according to the present invention will be described with reference to FIG.

なお、この第1図において、第2図乃至第6図に示す従
来例に対応する部分には同一符号を付すこととし、その
詳細な説明を省略する。
In FIG. 1, parts corresponding to the conventional example shown in FIGS. 2 to 6 are denoted by the same reference numerals, and detailed explanation thereof will be omitted.

第1図の要部縦断面図で、27はカーボンプラスチック
板、28は絶縁枠、31及び32は一対のインサート射
出成型用金型である。
In the main part longitudinal sectional view of FIG. 1, 27 is a carbon plastic plate, 28 is an insulating frame, and 31 and 32 are a pair of insert injection molds.

このカーボンプラスチック板27と絶縁枠28とは、同
質の樹脂材を用いる。本例では、カーボンプラスチック
板27を、熱可塑性樹脂にカニボンブラック、グラファ
イト等の材料を混合して構成したものであり、絶縁枠2
8は、そのカーボンプラスチック板27と同一の熱可塑
性樹脂によって構成するものとする。
The carbon plastic plate 27 and the insulating frame 28 are made of the same resin material. In this example, the carbon plastic plate 27 is made of thermoplastic resin mixed with materials such as crabbon black and graphite, and the insulating frame 2
8 is made of the same thermoplastic resin as the carbon plastic plate 27.

また、このようなカーボンプラスチック板27に絶縁枠
28をインサート射出成形する射出成型用金型31.3
2を、恒温制御可能に構成する。
In addition, an injection mold 31.3 for insert injection molding an insulating frame 28 into such a carbon plastic plate 27 is provided.
2 is configured to be capable of constant temperature control.

そして、本例では、射出成形時の金型31.32の温度
を70℃〜90℃に保持するようにする。
In this example, the temperature of the molds 31 and 32 during injection molding is maintained at 70°C to 90°C.

この金型恒温状態で、第1図に示すように、カ−ボンプ
ラスチック板27の周囲に絶縁枠28をインサート射出
成形する。
While the mold is kept at a constant temperature, an insulating frame 28 is inserted and injection molded around the carbon plastic plate 27, as shown in FIG.

このような手段で形成した中間電極23は、カーボンプ
ラスチック板27の周側部と絶縁枠28との間の溶着性
が向上し、このかみつき部分から電解液が漏れ交流する
ことを防止し、この部分の結合強度を向上できるもので
ある。
The intermediate electrode 23 formed by such a method improves the weldability between the peripheral side of the carbon plastic plate 27 and the insulating frame 28, prevents the electrolyte from leaking from this biting part, and prevents this. This can improve the bonding strength of the parts.

次に、本例手段の効果を確認するため、金型温度を種々
に変更し、そのかみつき部分の結合強度を測定した試験
結果を以下に示す。
Next, in order to confirm the effect of the means of this example, the mold temperature was variously changed and the bond strength of the biting portion was measured. The test results are shown below.

(以下余白) 上記表より、金型温度を70’C以上にすると、カーボ
ンプラスチック板27と絶縁枠28との結合を一段と強
固にできることが理解される。
(The following is a blank space) From the above table, it is understood that when the mold temperature is set to 70'C or higher, the bond between the carbon plastic plate 27 and the insulating frame 28 can be further strengthened.

さらに、金型温度を100’cにすると、カーボンプラ
スチック板27が変形してしまうため製品としての使用
に耐えなくなってしまうので、不適当であることが理解
される。
Furthermore, it is understood that setting the mold temperature to 100'C is inappropriate because the carbon plastic plate 27 is deformed and cannot be used as a product.

よって、金型温度約70℃〜約90’Cで十分な結果が
得られることがわかる。なお、好ましくは、金型温度を
80℃〜85℃にするもので、このようにすることによ
り、安定した品質を得られる。
Therefore, it can be seen that sufficient results can be obtained at a mold temperature of about 70°C to about 90'C. Preferably, the mold temperature is set at 80° C. to 85° C. By doing so, stable quality can be obtained.

H9発明の効果 以上詳述したように、本発明の積層電池の電極の製造方
法によれば、カーボンプラスチック板に絶縁枠をインサ
ート射出成形するための射出成型用金型を、加熱して約
70℃〜約90℃にした状態で、インサート射出成形加
工を実行するようにしたので、絶縁枠用のプラスチック
材が射出成形用金型内に射出された際、これが金型によ
ってあまり冷やされないうちにカーボンプラスチック板
に到達し、このカーボンプラスチック板のかみつき部分
を十分に溶かすようにして確実強固に溶着するので、こ
のかみつき部分の水密を確実とし、その結合強度を向上
するという効果がある。
Effects of the H9 Invention As detailed above, according to the method for manufacturing an electrode for a laminated battery of the present invention, an injection mold for insert injection molding an insulating frame into a carbon plastic plate is heated for about 70 minutes. Since the insert injection molding process was performed at a temperature of ℃ to approximately 90℃, when the plastic material for the insulating frame was injected into the injection mold, the plastic material was cooled before it was cooled down by the mold. It reaches the carbon plastic plate and sufficiently melts the biting part of the carbon plastic plate to securely and firmly weld it, which has the effect of ensuring the watertightness of the biting part and improving the bonding strength.

さらに、電極のカーボンプラスチック板と、絶縁枠との
間のかみつき部分の水密の信頼性が向上することにより
、この電極を電池に用いた場合にこの電極によって隔絶
される陰極電解液と陽極電解液とが、かみつき部分を通
じて交流するのを防止し、電池の性能を長期に渡って安
定して保持でき、その信頼性を向上できるという効果が
ある。
Furthermore, by improving the reliability of the watertightness of the interlocking part between the carbon plastic plate of the electrode and the insulating frame, when this electrode is used in a battery, the catholyte and anolyte electrolyte that are separated by this electrode are This has the effect of preventing alternating current through the biting part, stably maintaining the performance of the battery over a long period of time, and improving its reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の積層電池の電極の製造方法の一実施例
を説明するための、インサート射出成型状態の要部を示
す縦断面図、第2図は従来の電池の原理を示す概略説明
線図、第3図はその電池の要素であるスタック部分の分
解斜視図、第4図はその中間電極の正面図、第5図はそ
の縦断面図、第6図はその要部の拡大縦断面図である。 23・・・中間電極、27・・・カーボンプラスチック
板、28・・・絶縁枠、31.32・・・射出成型用金
型。 外2名 第3図 要部分解斜視図 0 7a 3 2】 8 6 電極の正面図 第1図 要部縦断面図 概略説明線図 第5図 電極の縦断面図 要部拡大断面図
Fig. 1 is a vertical cross-sectional view showing the main part of the insert injection molding state for explaining one embodiment of the method for manufacturing electrodes for a laminated battery according to the present invention, and Fig. 2 is a schematic explanation showing the principle of a conventional battery. Figure 3 is an exploded perspective view of the stack part that is an element of the battery, Figure 4 is a front view of the intermediate electrode, Figure 5 is a vertical cross-sectional view, and Figure 6 is an enlarged vertical cross-section of the main parts. It is a front view. 23... Intermediate electrode, 27... Carbon plastic plate, 28... Insulating frame, 31.32... Injection mold. Figure 3: Disassembled perspective view of essential parts 0 7a 3 2] 8 6 Front view of electrode Figure 1: Longitudinal sectional view of essential parts Schematic explanatory diagram Figure 5: Longitudinal sectional view of electrode Enlarged sectional view of essential parts

Claims (1)

【特許請求の範囲】[Claims] (1)インサート射出成型金型を約70℃〜約90℃に
した状態で、カーボンプラスチック板に絶縁枠をインサ
ート射出成形するようにしたことを特徴とする積層電池
の電極の製造方法。
(1) A method for producing an electrode for a laminated battery, characterized in that an insulating frame is insert-injected molded onto a carbon plastic plate while an insert injection molding mold is heated to about 70°C to about 90°C.
JP1204306A 1989-08-07 1989-08-07 Manufacture of electrode for laminated battery Pending JPH0367461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1204306A JPH0367461A (en) 1989-08-07 1989-08-07 Manufacture of electrode for laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1204306A JPH0367461A (en) 1989-08-07 1989-08-07 Manufacture of electrode for laminated battery

Publications (1)

Publication Number Publication Date
JPH0367461A true JPH0367461A (en) 1991-03-22

Family

ID=16488299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1204306A Pending JPH0367461A (en) 1989-08-07 1989-08-07 Manufacture of electrode for laminated battery

Country Status (1)

Country Link
JP (1) JPH0367461A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080339A3 (en) * 2000-02-17 2003-01-03 Nedstack Holding B V Production of pem fuel cell stacks
JP2005109289A (en) * 2003-10-01 2005-04-21 Nichia Chem Ind Ltd Light-emitting device
US20170040496A1 (en) * 2013-06-28 2017-02-09 Koninklijke Philips N.V. Light emitting diode device
CN107112491A (en) * 2014-10-06 2017-08-29 Eos能源储存有限责任公司 For bi-polar electrochemical battery or the set of terminal component of battery pack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080339A3 (en) * 2000-02-17 2003-01-03 Nedstack Holding B V Production of pem fuel cell stacks
JP2005109289A (en) * 2003-10-01 2005-04-21 Nichia Chem Ind Ltd Light-emitting device
US20170040496A1 (en) * 2013-06-28 2017-02-09 Koninklijke Philips N.V. Light emitting diode device
US10038122B2 (en) * 2013-06-28 2018-07-31 Lumileds Llc Light emitting diode device
CN107112491A (en) * 2014-10-06 2017-08-29 Eos能源储存有限责任公司 For bi-polar electrochemical battery or the set of terminal component of battery pack

Similar Documents

Publication Publication Date Title
US4382113A (en) Method for joining graphite to graphite
US20040202915A1 (en) Cell frame for redox-flow cell and redox-flow cell
EP0267270B1 (en) Battery
US4615108A (en) Process for the manufacture of bipolar electrodes and separators
JP2000200619A (en) Redox battery
CN105027340B (en) For the bipolar plate of fuel cell, fuel cell and method for manufacturing bipolar plate
CN102136609A (en) Laser welding method and device for battery component with bipolar structure
CN117594823B (en) Spliced liquid flow frame plate assembly and preparation method thereof
JPH0367461A (en) Manufacture of electrode for laminated battery
US7220512B2 (en) Separator plate for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
CN116845273A (en) Laser stacking welding process for flow battery and welding assembly thereof
KR890002063B1 (en) A partially fabricated electrochemical cell element
US5716733A (en) Method for producing a nondetachable, fluid-tight, and gastight connection between a plate stack and a lateral component of an electrochemical battery and for spacing electrode plates, as well as an electrochemical battery
CN113540495B (en) Flow frame structure of flow battery and side surface packaging method thereof
JPH0572477B2 (en)
JP2789687B2 (en) Method for manufacturing collector electrode of laminated battery
JPH02148580A (en) Electrolyte circulation layer-built cell
JPS6158159A (en) Secondary battery
JP2522029B2 (en) Method for manufacturing end plate electrode in liquid circulation type laminated battery
CN219106196U (en) Single cell, fuel cell stack and fuel cell
JPH04249062A (en) Manufacture of layer-built cell
JP3161149B2 (en) Peripheral sealing method of zinc-bromine battery
JP2024048219A (en) Cell stack and redox flow battery
JPH0648760Y2 (en) Electrode circulation type laminated battery electrode plate
JP2024048221A (en) Cell stack manufacturing method