JPH0367228B2 - - Google Patents

Info

Publication number
JPH0367228B2
JPH0367228B2 JP3070284A JP3070284A JPH0367228B2 JP H0367228 B2 JPH0367228 B2 JP H0367228B2 JP 3070284 A JP3070284 A JP 3070284A JP 3070284 A JP3070284 A JP 3070284A JP H0367228 B2 JPH0367228 B2 JP H0367228B2
Authority
JP
Japan
Prior art keywords
phase
line voltage
signal
current
sent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3070284A
Other languages
Japanese (ja)
Other versions
JPS60174958A (en
Inventor
Teruo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3070284A priority Critical patent/JPS60174958A/en
Publication of JPS60174958A publication Critical patent/JPS60174958A/en
Publication of JPH0367228B2 publication Critical patent/JPH0367228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Phase Differences (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電力が供給される負荷の力率を測定
する装置に係り、特に力率が遅相によるのか進相
によるのかを判定する位相判定装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a device for measuring the power factor of a load to which electric power is supplied, and in particular to a phase determination device for determining whether the power factor is due to a lagging phase or a leading phase. Regarding equipment.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電力が供給される負荷の力率改善は、負荷すな
わち電気設備の見直し、改善施策における重点項
目の一つであり、実際には進相用コンデンサを用
いて力率改善が行なわれている。ところで電気設
備に用いられる従来の力率測定装置は電力受電端
つまり三相3線式電源の受電端で測定するのが主
であつたのに対し、現在の力率測定装置は低圧系
統における力率改善の必要性により単相電源およ
び三相3線式電源での両方の力率を測定する共用
形のものが必要となつている。
Improving the power factor of a load to which electric power is supplied is one of the important items in reviewing and improving the load, that is, electrical equipment, and in practice power factor improvement is performed using a phase advance capacitor. By the way, conventional power factor measuring devices used in electrical equipment mainly measured power at the power receiving end, that is, the receiving end of a three-phase, three-wire power source, whereas current power factor measuring devices measure power in low-voltage systems. The need for power factor improvement has created a need for a dual-purpose version that measures power factor in both single-phase and three-phase three-wire power supplies.

このような共用形の装置では、力率値が遅れ力
率が進み力率かを判別する場合、電圧と負荷電流
との位相角のずれにより判別する方法が一般的と
なつている。しかし電源が単相と三相3線式とで
は電圧(線間電圧)と負荷電流との位相がそれぞ
れ異なるため従来の装置では、位相判定回路をそ
れぞれ単相用と三相3線式用との2つに設けて測
定したり、また、単相および三相3線式に応じて
操作者が外部の切換手段などを操作して測定して
いる。このため、装置の構成が複雑となり、また
取扱いが不便となるなどしていた。さらに位相判
定に用いる負荷電流は、負荷の変動によりその電
流値が小さくなることがあり、これにより位相判
定に誤差を生ずることがあつた。
In such shared type devices, when determining whether the power factor value is lagging and the power factor is leading, it has become common to use a method of determining based on the phase angle difference between the voltage and the load current. However, the phase of the voltage (line voltage) and load current is different between single-phase and three-phase three-wire power supplies, so in conventional equipment, phase determination circuits are used for single-phase and three-phase three-wire systems, respectively. Alternatively, an operator may operate an external switching means depending on the single-phase or three-phase three-wire system. For this reason, the configuration of the device becomes complicated and handling becomes inconvenient. Furthermore, the current value of the load current used for phase determination may decrease due to load fluctuations, which may cause errors in phase determination.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に基づいてなされたもので、
電源が単相、三相のいずれであつても、かつ負荷
電流が小さくても自動的にしかも正確に位相の進
み、遅れを判定し得る位相判定装置を提供するこ
とを目的とする。
The present invention was made based on the above circumstances, and
It is an object of the present invention to provide a phase determination device capable of automatically and accurately determining phase lead or lag regardless of whether the power source is single-phase or three-phase and the load current is small.

〔発明の概要〕[Summary of the invention]

本発明は、単相電源か三相電源かを判別する単
相三相判別部から送出される判別信号により信号
切換部は、単相電源の場合前記単相の電圧の線間
電圧信号をその位相を変えずに送出し、かつ三相
電源の場合三相のうちの所定の線間電圧の線間電
圧信号を所定の位相角だけ位相して送出し、この
送出された線間電圧信号と所定の相電流の相電流
信号とに基づいて判定部により遅相が進相かを判
定するようにした位相判定装置である。
In the present invention, in response to a discrimination signal sent from a single-phase three-phase discriminator for discriminating between a single-phase power source and a three-phase power source, the signal switching section changes the line voltage signal of the single-phase voltage in the case of a single-phase power source. The line voltage signal of a predetermined line voltage of the three phases is sent out without changing the phase, and in the case of a three-phase power supply, the line voltage signal of a predetermined line voltage of the three phases is sent out with a predetermined phase angle. This is a phase determination device in which a determining unit determines whether a lagging phase is a leading phase based on a phase current signal of a predetermined phase current.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係る位相判定装置の一実施例に
ついて第1図ないし第4図を参照して説明する。
第1図は位相判定装置の構成図である。第1図に
おいてV(P12)は第1相と第2相間の線間電圧、
V(P32)は第3相と第2相間の線間電圧であつ
て、これら線間電圧V(P12)、V(P32)は力率測
定装置における変圧部、交流部により動作可能な
電圧レベルに減衰されている。そして、線間電圧
V(P12)は、コンパレータ1により方形波形の第
1の線間電圧信号V12に変換されてから単相三相
判別部10に送られるとともに、信号切換部20
に送られるようになつており、また線間電圧V
(P32)は、コンパレータ2により方形波形の第2
の線間電圧信号V32に変換されて単相三相判定部
10に送られ、かつ信号切換部20の進相部21
に送られるようになつている。
An embodiment of the phase determination device according to the present invention will be described below with reference to FIGS. 1 to 4.
FIG. 1 is a block diagram of a phase determination device. In Fig. 1, V (P 12 ) is the line voltage between the first and second phases,
V (P 32 ) is the line voltage between the third phase and the second phase, and these line voltages V (P 12 ) and V (P 32 ) can be operated by the transformer section and AC section of the power factor measuring device. voltage level. The line voltage V (P 12 ) is converted by the comparator 1 into a first line voltage signal V 12 having a square waveform, and then sent to the single-phase and three-phase discriminator 10 .
The line voltage V
(P 32 ) is determined by comparator 2 as the second waveform of the square waveform.
The line voltage signal V 32 is converted into a line voltage signal V 32 and sent to the single-phase and three-phase determining section 10, and is sent to the phase advance section 21 of the signal switching section 20.
It is now being sent to

単相三相判別部10は、線間電圧信号V12およ
びV32により電源が単相か三相かを判別し、単相
ならば「H」レベル、三相ならば「L」レベルの
判別信号Gを送出する機能をもつたもので、その
判別は線間電圧信号V12,V32間の位相角の違い
により行なう。つまり単相および三相の線間電圧
V(P12)、V(P32)と第1相の相電流V(I1)とベ
クトルによつて示すと、単相2線式では第2図a
に示すように第1相と第2相間の線間電圧ベクト
ルV〓12と第1相の電流ベクトルI〓1とが同相となる。
なお、第3相と第2相間の線間電圧ベクトルV〓32
は、装置の線間電圧V(P32)の入力端子を線間電
圧V(P12)の入力端子に接続したものである。ま
た単相3線式では、第2図bに示すように線間電
圧ベクトルV〓12とV〓32との位相角が180度となり、
三相3線式では第2図cに示すような線間電圧ベ
クトルV〓12とV〓32との位相角が60度となる。なお、
I〓3は第3相の相電流ベクトルである。なお、この
第2図a,b,cは力率が1.0の場合である。し
たがつて、単相判別部10は、線間電圧V(P12
とV(P32)との間の位相差によつて単相か三相か
を判別する。
The single-phase three-phase discrimination unit 10 discriminates whether the power supply is single-phase or three-phase based on the line voltage signals V 12 and V 32 , and discriminates "H" level if it is single-phase and "L" level if it is three-phase. It has the function of sending out the signal G, and the discrimination is made based on the difference in phase angle between the line voltage signals V 12 and V 32 . In other words, when shown in terms of single-phase and three-phase line voltages V (P 12 ), V (P 32 ), first-phase phase current V (I 1 ), and vectors, in a single-phase two-wire system, Figure 2 a
As shown in , the line voltage vector V〓 12 between the first phase and the second phase and the current vector I〓 1 of the first phase are in phase.
In addition, the line voltage vector between the third phase and the second phase V〓 32
, the line voltage V (P 32 ) input terminal of the device is connected to the line voltage V (P 12 ) input terminal. In addition, in the single-phase three-wire system, the phase angle between the line voltage vectors V〓 12 and V〓 32 is 180 degrees, as shown in Figure 2b.
In a three-phase three-wire system, the phase angle between the line voltage vectors V〓 12 and V〓 32 is 60 degrees as shown in Fig. 2c. In addition,
I〓 3 is the phase current vector of the third phase. Note that FIG. 2 a, b, and c are for the case where the power factor is 1.0. Therefore, the single-phase discriminator 10 determines the line voltage V(P 12 )
It is determined whether the phase is single phase or three phase based on the phase difference between and V(P 32 ).

信号切換部20は、単相三相判別部10から送
出される判別信号Gが「H」レベルならば線間電
圧信号V12を送出し、かつ判別信号が「L」レベ
ルならば90度遅延した線間電圧V(P32)を第3の
線間電圧信号VSとして送出する機能をもつたも
ので、遅延部20aと切換部20bとから構成さ
れている。具体的に遅延部20aは、線間電圧V
(P32)の位相を90度進める進相部21、この進相
部21から出力される電圧を方形波形に変換する
コンパレータ22、このコンパレータ22から送
出される線間電圧信号V32を反転するインバータ
23から構成されている。切換部20bは、一端
に判別信号をゲート信号として入力し他端に線間
電圧信号V12を入力するアンドゲート24、一端
にインバータ25を介して判別信号Gをゲート信
号として入力し他端にインバータ23から送出さ
れる線間電圧信号VSを入力するアンドゲート2
6およびアンドゲート24,26を通つてくる線
間電圧信号V12,VSを通して判別部としてのD型
フリツプフロツプ30のデータ入力端子Dに送出
する。オアゲート27から構成されている。
The signal switching section 20 sends out the line voltage signal V 12 if the discrimination signal G sent from the single-phase three-phase discrimination section 10 is at "H" level, and if the discrimination signal is at "L" level, it is delayed by 90 degrees. It has a function of sending out the line voltage V (P 32 ) obtained as the third line voltage signal V S , and is composed of a delay section 20a and a switching section 20b. Specifically, the delay section 20a has a line voltage V
A phase advance section 21 advances the phase of (P 32 ) by 90 degrees, a comparator 22 converts the voltage output from this phase advance section 21 into a square waveform, and inverts the line voltage signal V 32 sent from this comparator 22 It is composed of an inverter 23. The switching unit 20b includes an AND gate 24 which inputs a discrimination signal as a gate signal at one end and a line voltage signal V12 at the other end, and an AND gate 24 which inputs a discrimination signal G as a gate signal through an inverter 25 at one end and inputs the line voltage signal V12 at the other end. AND gate 2 that inputs the line voltage signal V S sent out from the inverter 23
6 and the AND gates 24 and 26, the line voltage signals V 12 and V S are sent to the data input terminal D of a D-type flip-flop 30 serving as a discriminator. It is composed of an or gate 27.

一方、第1相の相電流V(I1)は、増幅部40
およびコンパレート50を介してフリツプフロツ
プ30のクロツク入力端子CKに入力されるよう
に構成されている。なお、増幅部40は演算増幅
部41、抵抗42,43から構成されている。
On the other hand, the phase current V (I 1 ) of the first phase is
It is configured to be input to the clock input terminal CK of the flip-flop 30 via the comparator 50. Note that the amplifying section 40 includes an operational amplifying section 41 and resistors 42 and 43.

次に上記の如く構成された装置の動作について
説明する。線間電圧V(P12)およびV(P32)は、
それぞれコンパレータ1,2により交流波形から
方形波形の線間電圧信号V12,V32に変換されて
単相三相判別部10に送られる。単相三相判別部
10は、入力した線間電圧信号V12,V32間の位
相角に基づいて単相か三相かを判別し、単相と判
別すれば「H」レベルの判別信号Gを送出し、ま
た三相と判別すれば「L」レベルのアナログゲー
トGを送出する。
Next, the operation of the apparatus configured as described above will be explained. The line voltages V(P 12 ) and V(P 32 ) are
The AC waveforms are converted into square waveform line voltage signals V 12 and V 32 by comparators 1 and 2, respectively, and sent to the single-phase and three-phase discriminator 10. The single-phase three-phase discrimination unit 10 discriminates whether the input line voltage signals V 12 and V 32 are single-phase or three-phase based on the phase angle between them. G is sent out, and if it is determined that the phase is three-phase, an analog gate G of "L" level is sent out.

そこで単相電源であれば「H」レベルの判別信
号Gによりアンドゲート24が開き、線間電圧信
号V12がアンドゲート24およびオアゲート27
を通つてフリツプフロツプ30のデータ入力端子
Dに送られる。なお、このときアンドゲート26
は、インバータ25により「H」レベルの判別信
号Gが反転するので閉となつている。
Therefore, in the case of a single-phase power supply, the AND gate 24 is opened by the "H" level discrimination signal G, and the line voltage signal V 12 is applied to the AND gate 24 and the OR gate 27.
The signal is sent to the data input terminal D of the flip-flop 30 through the data input terminal D of the flip-flop 30. In addition, at this time, AND gate 26
is closed because the "H" level discrimination signal G is inverted by the inverter 25.

また、三相電源であれば「L」レベルの判別信
号Gはインバータ25により反転されてアンドゲ
ート26に入力するのでアンドゲート26が開
く。そこで、線間電圧V(P32)は、進相部21に
より90度位相が進められコンパレータ22により
方形波形に変換され、さらにインバータ22によ
り反転されて線間電圧信号VS(つまり線間電圧V
(P32)の位相に対して90度遅れた位相の線間電圧
信号VS)としてアンドゲート26およびオアゲ
ート27を通つてフリツプフロツプ30のデータ
入力端子Dに送られる。
Further, in the case of a three-phase power supply, the "L" level discrimination signal G is inverted by the inverter 25 and input to the AND gate 26, so that the AND gate 26 is opened. Therefore, the phase of the line voltage V (P 32 ) is advanced by 90 degrees by the phase advance unit 21, converted into a square waveform by the comparator 22, and further inverted by the inverter 22 to become the line voltage signal V S (that is, the line voltage V
It is sent to the data input terminal D of the flip-flop 30 through an AND gate 26 and an OR gate 27 as a line voltage signal V S whose phase is delayed by 90 degrees with respect to the phase of (P 32 ).

一方、相電流V(I1)は、増幅部40により所
定のレベルに非反転増幅され、さらにコンパレー
タ50により方形波形の相電流信号I1に変換され
てフリツプフロツプ30のクロツク入力端子CK
に送られる。
On the other hand, the phase current V (I 1 ) is non-invertingly amplified to a predetermined level by the amplifier 40, and further converted into a square waveform phase current signal I 1 by the comparator 50, which is applied to the clock input terminal CK of the flip-flop 30.
sent to.

しかして、フリツプフロツプ30のデータ入力
端子Dおよびクロツク入力端子CKにそれぞれ入
力する線間電圧信号V12およびVSと相電流信号I1
との関係は、第3図a,bに示すようになる。な
お、第3図a,bは力率が1.0の場合を示してい
る。すなわち単相電源の場合は第3図aに示すよ
うに線間電圧ベクトルV〓12と相電流ベクトルI〓1
が同相となり、また三相3線式の場合も同様に第
3図bに示す如く線間電圧ベクトルV〓Sと相電流
ベクトルI〓1とが同相となる。つまり、三相3線式
では、第2図cに示す線間電圧ベクトルV〓32の位
相を90度だけ遅延すれば相電流ベクトルI〓1と同相
になる。
Thus, the line voltage signals V 12 and V S and the phase current signal I 1 are respectively input to the data input terminal D and clock input terminal CK of the flip-flop 30.
The relationship between the two is as shown in FIGS. 3a and 3b. Note that FIGS. 3a and 3b show the case where the power factor is 1.0. In other words, in the case of a single-phase power supply, the line voltage vector V〓 12 and the phase current vector I〓 1 are in phase, as shown in Figure 3a, and in the case of a three-phase, 3-wire system, as shown in Figure 3b. As shown, the line voltage vector V〓 S and the phase current vector I〓 1 are in phase. That is, in a three-phase, three-wire system, if the phase of the line voltage vector V〓 32 shown in Fig. 2c is delayed by 90 degrees, it becomes in phase with the phase current vector I〓 1 .

この結果、遅れ力率であれば、フリツプフロツ
プ30のデータ入力端子Dおよびクロツク入力端
子CKにそれぞれ入力する線間電圧信号V12,VS
および相電流信号I1の位相関係は、第4図aに示
すように相電流信号I1が線間電圧信号V12,VS
対して遅れることになり、フリツプフロツプ30
のQ出力端子からは、「H」レベルの信号が出力
される。
As a result, if the power factor is lagging, the line voltage signals V 12 and V S input to the data input terminal D and clock input terminal CK of the flip-flop 30, respectively.
The phase relationship between the phase current signal I 1 and the phase current signal I 1 is such that the phase current signal I 1 lags behind the line voltage signals V 12 and V S as shown in FIG.
An "H" level signal is output from the Q output terminal of.

一方進み力率であれば、線間電圧信号V12
V32の相電流信号との位相関係は、第4図bに示
すように相電流信号I1が線間電圧信号V12,VS
対して進むことになり、これによりフリツプフロ
ツプ30のQ出力端子からは「L」レベルの信号
が出力される。
On the other hand, if the power factor is leading, the line voltage signal V 12 ,
The phase relationship between V 32 and the phase current signal is such that the phase current signal I 1 advances with respect to the line voltage signals V 12 and V S as shown in FIG. An "L" level signal is output from the terminal.

このように本装置においては、単相三相判別部
10から送出される判別信号Gにより切換部20
bは、単相の場合コンパレータ1から出力される
線間電圧信号V12をフリツプフロツプ30のD入
力端子に送出し、かつ三相の場合遅延部20aに
より90度だけ位相を遅延して得た線間電圧信号
VSをフリツプフロツプ30のデータ入力端子D
に送出し、これら線間電圧V12,VSと相電流V
(I1)を変換して得た相電流信号I1との間の位相
の遅れ、進みによりフリツプフロツプ30の出力
端子Qから遅れの場合「H」レベルの信号、進み
の場合「L」レベルの信号を出力するので、電源
が単相、三相のいずれであつてもすなわち、単相
2線式、単相3線式、三相3線式のいずれであつ
ても自動的に遅相か進相かを判別し得る。そし
て、この判定にあつては、信号切換部20がフリ
ツプフロツプ30に送出する線間電圧信号V12
VSを切換えるだけなので、単相三相に関係なく
同一条件で判別ができる。したがつて本装置は、
従来のように単相用と三相用との位相判定回路を
それぞれを設けることもなく、また操作員が外部
の装置を操作することもなく、簡単な構成のもの
となつている。
In this way, in this device, the switching unit 20
b is a line obtained by sending the line voltage signal V 12 output from the comparator 1 to the D input terminal of the flip-flop 30 in the case of a single phase, and delaying the phase by 90 degrees by the delay unit 20a in the case of three phases. voltage signal
V S is the data input terminal D of flip-flop 30.
These line voltages V 12 , V S and phase current V
(I 1 ) obtained by converting the phase current signal I 1 , the output terminal Q of the flip-flop 30 outputs an "H" level signal in the case of a delay, and an "L" level signal in the case of a lead. Since the signal is output, whether the power supply is single-phase or three-phase, that is, whether it is single-phase two-wire, single-phase three-wire, or three-phase three-wire, the phase delay is automatically determined. It can be determined whether the phase is progressing or not. In this determination, the line voltage signals V 12 ,
Since it is only necessary to switch V S , discrimination can be made under the same conditions regardless of whether it is single phase or three phase. Therefore, this device:
Unlike the conventional system, there is no need to provide separate phase determination circuits for single-phase and three-phase use, and there is no need for an operator to operate an external device, resulting in a simple configuration.

また、相電流V(I1)は増幅部40により所定
レベルに増幅されるので、相電流V(I1)が小さ
くても位相の判別に影響を与えることはない。さ
らに増幅部40とコンパレータ50とにより、相
電流V(I1)の交流波形を方形波形に変換する際
の立上り、立下り時間の誤差を非常に小さくした
ので、負荷電流の変動に対しても正確に、かつ安
定して遅相、進相の判別ができる。
Furthermore, since the phase current V(I 1 ) is amplified to a predetermined level by the amplifier 40, even if the phase current V(I 1 ) is small, it does not affect the phase determination. Furthermore, the amplification section 40 and comparator 50 minimize errors in the rise and fall times when converting the alternating current waveform of the phase current V (I 1 ) into a square waveform, so that it can withstand fluctuations in the load current. It is possible to accurately and stably determine whether the phase is slow or fast.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、単相三相判別部から送出され
る判別信号に応じて信号切換部から線間電圧信号
を移相し、また移相せずに送出し、この線間電圧
信号と相電流信号との位相差に基づいて判別部に
より遅相か進相かを判別するので、電源が単相、
三相のいずれであつても、かつ負荷電流が小さく
ても自動的にしかも正確に位相の進み、遅れを判
別し得る位相判別装置を提供できる。
According to the present invention, the phase of the line voltage signal is shifted from the signal switching unit in accordance with the discrimination signal sent from the single-phase three-phase discrimination unit, and the line voltage signal is also sent out without phase shifting. Based on the phase difference with the current signal, the discriminator determines whether the phase is lagging or leading, so if the power supply is single-phase or
It is possible to provide a phase discrimination device that can automatically and accurately discriminate phase lead or lag even if the load current is small in any of the three phases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る位相判定装置の一実施例
を示す構成図、第2図a,b,cは線間電圧と相
電流との関係を示すベクトル図で、第2図aは単
相2線式のベクトル図、第2図bは単相3線式の
ベクトル図、第2図cは三相3線式のベクトル
図、第3図a,bは第1図に示すフリツプフロツ
プに入力する信号の一例を示すベクトル図、第4
図a,bは第1図に示すフリツプフロツプによる
判定の動作を説明するための図である。 1,2……コンパレータ、10……単相三相判
定部、20……信号切換部、20a……遅延部、
20b……切換部、21……進相部、22……コ
ンパレータ、23……インバータ、24,26…
…アンドゲート、25……インバータ、27……
オアゲート、40……増幅部、41……演算増幅
器、50……コンパレータ、30……D型フリツ
プフロツプ。
FIG. 1 is a block diagram showing an embodiment of the phase determination device according to the present invention, FIG. 2 a, b, and c are vector diagrams showing the relationship between line voltage and phase current, and FIG. Figure 2b is a vector diagram for a single-phase three-wire system, Figure 2c is a vector diagram for a three-phase three-wire system, and Figures 3a and b are for the flip-flop shown in Figure 1. Vector diagram showing an example of an input signal, 4th
Figures a and b are diagrams for explaining the determination operation by the flip-flop shown in Figure 1. 1, 2...Comparator, 10...Single-phase three-phase determination section, 20...Signal switching section, 20a...Delay section,
20b...Switching unit, 21...Phase advance unit, 22...Comparator, 23...Inverter, 24, 26...
...and gate, 25...inverter, 27...
OR gate, 40...amplifier, 41...operational amplifier, 50...comparator, 30...D-type flip-flop.

Claims (1)

【特許請求の範囲】[Claims] 1 線間電圧を変換し得られた少なくとも2つの
線間電圧信号の位相差により電源が単相か三相か
を判別する単相三相判別部と、この単相三相判別
部から送出される判別信号により前記電源が単相
であれば前記線間電圧信号のうち所定の線間電圧
信号を送出し、かつ前記電源が三相であれば前記
線間電圧信号のうち前記所定の信号とは別の所定
の線間電圧信号を所定の位相角だけ移相して送出
する信号切換部と、この信号切換部から送出され
る線間電圧信号と所定の相電流を増幅し変換して
得た相電流信号とに基づいて遅相か進相かを判定
する判定部とを具備したことを特徴とする位相判
定装置。
1. A single-phase three-phase discrimination unit that discriminates whether the power source is single-phase or three-phase based on the phase difference between at least two line-to-line voltage signals obtained by converting the line voltage, and a signal sent from the single-phase three-phase discrimination unit. If the power supply is single-phase, a predetermined line-to-line voltage signal is sent out, and if the power supply is three-phase, the predetermined line-to-line voltage signal is sent out. has a signal switching section that shifts another predetermined line voltage signal by a predetermined phase angle and sends it out, and a signal switching section that amplifies and converts the line voltage signal sent from this signal switching section and a predetermined phase current. A phase determining device comprising: a determining section that determines whether the phase is slow or fast based on the phase current signal.
JP3070284A 1984-02-21 1984-02-21 Phase decision apparatus Granted JPS60174958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3070284A JPS60174958A (en) 1984-02-21 1984-02-21 Phase decision apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3070284A JPS60174958A (en) 1984-02-21 1984-02-21 Phase decision apparatus

Publications (2)

Publication Number Publication Date
JPS60174958A JPS60174958A (en) 1985-09-09
JPH0367228B2 true JPH0367228B2 (en) 1991-10-22

Family

ID=12310983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3070284A Granted JPS60174958A (en) 1984-02-21 1984-02-21 Phase decision apparatus

Country Status (1)

Country Link
JP (1) JPS60174958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026226A1 (en) 1996-12-10 1998-06-18 Commissariat A L'energie Atomique Method for dynamic separation into two zones with a screen of clean air

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1182715C (en) 2000-09-25 2004-12-29 松下电器产业株式会社 Signal transmission system, signal transmitter, and signal receiver
JP4008688B2 (en) 2000-10-12 2007-11-14 松下電器産業株式会社 Signal transmitting apparatus and signal receiving apparatus
JP3648685B2 (en) 2001-01-30 2005-05-18 松下電器産業株式会社 Data transmission method and data transmission apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026226A1 (en) 1996-12-10 1998-06-18 Commissariat A L'energie Atomique Method for dynamic separation into two zones with a screen of clean air

Also Published As

Publication number Publication date
JPS60174958A (en) 1985-09-09

Similar Documents

Publication Publication Date Title
US5132610A (en) Digitizing power meter
US4777437A (en) Monitoring system for detecting quench of superconductive coils
GB1272262A (en) Detecting faults in electrical transmission lines
EP0372240A3 (en) Zero voltage crossover detector for polyphase systems
JP2661933B2 (en) Circuit for measuring the DC component of the current flowing through the primary winding of the output transformer of the inverter
JPH0367228B2 (en)
US4486706A (en) Power flow direction detector
US3745375A (en) Phase unbalance or open-phase detecting apparatus
JP3287121B2 (en) Voltage drop detection circuit
US4947109A (en) Detector of quantity of electricity
US3422362A (en) Phase detector with low ripple output near zero phase angle
GB1535124A (en) Control apparatus for responding to a fault current in a power transmission line
JPS6310535Y2 (en)
US4904925A (en) Apparatus for recovering an alternating variable of a controlled semiconductor
JPH0445789B2 (en)
JPS6229962B2 (en)
JPS5842691B2 (en) Houkou Kayden Sochi
JPS6259526B2 (en)
JPH0632788Y2 (en) Phase shift circuit for sine wave signal
KR20000003696A (en) Device for compensating current phase of input ac supply voltage
JPH0114546B2 (en)
JPS63304174A (en) Zero-phase current detecting method
JPS5917818A (en) Ground-fault phase detector
JPH10267968A (en) Ac power-supply voltage detecting method and three phase ac power-supply detecting circuit
JPS62181630A (en) Distribution line phase difference detection