JPH0366829B2 - - Google Patents

Info

Publication number
JPH0366829B2
JPH0366829B2 JP10207086A JP10207086A JPH0366829B2 JP H0366829 B2 JPH0366829 B2 JP H0366829B2 JP 10207086 A JP10207086 A JP 10207086A JP 10207086 A JP10207086 A JP 10207086A JP H0366829 B2 JPH0366829 B2 JP H0366829B2
Authority
JP
Japan
Prior art keywords
copper
plating
oxide film
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10207086A
Other languages
Japanese (ja)
Other versions
JPS62260389A (en
Inventor
Kanji Murakami
Akio Tadokoro
Haruo Akaboshi
Mineo Kawamoto
Motoyo Wajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10207086A priority Critical patent/JPS62260389A/en
Publication of JPS62260389A publication Critical patent/JPS62260389A/en
Publication of JPH0366829B2 publication Critical patent/JPH0366829B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はプリント配線板の製造方法に係り、特
に、化学めつきによりスルーホールを形成するの
に好適なプリント配線板の製造方法に関する。 〔従来の技術〕 従来より、スルーホールを有するプリント配線
板の製造方法として、銅張積層板を出発材料に用
い、孔および回路などの所望する部分以外を化学
めつきレジストでマスクし、化学めつきを行つた
後、めつきレジストを除去し、さらにめつきレジ
ストでマスクされていた部分の銅をエツチング除
去してプリント配線板を製造する方法がある。し
かし、単に上述した方法でプリント配線板を製造
しようとすると、化学めつきレジストがめつき中
に剥離して、パターン形成がうまくゆかないなど
の問題がある。この解決策として例えば特開昭57
−52196号公報に示されるような提案がなされて
いる。この提案は、プロセス上は本発明と多少異
るが、銅箔表面とめつきレジストとの密着性を向
上させるという点では一致している。上記公報中
には銅箔上に化学銅めつき層を形成し、次いで表
面粗化を行つたのち化学銅めつき層の表面を酸化
し酸化膜を形成させることによつてめつきレジス
トとの密着性を向上させる方法が記載されてい
る。この方法によればめつきレジストの剥離は概
ね解決されるように思われる。 〔発明が解決しようとする問題点〕 しかしながら、プリント配線板の微細化が進む
にしたがい、上述した方法では十分な効果が得ら
れなくなる。例えば、めつきレジストの幅が0.2
mm以下となるようなプリント配線板ではところど
ころめつきレジストが剥離してしまうという問題
がある。 本発明は上述した従来技術の欠点をなくし、銅
箔とめつきレジストとが良く密着して化学めつき
中に剥離することがなく、微細パターン形成が可
能なプリント配線板の製造方法を提供することを
目的とする。 〔問題点を解決するための手段〕 上記目的は、次に示す特徴を有する製造方法、
すなわち、銅張積層板の必要個所に孔をあけ、該
銅張積層板上の銅表面を粗化し、該粗化面に酸化
膜を形成した後該酸化膜表面に還元膜を形成し、
孔および回路の所望部分を除いて化学めつきレジ
ストを形成し、化学めつきを行い、めつきレジス
トを除去し、さらにめつきレジストでマスクされ
ていた部分の銅をエツチング除去してプリント配
線板を製造する方法において、上記酸化膜及び還
元形成に先立つて、上記粗化面上に化学めつきの
ための触媒を付与すること及び酸化膜形成処理液
として、亜塩素酸ナトリウム、リン酸ナトリウム
および水酸化ナトリウムを水に溶かした水溶液を
用いることによつて達成される。 〔作用〕 金属と有機物を接着させる場合、両者の間に酸
化膜を形成して接着させるとそれらの密着力が向
上することは従来より知られているが、この点に
ついて種々調べた結果、酸化膜が密着性を向上さ
せるのではなくて、酸化膜を形成する際に表面積
が増すことによつて機械的に密着力が増大すると
いう考えに到達した。すなわち、表面が酸化膜で
あろうと金属銅であろうと同等の表面積をもつよ
うに粗化されていれば同等の機械的な密着力をも
つであろうということである。 一方、銅箔上に比表面積の大きい酸化膜を形成
した場合、適当な条件でこの酸化膜を還元する
と、表面の微細な粗面形状をほとんど変えること
なく、いいかえれば表面積を大きく減ずることな
く金属銅に還元できることを見出した。このよう
にして得られた表面は金属銅であるので、通常の
酸やアルカリには安定である。しかしながら、酸
化膜を還元した後、再び酸性水溶液に接触させる
と水溶液の溶存酸素によつて一部分が酸化溶解し
てしまい、還元後に形成した表面形状が変化して
表面積が低下することがわかつた。これにより、
銅表面とめつきレジストとの密着性が低下する問
題が生じる。したがつて、化学めつきの触媒を付
与するための酸性触媒液で還元した銅表面を処理
すると、めつきレジストと銅表面との密着区が低
下し、化学めつき時にレジストが剥離してくる場
合がある。 本発明は上記結果に基づき、表面積の大きな還
元表面と化学めつきのため触媒付与を両立させる
方法を検討して見出したものである。 本発明では触媒付与を行つた後、酸化膜を形成
して還元する方法が有効であることを見出した。
酸化膜形成前に触媒付与を行つた場合、酸化膜形
成処理で触媒が酸化除去されるか、もしくは触媒
としての活性が失われることが考えられるが、実
験して確認した結果、そのようなことが生じない
ことがわかり、プリント配線板製造に適用できる
ことがわかつた。 次に、本発明の概要を具体的に説明する。銅張
積層板は通常市販されているものが適用できる。
また、積層板表面にめつきにより銅層を形成した
ものも適用できる。次に、孔あけなどを行つた
後、銅表面を粗化する。これは後の酸化膜形成処
理で表面積増大を促進させるために行うもので、
塩化第2銅の酸性水溶液などが適用できる。次い
で化学めつきのための触媒を孔および銅表面に付
与する。この触媒液は通常酸性タイプのものが用
いられる。例えば、パラジウム−スズ系の酸性触
媒液がある。尚、触媒液としてはアルカリタイプ
のものも適用可能である。触媒を付与した後、酸
化膜を形成する。この処理液としては例えば亜塩
素酸ナトリウム、リン酸ナトリウム、水酸化ナト
リウムからなる水溶液がある。酸化膜を形成した
のち、ひきつづいて該膜を還元する。還元方法と
しては、電気的な方法と化学的な方法とがある。
化学的に還元する方法を用いる場合、還元処理液
の組成としてはジメチルアミンボランと水酸化ナ
トリムウを含むものが一例として適用できる。酸
化膜を還元した後、孔及び回路となる部分を除い
てめつきレジストでマスクする。このレジストは
印刷タイプ、フオトレジストタイプなど通常のレ
ジストが適用できるが、めつき後に除去可能であ
ることが要求される。ひきつづき、孔、回路部分
に化学めつきを行う。一般的には化学銅めつきが
好適である。めつき後、めつきレジストを除去す
るが、その前にエツチングレジストとして半田め
つきなどをめつき膜上に形成することも可能であ
る。めつきレジストを剥離後、めつきレジストで
マスクされていた部分の銅を除去し、回路を形成
する。 〔実施例〕 以下、本発明を実施例により、具体的に説明す
る。 実施例 1 9μm厚の銅箔を貼つた両面銅張積層板の必要
個所に孔をあけた。次いで、銅箔表面をブラツシ
ングおよび脱脂して清浄化したのち、銅箔表面を
粗化した。粗化液は塩化第二銅40g、36%塩酸
400mlを水に溶かして1にした組成もので、45
℃、1分間処理した。水洗を行つた後、18%塩酸
に浸漬したのちパラジウム−スズ系塩酸酸性の触
媒液に5分間浸漬して孔および銅表面に触媒を付
与した。次に、水洗後亜塩素酸ナトリウム30g、
リン酸ナトリウム10g、水酸化ナトリウム5gを
水に溶かして1にした組成の酸化膜形成処理液
に80℃で2分間浸漬し、銅表面に酸化膜層を形成
した。水洗後、ジメチルアミンボラン6g、水酸
化ナトリウム5gを水に溶かして1にした組成
の液に室温で5分間浸漬して酸化膜を還元した。
水洗後、風乾した。ひきつづき、銅箔表面にドラ
イフイルムタイプのフオトレジスト(デユポン社
製リストンフイルム1215)をラミネートした。露
光、現像を行つて回路形成予定部分のフイルムを
除去した。次に、下記組成の化学銅めつき液に浸
漬して孔および回路部分にめつきを行つた。 CuSO4・5H2O 10g/ エチレンジアミン四酢酸・二ナトリウム30g/ HCHO(37%) 2ml/ 2,2′−ビピリジル 30mg/ ポリエチレングリコール(平均分子量600)
10g/ NaOH 10g/ めつき温度を70℃とし、約40μmの厚さまでめ
つきした。めつき終了後、水洗を行い、さらに上
記ドライフイルムを剥離した。さらに銅のエツチ
ング液に浸漬してドライフイルムの下になつてい
た部分の銅を完全にエツチング除去してプリント
配線板を製造した。 以上の方法で製造したプリント配線板は途中の
めつき工程でめつきレジストであるフオトレジス
トの剥離は全く発生せず、良好なパターン形成が
できた。また、孔内のめつきを全くつきむらは生
じなかつた。 実施例 2 実施例1において、ジメチルアミンボラン6
g、水酸化ナトリウム5gを水に溶かして1に
した組成の還元液で還元する代わりに、1Nの水
酸化ナトリウム溶液中で電気的に還元した以外は
実施例1と同様の方法でプリント配線板を製造し
た。 実施例 3 実施例1において、酸化膜形成処理液を亜鉛素
酸ナトリウム60g、水酸化ナトリウム10gを溶か
して1にした組成のものを使用した以外は実施
例1と全く同様の方法でプリント配線板を製造し
た。 実施例 4 実施例1において、還元処理液の処理条件を40
℃で1分とした以外は実施例1と全く同様の方法
でプリント配線板を製造した。 比較例 1 実施例の触媒付与処理を酸化膜還元処理の後に
行つた以外は実施例と全く同様の方法でプリント
配線板を製造した。 得られたプリント配線板はパターン幅が100μ
mの回路でシヨートしているところが、100個所
中13個所で認められた。また、シヨートしていた
ところはめつき終了時に観察したところめつきレ
ジストが下地銅箔から剥離してうき上がつてい
た。 比較例 2 実施例の酸化膜還元処理を行わなかつた以外は
実施例と全く同様の方法でプリント配線板を製造
した。 得られたプリント配線板はいたるところで回路
がシヨートしており、比較例1と同様、めつき終
了時にめつきレジストの剥離が生じていた。 実施例 3 実施例1において、酸化膜形成処理を行つた後
に触媒液で触媒を付与した以外は実施例1と全く
同様の方法でプリント配線板の製造を試みた。 比較例 4 9μm厚の銅箔を貼つた両面銅張積層板の必要
個所に実施例1と同様孔をあけた。次いで、銅箔
表面をブラツシングおよび脱脂して清浄化した後
18%塩酸に侵漬し、さらにパラジウム−スズ系塩
酸酸性触媒液に5分間浸漬して孔および銅表面に
触媒を付与した。ひきつづき、水洗し、4%塩酸
に5分間浸漬後、さらに水洗した。次いで、実施
例1の化学銅めつき液に浸漬し、約5μmのめつ
きを孔および銅表面に行つた。めつき後、十分水
洗し、乾燥し、ドライフイルムタイプのフオトレ
ジスト(デユポン社製リストンフイルム1215)を
ラミネートした。露光、現像により孔および回路
部分以外をマスクした。さらに、ピロリン酸銅浴
によつてパターン電気銅めつきを行つた。めつき
終了後水洗し、上記ドライフイルムを剥離した。
次に、銅のエツチング液に浸漬して回路予定部分
以下を完全にエツチング除去してプリント配線板
を製造した。 以下に示した実施例、比較例を表にまとめて示
す。
[Industrial Application Field] The present invention relates to a method of manufacturing a printed wiring board, and particularly to a method of manufacturing a printed wiring board suitable for forming through holes by chemical plating. [Prior Art] Conventionally, as a manufacturing method for printed wiring boards having through-holes, a copper-clad laminate is used as a starting material, areas other than desired areas such as holes and circuits are masked with a chemical plating resist, and a chemical plating resist is applied. There is a method of manufacturing a printed wiring board by removing the plating resist after plating, and etching away the copper in the area masked by the plating resist. However, if a printed wiring board is manufactured simply by the method described above, there are problems such as the chemical plating resist peeling off during plating and pattern formation not being successful. As a solution to this problem, for example,
Proposals have been made as shown in Publication No. -52196. Although this proposal is somewhat different from the present invention in terms of process, it is consistent in that it improves the adhesion between the copper foil surface and the plating resist. In the above publication, a chemical copper plating layer is formed on copper foil, the surface is roughened, and the surface of the chemical copper plating layer is oxidized to form an oxide film, thereby forming a bond with the plating resist. A method for improving adhesion is described. This method seems to largely solve the problem of peeling of the plating resist. [Problems to be Solved by the Invention] However, as printed wiring boards become finer and finer, the above-described method no longer provides sufficient effects. For example, the plating resist width is 0.2
In printed wiring boards whose thickness is less than mm, there is a problem in that the resist adheres and peels off in some places. The present invention eliminates the above-mentioned drawbacks of the prior art, and provides a method for manufacturing a printed wiring board in which the copper foil and the plating resist are in close contact with each other, so that they do not peel off during chemical plating, and in which a fine pattern can be formed. With the goal. [Means for solving the problem] The above purpose is to provide a manufacturing method having the following characteristics;
That is, holes are drilled at necessary locations on the copper-clad laminate, the copper surface on the copper-clad laminate is roughened, an oxide film is formed on the roughened surface, and then a reduced film is formed on the surface of the oxide film,
A chemical plating resist is formed except for holes and desired parts of the circuit, chemical plating is performed, the plating resist is removed, and the copper in the areas masked by the plating resist is etched away to form a printed wiring board. In the method of manufacturing, prior to forming the oxide film and reduction, a catalyst for chemical plating is applied to the roughened surface, and sodium chlorite, sodium phosphate and water are added as the oxide film forming treatment liquid. This is achieved by using an aqueous solution of sodium oxide in water. [Function] It has long been known that when adhering a metal and an organic substance, forming an oxide film between the two improves their adhesion. They arrived at the idea that the adhesion force is mechanically increased by increasing the surface area when forming the oxide film, rather than the film improving the adhesion. In other words, whether the surface is an oxide film or copper metal, if it is roughened to have the same surface area, it will have the same mechanical adhesion. On the other hand, when an oxide film with a large specific surface area is formed on copper foil, if this oxide film is reduced under appropriate conditions, the fine roughness of the surface will hardly change, or in other words, the metal will be reduced without significantly reducing the surface area. We discovered that it can be reduced to copper. Since the surface thus obtained is metallic copper, it is stable to ordinary acids and alkalis. However, it was found that when the oxide film is brought into contact with an acidic aqueous solution after being reduced, a portion of the oxide film is oxidized and dissolved by the dissolved oxygen in the aqueous solution, and the surface shape formed after reduction changes and the surface area decreases. This results in
A problem arises in that the adhesion between the copper surface and the plating resist decreases. Therefore, when a reduced copper surface is treated with an acidic catalyst solution to provide a catalyst for chemical plating, the adhesion between the plating resist and the copper surface decreases, and the resist may peel off during chemical plating. There is. The present invention was based on the above results, and was the result of research and discovery of a method for achieving both a reduced surface with a large surface area and the provision of a catalyst for chemical plating. In the present invention, it has been found that a method of applying a catalyst and then forming an oxide film to reduce it is effective.
If a catalyst is applied before forming an oxide film, it is possible that the catalyst will be oxidized and removed during the oxide film formation process, or that its activity as a catalyst will be lost.As a result of experiments, we have confirmed that this is not the case. It was found that this method does not occur, and that it can be applied to printed wiring board manufacturing. Next, the outline of the present invention will be specifically explained. Commercially available copper clad laminates can be used.
Also applicable is a laminate in which a copper layer is formed on the surface by plating. Next, after drilling holes, etc., the copper surface is roughened. This is done to promote surface area increase in the later oxide film formation process.
An acidic aqueous solution of cupric chloride can be used. A catalyst for chemical plating is then applied to the holes and the copper surface. This catalyst liquid is usually of an acidic type. For example, there is a palladium-tin acidic catalyst liquid. Note that an alkaline type catalyst liquid can also be used. After applying the catalyst, an oxide film is formed. Examples of this treatment liquid include an aqueous solution consisting of sodium chlorite, sodium phosphate, and sodium hydroxide. After forming the oxide film, the film is subsequently reduced. Reduction methods include electrical methods and chemical methods.
When a chemical reduction method is used, the composition of the reduction treatment solution may include dimethylamine borane and sodium hydroxide, for example. After reducing the oxide film, it is masked with a plating resist except for the holes and the parts that will become circuits. Although ordinary resists such as printing type and photoresist type can be applied to this resist, it is required to be removable after plating. Next, chemical plating is applied to the holes and circuit parts. Chemical copper plating is generally preferred. After plating, the plating resist is removed, but before that, it is also possible to form solder plating or the like as an etching resist on the plating film. After peeling off the plating resist, the copper in the areas masked by the plating resist is removed to form a circuit. [Example] Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 Holes were punched at required locations in a double-sided copper-clad laminate with copper foil pasted with a thickness of 9 μm. Next, the surface of the copper foil was cleaned by brushing and degreasing, and then the surface of the copper foil was roughened. Roughening liquid is cupric chloride 40g, 36% hydrochloric acid
The composition is 1 by dissolving 400ml in water, 45
℃ for 1 minute. After washing with water, it was immersed in 18% hydrochloric acid and then immersed in a palladium-tin based hydrochloric acid acidic catalyst solution for 5 minutes to apply a catalyst to the holes and the copper surface. Next, after washing with water, 30g of sodium chlorite,
It was immersed for 2 minutes at 80°C in an oxide film forming treatment solution having a composition of 1 by dissolving 10 g of sodium phosphate and 5 g of sodium hydroxide in water to form an oxide film layer on the copper surface. After washing with water, the oxide film was reduced by immersing it at room temperature for 5 minutes in a solution having a composition of 1 in which 6 g of dimethylamine borane and 5 g of sodium hydroxide were dissolved in water.
After washing with water, it was air-dried. Subsequently, a dry film type photoresist (Liston Film 1215 manufactured by DuPont) was laminated on the surface of the copper foil. Exposure and development were performed to remove the film in the area where the circuit was to be formed. Next, the holes and circuit portions were plated by immersion in a chemical copper plating solution having the following composition. CuSO 4.5H 2 O 10g / Ethylenediaminetetraacetic acid, disodium 30g / HCHO (37%) 2ml / 2,2'-bipyridyl 30mg / Polyethylene glycol (average molecular weight 600)
10g/NaOH 10g/The plating temperature was set to 70°C, and plating was performed to a thickness of about 40 μm. After completion of plating, washing was performed with water, and the dry film was peeled off. Further, the printed wiring board was manufactured by immersing it in a copper etching solution and completely etching away the copper under the dry film. In the printed wiring board manufactured by the above method, the photoresist, which is a plating resist, did not peel off at all during the intermediate plating process, and a good pattern could be formed. Moreover, no uneven plating occurred in the holes. Example 2 In Example 1, dimethylamine borane 6
g. A printed wiring board was prepared in the same manner as in Example 1, except that instead of reducing with a reducing solution having a composition of 1 by dissolving 5 g of sodium hydroxide in water, electrical reduction was performed in a 1N sodium hydroxide solution. was manufactured. Example 3 A printed wiring board was prepared in exactly the same manner as in Example 1, except that the oxide film forming treatment solution used was one with a composition of 1 by dissolving 60 g of sodium zincate and 10 g of sodium hydroxide. was manufactured. Example 4 In Example 1, the treatment conditions for the reduction treatment solution were changed to 40
A printed wiring board was manufactured in exactly the same manner as in Example 1, except that the temperature was 1 minute. Comparative Example 1 A printed wiring board was manufactured in exactly the same manner as in the example except that the catalyst application treatment in the example was performed after the oxide film reduction treatment. The resulting printed wiring board has a pattern width of 100μ
Shooting in the m circuit was observed in 13 out of 100 locations. In addition, when the plating resist was observed when the plating was completed, it was found that the plating resist had peeled off from the underlying copper foil and was bulging up. Comparative Example 2 A printed wiring board was manufactured in exactly the same manner as in the example except that the oxide film reduction treatment in the example was not performed. In the obtained printed wiring board, circuits were shot everywhere, and as in Comparative Example 1, peeling of the plating resist occurred at the end of plating. Example 3 An attempt was made to manufacture a printed wiring board in exactly the same manner as in Example 1, except that a catalyst was applied using a catalyst liquid after the oxide film forming treatment. Comparative Example 4 Holes were made in the same manner as in Example 1 at the required locations on a double-sided copper-clad laminate to which a 9 μm thick copper foil was pasted. Then, after cleaning the copper foil surface by brushing and degreasing,
It was immersed in 18% hydrochloric acid and further immersed in a palladium-tin acidic hydrochloric acid catalyst solution for 5 minutes to apply a catalyst to the holes and the copper surface. Subsequently, it was washed with water, immersed in 4% hydrochloric acid for 5 minutes, and further washed with water. Next, it was immersed in the chemical copper plating solution of Example 1, and plating of about 5 μm was performed on the holes and the copper surface. After plating, it was thoroughly washed with water, dried, and laminated with a dry film type photoresist (Liston Film 1215 manufactured by Dupont). Areas other than the holes and circuit portions were masked by exposure and development. Furthermore, pattern electrolytic copper plating was performed using a copper pyrophosphate bath. After plating was completed, the plate was washed with water and the dry film was peeled off.
Next, the printed wiring board was manufactured by immersing it in a copper etching solution and completely etching away the area below the intended circuit area. Examples and comparative examples shown below are summarized in a table.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば、孔内のめつきつきむらを生じ
させることなく、且つめつきレジストと下地銅箔
との密着性を向上させることができるので、微細
パターンの形成において特に優れた効果が出き
る。また、めつきレジストの剥離がないため、プ
リント配線板の信頼性が向上すると同時に歩留り
向上にも効果がある。
According to the present invention, it is possible to improve the adhesion between the plating resist and the underlying copper foil without causing uneven plating in the holes, so that particularly excellent effects can be obtained in forming fine patterns. Wear. Furthermore, since there is no peeling of the plating resist, the reliability of the printed wiring board is improved and at the same time it is effective in improving the yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプリント配線板製造プロセス
の一例を示す断面図である。 1……絶縁板、2……銅箔、3……孔、4……
粗化表面、5……触媒、6……酸化膜、7……還
元銅箔、8……めつきレジスト、9……化学めつ
き。
FIG. 1 is a sectional view showing an example of the printed wiring board manufacturing process of the present invention. 1... Insulating plate, 2... Copper foil, 3... Hole, 4...
Roughened surface, 5...Catalyst, 6...Oxide film, 7...Reduced copper foil, 8...Plating resist, 9...Chemical plating.

Claims (1)

【特許請求の範囲】 1 銅張積層板の必要個所に孔をあけ、該銅張積
層板上の銅表面を粗化し、該粗化面に酸化膜を形
成した後該酸化膜を還元し、孔および回路の所望
部分を除いて化学めつきレジストを形成し、化学
めつきを行い、めつきレジストを除去し、さらに
めつきレジストでマスクされていた部分の銅をエ
ツチング除去してプリント配線板を製造する方法
において、上記酸化膜形成及び還元処理に先立つ
て、上記粗化面上に化学めつきのための触媒を付
与することを特徴とするプリント配線板の製造方
法。 2 上記酸化膜形成処理液として、亜塩素酸ナト
リウム、リン酸ナトリウムおよび水酸化ナトリウ
ムを水に溶かした水溶液を用いることを特徴とす
る特許請求の範囲第1項記載のプリント配線板の
製造方法。
[Scope of Claims] 1. Drilling holes at necessary locations in a copper-clad laminate, roughening the copper surface on the copper-clad laminate, forming an oxide film on the roughened surface, and then reducing the oxide film, A chemical plating resist is formed except for holes and desired parts of the circuit, chemical plating is performed, the plating resist is removed, and the copper in the areas masked by the plating resist is etched away to form a printed wiring board. 1. A method for producing a printed wiring board, characterized in that, prior to the oxide film formation and reduction treatment, a catalyst for chemical plating is applied onto the roughened surface. 2. The method of manufacturing a printed wiring board according to claim 1, wherein an aqueous solution in which sodium chlorite, sodium phosphate, and sodium hydroxide are dissolved in water is used as the oxide film forming treatment liquid.
JP10207086A 1986-05-06 1986-05-06 Manufacture of printed wiring board Granted JPS62260389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10207086A JPS62260389A (en) 1986-05-06 1986-05-06 Manufacture of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10207086A JPS62260389A (en) 1986-05-06 1986-05-06 Manufacture of printed wiring board

Publications (2)

Publication Number Publication Date
JPS62260389A JPS62260389A (en) 1987-11-12
JPH0366829B2 true JPH0366829B2 (en) 1991-10-18

Family

ID=14317504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10207086A Granted JPS62260389A (en) 1986-05-06 1986-05-06 Manufacture of printed wiring board

Country Status (1)

Country Link
JP (1) JPS62260389A (en)

Also Published As

Publication number Publication date
JPS62260389A (en) 1987-11-12

Similar Documents

Publication Publication Date Title
JP2819523B2 (en) Printed wiring board and method of manufacturing the same
KR20060114010A (en) Method of electroplating on aluminum
JP2003008199A (en) Method for roughening copper surface of printed wiring board and printed wiring board and its producing method
JP3605520B2 (en) Method of manufacturing multilayer printed circuit board
US6044550A (en) Process for the manufacture of printed circuit boards
JPH04100294A (en) Manufacture of printed wiring board
JP2550081B2 (en) Circuit formation method
JPH0217953B2 (en)
JPH02238942A (en) Improvement of adhesive property between copper foil and resin
JPH0366829B2 (en)
JP2000261149A (en) Mutilayer printed wiring board and manufacture thereof
US5139923A (en) Method for improving adhesion of a resist layer to a metallic layer and electrolessly plating a wiring pattern thereon
JPH0710028B2 (en) Printed board manufacturing method
JPH08148810A (en) Manufacture of printed wiring board
JPH0636470B2 (en) Method for treating copper circuit of circuit board for inner layer
JP2002266087A5 (en)
JPH05167248A (en) Method of manufacturing printed wiring board
JPS61163693A (en) Manufacture of printed wiring board
JPH03201592A (en) Manufacture of printed circuit board
JP2768122B2 (en) Method for manufacturing multilayer wiring board
JP2768123B2 (en) Method for manufacturing multilayer wiring board
JPS5850040B2 (en) Manufacturing method of printed circuit board
JPS6016494A (en) Method of producing printed circuit board
JPH04155993A (en) Manufacture of multilayer printed wiring board
JPS62266895A (en) Heat-resistant single- and multi-layer laminated board