JPH0366558B2 - - Google Patents

Info

Publication number
JPH0366558B2
JPH0366558B2 JP5591084A JP5591084A JPH0366558B2 JP H0366558 B2 JPH0366558 B2 JP H0366558B2 JP 5591084 A JP5591084 A JP 5591084A JP 5591084 A JP5591084 A JP 5591084A JP H0366558 B2 JPH0366558 B2 JP H0366558B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
low temperature
refrigerator
shield plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5591084A
Other languages
Japanese (ja)
Other versions
JPS60201199A (en
Inventor
Hitoshi Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP5591084A priority Critical patent/JPS60201199A/en
Publication of JPS60201199A publication Critical patent/JPS60201199A/en
Publication of JPH0366558B2 publication Critical patent/JPH0366558B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液体ヘリウム、水素、窒素などの低温
液化ガス(以下寒剤と称す)を用いた冷凍・寒剤
の貯蔵を効果的に行なう低温容器であり、特に低
温容器外にある冷凍機から低温液体又は低温気体
を移送させて低温容器の真空断熱層内にある2枚
以上の熱シールド板を冷却して内部への熱侵入を
減らすようにした低温容器の冷却装置に関するも
のである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a low-temperature container for effectively freezing and storing cryogens using low-temperature liquefied gases (hereinafter referred to as cryogens) such as liquid helium, hydrogen, and nitrogen. Yes, in particular, by transferring low-temperature liquid or low-temperature gas from a refrigerator located outside the low-temperature container to cool two or more heat shield plates within the vacuum insulation layer of the low-temperature container to reduce heat intrusion into the interior. This invention relates to a cooling device for a low temperature container.

(従来技術) 従来の低温容器は第1図の様に二系統の冷却回
路を用いるか、第2図のように一系統の冷却回路
の中間部分の低温液体又は低温気体をそのまま用
いてそれぞれの温度レベルの熱シールド板の冷却
を行なつていた。
(Prior art) Conventional cryogenic containers use two cooling circuits as shown in Figure 1, or use the low-temperature liquid or gas in the middle of one cooling circuit as is, as shown in Figure 2. Cooling of the heat shield plate was performed at the temperature level.

ここで先ず本発明と同様に一系統の冷却装置を
用いた第2図について回路構成を詳細に説明する
と、1は圧縮機、2は圧縮熱放熱器で、該放熱器
2は圧縮機1の吐出側に隣接して設けられてい
る。3,5は第1、第2熱交換器、4a,6は冷
凍機の低温発生部に設けられた冷凍機低温発生部
熱における第1,第2交換器で、それぞれ第1が
高温側、第2が低温側である。
First, the circuit configuration will be explained in detail with respect to FIG. 2, which uses a single cooling system like the present invention. 1 is a compressor, 2 is a compression heat radiator, and the radiator 2 is the compressor 1. It is provided adjacent to the discharge side. 3 and 5 are first and second heat exchangers; 4a and 6 are first and second exchangers for the heat of the refrigerator low temperature generation section provided in the low temperature generation section of the refrigerator; the first is the high temperature side; The second is the low temperature side.

7,8は第2、第1熱シールド板、9,10は
第2、第1熱シールド板をそれぞれ冷却するため
の第2、第1熱シールド板冷却熱交換器である。
この場合も第1が高温側、第2が低温側である。
11は液体ヘリウム等を入れる寒剤容器で、これ
らは低温容器外箱12に包含されている。また第
1熱シールド板8は低温容器外箱12と第2シー
ルド板7の間、第2熱シールド板7は第1熱シー
ルド板8と寒剤容器11の間の真空断熱層空間
に、それぞれ第2熱シールド板7、寒剤容器11
を覆い包むように配設されている。そしてこれら
の圧縮機1、圧縮熱放熱器2、第1、第2熱交換
器3,5、冷凍機低温発生部における第1、第2
熱交換器4a,6、第2、第1熱シールド板冷却
熱交換器9,10が、往路管路13a,15a及
び復路管路14a,16aによつて連結され、動
作気体循環回路が構成されている。
7 and 8 are second and first heat shield plates, and 9 and 10 are second and first heat shield plate cooling heat exchangers for cooling the second and first heat shield plates, respectively.
In this case as well, the first side is the high temperature side and the second side is the low temperature side.
Reference numeral 11 denotes a cryogen container containing liquid helium, etc., which is included in the outer box 12 of the cryogenic container. Further, the first heat shield plate 8 is provided between the outer box 12 of the low temperature container and the second shield plate 7, and the second heat shield plate 7 is provided in the vacuum insulation layer space between the first heat shield plate 8 and the cryogen container 11. 2 Heat shield plate 7, cryogen container 11
It is arranged to cover and envelop the These compressor 1, compression heat radiator 2, first and second heat exchangers 3 and 5, and first and second
The heat exchangers 4a, 6 and the second and first heat shield plate cooling heat exchangers 9, 10 are connected by outgoing pipes 13a, 15a and return pipes 14a, 16a, forming an operating gas circulation circuit. ing.

次に第1図の二系統の冷却回路を用いた場合の
回路構成を説明すると、第2図の回路の他に、圧
縮機17、圧縮熱放熱器18、熱交換器19、冷
凍機低温発生部熱交換器20を往路管路23、復
路管路24で連結してなる動作気体循環回路を併
設してなるものである。
Next, to explain the circuit configuration when the two-system cooling circuit shown in Fig. 1 is used, in addition to the circuit shown in Fig. 2, the compressor 17, compression heat radiator 18, heat exchanger 19, refrigerator low temperature generator A working gas circulation circuit is also provided in which the partial heat exchanger 20 is connected by an outgoing pipe line 23 and a returning pipe line 24.

(発明が解決しようとする課題) 先ず第1図の二系統の冷却回路を用いた場合は
装置が複雑となり、かつ大型となる欠点があつ
た。また一系統の第2図の場合は、高温側の熱シ
ールド板の温度が高くなるか、又は低温側の熱交
換器入口の低温液体又は低温気体の温度が高くな
るかして、冷凍機の低温側の低温発生部への負荷
が大きくなるため、冷凍機を大型にする必要があ
つた。
(Problems to be Solved by the Invention) First, when the two-system cooling circuit shown in FIG. 1 is used, there is a drawback that the device becomes complicated and large. In the case of one system shown in Figure 2, the temperature of the heat shield plate on the high temperature side increases, or the temperature of the low temperature liquid or low temperature gas at the inlet of the heat exchanger on the low temperature side increases, causing the refrigerator to cool down. Since the load on the low-temperature generating section on the low-temperature side increases, it was necessary to make the refrigerator larger.

本発明は前記従来の欠点を解消するために提案
されたもので、冷凍機低温側の低温発生部の負荷
を低減して装置を小型化することを目的とするも
のである。
The present invention was proposed in order to eliminate the above-mentioned conventional drawbacks, and aims to reduce the load on the low temperature generation section on the low temperature side of the refrigerator and downsize the device.

(課題を解決するための手段) このため本発明は、液体ヘリウムなどの低温液
化ガスを用いた真空断熱層内に2層以上の熱シー
ルド板を有する低温容器の冷却装置において、該
熱シールド板の冷却回路を一系統にすると共に、
冷凍機低温発生部における高温側の第1熱交換器
で冷却した作動ガスで高温側の第1熱シールド板
を冷却し、この作動ガスを再び前記冷凍機低温発
生部における高温側の第1熱交換器で冷却した
後、次に冷凍機低温発生部における低温側の第2
熱交換器で冷却させ、この冷却された作動ガスで
低温側の第2熱シールド板を冷却する。
(Means for Solving the Problem) Therefore, the present invention provides a cooling device for a low temperature container having two or more layers of heat shield plates within a vacuum insulation layer using low temperature liquefied gas such as liquid helium. In addition to integrating the cooling circuit into one system,
The first heat shield plate on the high temperature side is cooled with the working gas cooled by the first heat exchanger on the high temperature side in the low temperature generation section of the refrigerator, and this working gas is again transferred to the first heat exchanger on the high temperature side in the low temperature generation section of the refrigerator. After cooling in the exchanger, the second
It is cooled by a heat exchanger, and the cooled working gas cools the second heat shield plate on the low temperature side.

(作用) 多層の熱シールド板の冷却を、一系統の作動気
体循環回路で行ない、なおかつ比較的温度の高い
側の熱シールド板冷却熱交換器を通つた作動気体
を、再度同じ温度レベルの冷凍機低温発生部を通
過させることにより、冷凍機の負荷を低減させ
る。
(Function) The multilayer heat shield plate is cooled by one working gas circulation circuit, and the working gas that has passed through the heat shield plate cooling heat exchanger on the relatively high temperature side is refrigerated to the same temperature level. By passing through the machine low temperature generating section, the load on the refrigerator is reduced.

本発明によると、冷凍機の低温側より高温側に
大きな負荷がかかるので、冷凍機の効率がよくな
り、消費電力が少なく、小さな冷凍機ですむ等の
効果がある。
According to the present invention, a larger load is applied to the high temperature side of the refrigerator than to the low temperature side, so that the efficiency of the refrigerator is improved, power consumption is low, and a small refrigerator can be used.

(実施例) 以下本発明の実施例を図面について説明する
と、第3図は本発明の第1実施例を示し、1は圧
縮機、3は圧縮機1の吐出側に隣接して設けられ
た圧縮熱放熱器である。3,5は第1、第2熱交
換器、4,6は冷凍機の低温発生部に設けられた
冷凍機低温発生部における第1、第2熱交換器
で、それぞれ第1が高温側、第2が低温側であ
る。7,8は第2、第1熱シールド板、9,10
は第2、第1熱シールド板7,8をそれぞれ冷却
するための第2、第1熱シールド板冷却熱交換器
で、それぞれ第1が高温側、第2が低温側であ
る。
(Embodiment) An embodiment of the present invention will be explained below with reference to the drawings. Fig. 3 shows a first embodiment of the present invention, in which 1 is a compressor, 3 is a compressor installed adjacent to the discharge side of the compressor 1. It is a compression heat radiator. 3 and 5 are first and second heat exchangers; 4 and 6 are first and second heat exchangers in the low temperature generation section of the refrigerator, the first being on the high temperature side; The second is the low temperature side. 7 and 8 are second and first heat shield plates, 9 and 10
are second and first heat shield plate cooling heat exchangers for cooling the second and first heat shield plates 7 and 8, respectively, the first being on the high temperature side and the second on the low temperature side.

11は液体ヘリウム等を入れる寒剤容器で、こ
れらは低温容器外箱12に包含されている。また
第1熱シールド板8は低温容器外箱12と第2熱
シールド板7の間、第2熱シールド板7は第1熱
シールド板8と寒剤容器11の間の真空断熱層空
間に、それぞれ第2熱シールド板7と寒剤容器1
1を覆い包むように配設されている。そしてこれ
ら圧縮機1、圧縮熱放熱器2、第1、第2熱交換
器3,5、冷凍機低温発生部における第1、第2
熱交換器4,6、第2、第1熱シールド板冷却熱
交換器9,10が、第2、第1往路管路13,1
5及び第2、第1復路管路14,16によつて連
結されて、動作気体循環回路が構成されている。
そして低温容器は低温容器外箱12、第2、第1
熱シールド板7,8、寒剤容器11、第2、第1
熱シールド板冷却熱交換器9,10から構成され
ている。低温容器から離れて配設された圧縮機
1、該圧縮機1の吐出側に隣接した圧縮熱放熱器
2と同様に、低温容器から離れて配設された冷凍
機低温発生部における第1熱交換器4と、第1熱
シールド板冷却熱交換器10とを直列に管路で連
絡して動作気体の第1往路管路15を形成し、更
に第1熱シールド板冷却熱交換器10と前記熱交
換器4とを管路で連絡して第1復路管路16を形
成している。
Reference numeral 11 denotes a cryogen container containing liquid helium, etc., which is included in the outer box 12 of the cryogenic container. Further, the first heat shield plate 8 is placed between the low temperature container outer box 12 and the second heat shield plate 7, and the second heat shield plate 7 is placed in the vacuum insulation layer space between the first heat shield plate 8 and the cryogen container 11. Second heat shield plate 7 and cryogen container 1
It is arranged so as to cover 1. These compressor 1, compression heat radiator 2, first and second heat exchangers 3 and 5, and first and second
Heat exchangers 4, 6, second and first heat shield plate cooling heat exchangers 9, 10, second and first outgoing pipes 13, 1
5, and are connected by second and first return pipes 14 and 16 to form an operating gas circulation circuit.
The low-temperature containers are the low-temperature container outer box 12, the second, and the first
Heat shield plates 7, 8, cryogen container 11, second, first
It is composed of heat shield plate cooling heat exchangers 9 and 10. Similar to the compressor 1 located away from the low temperature container and the compression heat radiator 2 adjacent to the discharge side of the compressor 1, the first heat in the refrigerator low temperature generation section located away from the low temperature container The exchanger 4 and the first heat shield plate cooling heat exchanger 10 are connected in series through a pipe line to form a first outgoing pipe line 15 for working gas, and the first heat shield plate cooling heat exchanger 10 and the first heat shield plate cooling heat exchanger 10 are connected in series. A first return pipe line 16 is formed by connecting the heat exchanger 4 with a pipe line.

また前記熱交換器4,6,9を直列に管路で連
絡して第2往路管路13を、前記熱交換器9と圧
縮機1の吸入口とを管路で連絡して第2復路管路
14を形成する。更に圧縮熱放熱器2と前記熱交
換器4とを連絡する第1往路管路15と、前記熱
交換器9と圧縮機1の吸入側を連絡する第2往路
管路14相互間で、第1往路管路15と第2往路
管路14とを熱的に連結する第1熱交換器3を、
また前記熱交換器4と6を連絡する第2往路管路
13と、前記熱交換器9と第1熱交換器3とを連
絡する第2往路管路14相互間で、第2往路管路
13と第2往路管路14とを熱的に連結する第2
熱交換器5をそれぞれ配設して前記動作気体循環
回路を構成している。なお、以上の構成におい
て、熱交換器3,5,4,6、熱シールド板7,
8、熱シールド板冷却熱交換器9,10、寒剤容
器11及びこれらを連絡している往路管路13,
15、復路管路14,16等は全て真空容器又は
真空配管中に置かれて真空断熱されていることは
言うまでもない。
Further, the heat exchangers 4, 6, and 9 are connected in series through a pipe line to form a second outgoing line 13, and the heat exchanger 9 and the suction port of the compressor 1 are connected via a line to form a second return line. A conduit 14 is formed. Furthermore, a first outgoing pipe line 15 that connects the compression heat radiator 2 and the heat exchanger 4 and a second outgoing pipe line 14 that connects the heat exchanger 9 and the suction side of the compressor 1 are connected to each other. The first heat exchanger 3 thermally connects the first outgoing pipe line 15 and the second outgoing pipe line 14,
Further, between a second outgoing pipe line 13 that connects the heat exchangers 4 and 6 and a second outgoing pipe line 14 that connects the heat exchanger 9 and the first heat exchanger 3, a second outgoing pipe line 13 and the second outgoing pipe line 14 thermally connected to each other.
Heat exchangers 5 are respectively arranged to constitute the working gas circulation circuit. In addition, in the above configuration, the heat exchangers 3, 5, 4, 6, the heat shield plate 7,
8, heat shield plate cooling heat exchangers 9, 10, cryogen container 11, and outgoing pipe line 13 connecting these;
Needless to say, all of the return pipes 14, 16, etc. are placed in a vacuum container or vacuum piping and are vacuum insulated.

次に第3図の実施例について作用を説明する
と、動作気体循環回路内には、例えば動作気体と
して液体ヘリウムなどが封入されるが、この動作
気体は、先ず圧縮機1で圧縮され、圧縮機1の吐
出口より第1往路管路15へ吐出されるが、その
前に第1熱交換器3を通過し、更に冷凍機低温発
生部における第1熱交換器4を通過して第1熱シ
ールド板冷却熱交換器10へ送られる。この時先
ず第1熱交換器3では、第2熱交換器5から圧縮
機1の吸入口側へ低温、例えば80K以下の温度で
戻つて来る動作気体によつて、圧縮機1の吐出口
から冷凍機低温発生部における第1熱交換器4へ
送り込む。なお、圧縮機1で発生する圧縮熱は、
圧縮熱放熱器2で除去されるので、第1熱交換器
3へ流入する動作気体の温度は0〜50℃位であ
る。
Next, to explain the operation of the embodiment shown in FIG. 3, for example, liquid helium or the like is sealed as a working gas in the working gas circulation circuit.This working gas is first compressed by the compressor 1, and It is discharged from the discharge port 1 to the first outgoing pipe line 15, but before that, it passes through the first heat exchanger 3, and then passes through the first heat exchanger 4 in the refrigerator low temperature generating section to generate the first heat. It is sent to the shield plate cooling heat exchanger 10. At this time, first, in the first heat exchanger 3, the working gas returns from the second heat exchanger 5 to the suction port side of the compressor 1 at a low temperature, for example, 80K or less, from the discharge port of the compressor 1. It is sent to the first heat exchanger 4 in the refrigerator low temperature generating section. In addition, the compression heat generated in the compressor 1 is
Since the compression heat is removed by the radiator 2, the temperature of the working gas flowing into the first heat exchanger 3 is about 0 to 50°C.

次に冷凍機低温発生部における第1熱交換器4
では、冷凍機で発生した冷凍によつて、第1熱交
換器3で予じめ冷却された動作気体は、更に冷却
されて第1往路管路15に送り出され、前記の如
く熱交換器10に至る。ここで第1熱シールド板
8で冷却した動作気体は、第1往路管路15を通
過した時より温度が上昇して、該熱交換器10か
ら前記熱交換器4へ第1復路管路16を通して送
られる。また動作気体は該熱交換器4で再度冷却
されて、第2熱交換器5を通り、冷凍機低温発生
部における第2熱交換器6へ送られる。第2熱交
換器5では、第2熱シールド板冷却熱交換器9か
ら第1熱交換器3へ、更に低温、例えば30K以下
の温度で戻つて来る動作気体によつて、前記熱交
換器4から前記熱交換器6へ流出する動作気体を
冷却し、この冷却した動作気体を該熱交換器6へ
送り込む。
Next, the first heat exchanger 4 in the refrigerator low temperature generation section
In this case, the working gas that has been pre-cooled in the first heat exchanger 3 by the refrigeration generated in the refrigerator is further cooled and sent to the first outgoing pipe line 15, and is then sent to the heat exchanger 10 as described above. leading to. Here, the temperature of the working gas cooled by the first heat shield plate 8 increases from when it passes through the first outgoing pipe line 15, and the working gas passes from the heat exchanger 10 to the heat exchanger 4 through the first return pipe line 16. sent through. Further, the working gas is cooled again by the heat exchanger 4, passes through the second heat exchanger 5, and is sent to the second heat exchanger 6 in the low temperature generating section of the refrigerator. In the second heat exchanger 5, the working gas that returns from the second heat shield plate cooling heat exchanger 9 to the first heat exchanger 3 at a lower temperature, for example, 30K or lower, The working gas flowing out from the heat exchanger 6 is cooled, and the cooled working gas is fed into the heat exchanger 6.

次に冷凍機低温発生部における第2熱交換器6
では、冷凍機で発生した冷凍によつて第2熱交換
器5で冷却された動作気体は、更に冷却されて第
2往路管路13に送り出され、前記熱交換器9に
至る。また動作ガスは第2熱シールド板7を冷却
して第2往路管路13を通つた時より温度上昇し
て、該熱交換器9から第2熱交換器5へ第2復路
管路14を通つて送られる。そして第2熱交換器
5で第2往路管路13の動作気体と熱交換し、更
に第1熱交換器3に送られ、ここで第1往路管路
15の動作気体と熱交換して常温近傍の温度に戻
され、圧縮機1の吸入側へ送り込まれて1サイク
ルが終了する。
Next, the second heat exchanger 6 in the refrigerator low temperature generation section
Then, the working gas cooled in the second heat exchanger 5 by the refrigeration generated by the refrigerator is further cooled and sent to the second outgoing pipe line 13, and reaches the heat exchanger 9. Further, the temperature of the working gas increases after cooling the second heat shield plate 7 and passing through the second outgoing pipe line 13, and the working gas passes through the second return pipe line 14 from the heat exchanger 9 to the second heat exchanger 5. sent through. The second heat exchanger 5 exchanges heat with the working gas in the second outgoing pipe line 13, and the gas is further sent to the first heat exchanger 3, where it exchanges heat with the working gas in the first outgoing pipe line 15 to bring it to room temperature. It is returned to a nearby temperature and sent to the suction side of the compressor 1, completing one cycle.

第4図は第3図と異なる本発明の第2実施例を
示し、第3図における冷凍機低温発生部における
第2熱交換器6と、第2熱シールド板冷却熱交換
器9を連絡する第2往路管路13中に、冷凍機低
温発生部における第3熱交換器22を追設すると
共に、冷凍機低温発生部における第2熱交換器6
と該熱交換器22を連絡する第2往路管路13
と、前記熱交換器9と第2熱交換器5とを連絡す
る往路管路14の相互間で第2往路管路13と第
2往路管路14とを熱的に連絡する第3熱交換器
21をそれぞれ追設したものであるが、第3図の
実施例と作用効果において差異はない。
FIG. 4 shows a second embodiment of the present invention, which is different from FIG. 3, in which the second heat exchanger 6 in the low temperature generating section of the refrigerator in FIG. 3 is connected to the second heat shield plate cooling heat exchanger 9. A third heat exchanger 22 in the refrigerator low temperature generating section is additionally installed in the second outgoing pipe line 13, and a second heat exchanger 6 in the refrigerator low temperature generating section is additionally installed.
and a second outgoing pipe line 13 that communicates with the heat exchanger 22.
and a third heat exchanger that thermally communicates the second outgoing pipe line 13 and the second outgoing pipe line 14 between the outgoing pipe line 14 that connects the heat exchanger 9 and the second heat exchanger 5. Although a container 21 is added, there is no difference in operation and effect from the embodiment shown in FIG.

(発明の効果) 以上詳細に説明した如く本発明は構成されてい
るので、同一の作動ガス流量、同一の冷凍機出力
及び同一の熱交換器温度効率を用いたものに比
べ、熱シールド板の温度をより低くすることがで
きる。即ち、本発明は作動ガスを再び高温側の冷
凍機低温発生部における第1熱交換器で冷却した
後、次に低温側の冷凍機低温発生部における第2
熱交換器で冷却させ、この冷却された作動ガスで
低温側の第2熱シールド板を冷却するようにした
もので、第2冷凍機低温発生部への負荷を減らす
ことにより、第2熱シールド板の温度も下げ、寒
剤容器への熱の侵入を減らすことができる。また
第1冷凍機低温発生部側に負荷を偏らせることに
より、冷凍機の効率を向上できる。従つて本発明
によると、冷凍機の低温側より高温側に大きな負
荷がかかるので、冷凍機の効率がよくなり、消費
電力が少なくてよく、かつ小さな冷凍機ですむ等
の効果を奏するものである。
(Effects of the Invention) Since the present invention is configured as explained in detail above, the heat shield plate Temperatures can be lower. That is, the present invention cools the working gas again in the first heat exchanger in the low temperature generation section of the refrigerator on the high temperature side, and then cools the working gas in the second heat exchanger in the low temperature generation section of the refrigerator on the low temperature side.
It is cooled by a heat exchanger, and the second heat shield plate on the low temperature side is cooled with this cooled working gas.By reducing the load on the low temperature generation part of the second refrigerator, the second heat shield plate It also lowers the temperature of the board and reduces the amount of heat entering the cryogen container. Further, by biasing the load toward the first refrigerator low temperature generating section, the efficiency of the refrigerator can be improved. Therefore, according to the present invention, a larger load is applied to the high temperature side of the refrigerator than to the low temperature side, so the efficiency of the refrigerator is improved, power consumption is reduced, and a small refrigerator is required. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ従来の低温容器の
冷却器の異なる構成の回路図、第3図及び第4図
はそれぞれ本発明の第1、第2実施例を示す低温
容器の回路図である。 図の主要部分の説明 1……圧縮機、4……冷
凍機低温発生部における第1熱交換器、7……第
2熱シールド板、8……第1熱シールド板、9…
…第2熱シールド板冷却熱交換器、10……第1
熱シールド板冷却熱交換器、11……寒剤容器、
12……低温容器外箱、13……第2往路管路、
14……第2往路管路、15……第1往路管路、
16……第1復路管路。
FIGS. 1 and 2 are circuit diagrams of different configurations of a conventional cooler for a cryogenic container, and FIGS. 3 and 4 are circuit diagrams of a cryogenic container showing the first and second embodiments of the present invention, respectively. be. Explanation of main parts of the diagram 1... Compressor, 4... First heat exchanger in the refrigerator low temperature generating section, 7... Second heat shield plate, 8... First heat shield plate, 9...
...Second heat shield plate cooling heat exchanger, 10...First
Heat shield plate cooling heat exchanger, 11...Cryogen container,
12... Low temperature container outer box, 13... Second outgoing pipe line,
14... Second outgoing pipe line, 15... First outgoing pipe line,
16...First return pipeline.

Claims (1)

【特許請求の範囲】[Claims] 1 液体ヘリウムなどの低温液化ガスを用いた真
空断熱層内に2層以上の熱シールド板を有する低
温容器の冷却装置において、該熱シールド板の冷
却回路を一系統にすると共に、冷凍機低温発生部
における高温側の第1熱交換器で冷却した作動ガ
スで高温側の第1熱シールド板を冷却し、この作
動ガスを再び前記冷凍機低温発生部における高温
側の第1熱交換器で冷却した後、次に冷凍機低温
発生部における低温側の第2熱交換器で冷却さ
せ、この冷却された作動ガスで低温側の第2熱シ
ールド板を冷却することを特徴とする低温容器の
冷却装置。
1. In a cooling device for a low-temperature container that has two or more layers of heat shield plates within a vacuum insulation layer using low-temperature liquefied gas such as liquid helium, the cooling circuit for the heat shield plates is integrated into one system, and the refrigerator low temperature generation The working gas cooled by the first heat exchanger on the high temperature side in the section cools the first heat shield plate on the high temperature side, and this working gas is cooled again in the first heat exchanger on the high temperature side in the low temperature generation section of the refrigerator. Cooling of a low temperature container, characterized in that the second heat exchanger on the low temperature side in the low temperature generating section of the refrigerator cools the second heat shield plate on the low temperature side with the cooled working gas. Device.
JP5591084A 1984-03-23 1984-03-23 Low-temperature receptacle Granted JPS60201199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5591084A JPS60201199A (en) 1984-03-23 1984-03-23 Low-temperature receptacle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5591084A JPS60201199A (en) 1984-03-23 1984-03-23 Low-temperature receptacle

Publications (2)

Publication Number Publication Date
JPS60201199A JPS60201199A (en) 1985-10-11
JPH0366558B2 true JPH0366558B2 (en) 1991-10-17

Family

ID=13012264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5591084A Granted JPS60201199A (en) 1984-03-23 1984-03-23 Low-temperature receptacle

Country Status (1)

Country Link
JP (1) JPS60201199A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121497A (en) * 1973-03-19 1974-11-20

Also Published As

Publication number Publication date
JPS60201199A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
JPS5880474A (en) Cryogenic cooling device
US6679066B1 (en) Cryogenic cooling system for superconductive electric machines
JPH0515764A (en) Vacuum container with cooling device
JPH0366558B2 (en)
JPS63302259A (en) Cryogenic generator
JP3669911B2 (en) Liquefied gas storage device
Gifford et al. A new refrigeration system for 4.2 K
JPS60104899A (en) Low temperature vessel connected to refrigerator
JPS5951155B2 (en) superconducting device
JPS62299005A (en) Superconducting magnet device
JP2574815B2 (en) Cryogenic refrigeration equipment
JPH0349019B2 (en)
JPH0221497B2 (en)
JP3213451B2 (en) Refrigeration equipment condenser
JP3448327B2 (en) Cooling system
JPS61110851A (en) Joule-thomson refrigerator
JPH02203162A (en) Heat accumulating refrigerator
JPS62261868A (en) Helium cooling device
JPS61225556A (en) Cryogenic cooling device
JPH11108476A (en) Cryostatic cooling device
JPS60104898A (en) Low temperature vessel
JPH09106906A (en) Conductive cooling superconducting magnet
Stearns et al. The Refrigerated Transport Dewar
JPS61225558A (en) Cryogenic cooling device
JPS604775A (en) Cryogenic device with refrigerator