JPH0366546B2 - - Google Patents

Info

Publication number
JPH0366546B2
JPH0366546B2 JP22252984A JP22252984A JPH0366546B2 JP H0366546 B2 JPH0366546 B2 JP H0366546B2 JP 22252984 A JP22252984 A JP 22252984A JP 22252984 A JP22252984 A JP 22252984A JP H0366546 B2 JPH0366546 B2 JP H0366546B2
Authority
JP
Japan
Prior art keywords
valve
screw
thread
valve stem
stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22252984A
Other languages
Japanese (ja)
Other versions
JPS61103077A (en
Inventor
Takeo Yamada
Osamu Takami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Original Assignee
Pacific Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd filed Critical Pacific Industrial Co Ltd
Priority to JP22252984A priority Critical patent/JPS61103077A/en
Publication of JPS61103077A publication Critical patent/JPS61103077A/en
Publication of JPH0366546B2 publication Critical patent/JPH0366546B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ルームエアコンやカーエアコンなど
の冷凍サイクル中に用いられる電子制御膨張弁、
あるいは一般の産業分野でマイコンと組合せて使
用する比例制御弁として利用される電動弁に関す
るものである。 〔従来の技術の構成〕 ステツピングモータと弁を合せてマイコンによ
り制御する電動弁としてとくに構造が簡単で、か
つ廉価な物を提供するために第4図に示すような
構成の電動弁が実用化されている。 その構成・作動を第4図により詳細に説明する
と、弁軸1は先端から針状弁3、おねじ4、外周
多極着磁された円筒形の永久磁石からなるモータ
の回転子5の順に一体化して形成され、おねじ4
は、弁本体6に固定され中心にめねじ7を切つた
推進軸受8とはめあわされている。 モータの固定子5の外周は薄肉円筒状のケース
9でおおい、このケース9の外側には、モータの
固転子5に対応する位置にモータの固定子コイル
10が固定されている。 ケース9は流体の出入口11,12と弁座2を
有する弁本体6にプラズマ溶接などにより気密的
に一体化され、ケース9の他端も蓋13により密
閉化されている。 14は比較的強力なコイルバネであり、弁軸1
のおねじ4後方の弁軸1太径部1aと推進軸受8
の間で圧縮可能なようにはめこまれ、15も同様
に強力なコイルバネで、弁軸1の最後端の段付部
1bにかめこみ固定され、弁軸1が蓋13側へ移
動した時に、蓋13の内面部に当たり、圧縮可能
なように構成されている。おねじ4、めねじ7で
構成される推進ねじ16は、ねじ効率50%未満の
範囲で高い効率が得られるよう、たとえば2条ね
じなどで構成されている。 〔従来品の作動〕 以上のように構成された従来品においては、モ
ータの固定子コイル10に所定量の通電をする
と、回転子5が回転し、おねじ4とめねじ7のね
じ作用により弁軸1は回転しながら前方(閉弁方
向)に移動してコイルバネ14と推進軸受8面と
を当接させ、針状弁3が弁座2に着座して完全閉
弁することなく、針状弁3と弁座2間にきわめて
わずかな隙間を保つた状態で停止するようになつ
ている。このように、針状弁3と弁座2間に隙間
を設けているのは、ねじ部4,7間に強いねじつ
け摩擦力が発生し、次の開弁運動が不能になると
いつたことを避けるためである。 次に、弁軸1は後方(開弁方向)に移動し、コ
イルバネ15と蓋13内面が当接して、弁軸1の
直進運動が停止させられる。 〔発明が解決しようとする問題点〕 以上のように構成された従来の電動弁は、弁軸
1と回転子5が一体型で、かつ直進運動を直接停
止させる構造を採用するため、部品数が少なく、
かつ複雑な加工や調整を要しないきわめて廉価に
製造できるという利点を有しているが、反面、閉
弁時における弁軸の停止に際しては、おねじ4と
推進軸受のめねじ7がきつく咬み合い閉弁後の弁
軸1の逆方向起動(開弁5をスムーズに行えなか
つたり、あるいは全く再起動させることができな
いという欠点を有していた。 そこで、弁軸1の逆方向起動(開弁)をスムー
ズに行えるように、推進ねじのねじ効率が50%以
上の自然ゆるみねじを使うことが考えられるが、
これでは、固定子コイル10への非通電時に流体
の流れによつて弁軸が回転してしまい電動弁の制
御が不可能となるので、実際には、2条ねじにし
て、ねじリードを大きくするなどの手段を用いて
ねじ効率を50%未満近づけるようにしている。し
かし、この場合にはねじ効率を上げる限度があつ
て、場合によつては弁軸1の逆方向起動(開弁)
をスムーズに行えなかつたり、また、ねじ作用に
よつて発生する弁軸1の推進力が小くなるという
欠点があつた。 なお、ここでねじ効率とねじの緩みの関係を、
ねじの理論面から説明する。 一般に、締付トルクT1に対する緩めトルクT2
の比率T2/T1×100(%)が小さいほどねじが緩
みやすく、またねじ効率ηが大きいほどねじが緩
みやすいと言われ、次の公式で表れる。 T1=F{De/2・tan(ρ+β)}×102 (1) T2=F{De/2・tan(ρ−β)}×102 (2) η=tan β/tan(ρ+β)×100(%) (3) F :ねじ部にかかる軸力(Kg) De:ねじの有効径(mm) ρ :ねじ面の摩擦相当角(゜) ρ=tan-1(μ/cos α) μ :ねじ面の摩擦係数…0.15とする。 β :ねじのリード角(゜) β=tan-1(l/π・De) l :ねじのリード(mm) ここで上式(1)〜(3)に、例えば A仕様:ねじM5×P0.8 JIS並目めじ B仕様:ねじM5×P0.8×2条ねじ の異なつたねじについて各値を計算すると、下表
に示すように、ねじ効率ηの高いB仕様の方が締
めトルク比T2/T1が小さくなり、弁軸の停止後
の逆方向への起動がスムーズに行える。
[Industrial Application Field] The present invention relates to an electronically controlled expansion valve used during the refrigeration cycle of room air conditioners, car air conditioners, etc.
Alternatively, it relates to an electric valve used as a proportional control valve in combination with a microcomputer in the general industrial field. [Constitution of conventional technology] In order to provide a particularly simple and inexpensive electric valve that combines a stepping motor and a valve and is controlled by a microcomputer, an electric valve having the configuration shown in Fig. 4 has been put into practical use. has been made into To explain the structure and operation in detail with reference to FIG. 4, the valve stem 1 is arranged in order from the tip: a needle valve 3, a male screw 4, and a motor rotor 5 consisting of a cylindrical permanent magnet with multi-pole magnetization on the outer periphery. Integrated and formed, male thread 4
is fitted with a propulsion bearing 8 which is fixed to the valve body 6 and has a female thread 7 cut in the center. The outer periphery of the stator 5 of the motor is covered with a thin cylindrical case 9, and a stator coil 10 of the motor is fixed to the outside of the case 9 at a position corresponding to the stator rotor 5 of the motor. The case 9 is hermetically integrated with a valve body 6 having fluid inlets and outlets 11 and 12 and a valve seat 2 by plasma welding or the like, and the other end of the case 9 is also hermetically sealed with a lid 13. 14 is a relatively strong coil spring, and the valve stem 1
male thread 4 rear valve shaft 1 large diameter portion 1a and propulsion bearing 8
Similarly, 15 is also a strong coil spring and is fixed to the stepped portion 1b at the rearmost end of the valve stem 1, so that when the valve stem 1 moves toward the lid 13, It corresponds to the inner surface of the lid 13 and is configured to be compressible. The propulsion screw 16 composed of the male thread 4 and the female thread 7 is composed of, for example, a double thread thread so as to obtain high efficiency within a range of less than 50% thread efficiency. [Operation of conventional product] In the conventional product configured as described above, when a predetermined amount of current is applied to the stator coil 10 of the motor, the rotor 5 rotates and the valve is opened by the screw action of the male screw 4 and the female screw 7. The shaft 1 moves forward (in the valve closing direction) while rotating and brings the coil spring 14 into contact with the propulsion bearing 8 surface. It is designed to stop with an extremely small gap maintained between the valve 3 and the valve seat 2. The reason why there is a gap between the needle valve 3 and the valve seat 2 is to avoid the possibility that a strong threading friction force will be generated between the threaded parts 4 and 7, making the next valve opening movement impossible. This is to avoid. Next, the valve stem 1 moves rearward (in the valve opening direction), and the coil spring 15 and the inner surface of the lid 13 come into contact with each other, and the linear motion of the valve stem 1 is stopped. [Problems to be solved by the invention] The conventional electric valve configured as described above has a structure in which the valve shaft 1 and the rotor 5 are integrated and directly stops linear motion, so the number of parts is reduced. There are few
It has the advantage that it can be manufactured at a very low cost without requiring complicated machining or adjustment. However, on the other hand, when the valve stem stops when closing the valve, the male thread 4 and the female thread 7 of the propulsion bearing mesh tightly. This had the disadvantage that the valve stem 1 could not be started in the reverse direction (valve opening 5) after closing the valve smoothly, or it could not be restarted at all. ), it is conceivable to use a self-loosening screw with a thread efficiency of 50% or more for the propulsion screw.
In this case, when the stator coil 10 is de-energized, the valve shaft rotates due to the flow of fluid, making it impossible to control the motor-operated valve. Therefore, in reality, a double thread thread is used to increase the thread lead. We are trying to bring the screw efficiency closer to less than 50% by using methods such as However, in this case, there is a limit to increasing screw efficiency, and in some cases, the valve shaft 1 may be started in the reverse direction (opening the valve).
This has disadvantages in that the valve shaft 1 cannot be moved smoothly and the propulsive force of the valve shaft 1 generated by the screw action is reduced. In addition, here, the relationship between screw efficiency and screw loosening is
I will explain from the theoretical side of screws. In general, the loosening torque T 2 for the tightening torque T 1
It is said that the smaller the ratio T 2 /T 1 ×100 (%), the easier the screw will loosen, and the larger the screw efficiency η, the easier the screw will loosen, and this is expressed by the following formula. T 1 =F{De/2・tan(ρ+β)}×10 2 (1) T 2 =F{De/2・tan(ρ−β)}×10 2 (2) η=tan β/tan(ρ+β )×100(%) (3) F: Axial force applied to the threaded part (Kg) De: Effective diameter of the thread (mm) ρ: Equivalent angle of friction on the threaded surface (°) ρ=tan -1 (μ/cos α ) μ: Coefficient of friction on the thread surface…0.15. β: Thread lead angle (°) β=tan -1 (l/π・De) l: Thread lead (mm) Here, in the above formulas (1) to (3), for example, A specification: thread M5 x P0 .8 JIS coarse thread B specification: When calculating each value for different screws (M5 x P0.8 x 2 threads), as shown in the table below, B specification with higher thread efficiency η has a higher tightening torque ratio. T 2 /T 1 becomes smaller, allowing smooth startup in the opposite direction after the valve stem has stopped.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電動弁の構造は、弁軸1を前後進させ
るためのおねじ4は、推進力を高くとれるように
すると共に、弁軸1の前後進を停止させるための
ねじを弁軸1の後端部に一体的に設け、このねじ
を、ねじ効率>50%で自然にゆるむねじを設けた
ものである。 即ち、非磁性体からなるケース9外周部に固定
したモータの固定子コイル10への通電により、
ケース内に収納したおねじ4を有する弁軸1と一
体的に形成したモータの回転子5を回転させ、こ
の回転をめねじ7を切た推進軸受8により弁軸1
の直進運動に変換することによつて弁座2の開口
度を制御する電動弁において、弁軸1の最後端に
ねじ効率50%以上のストツパーボルト17を弁軸
1と一体に設け、このストツパーボルト17に、
中心のめねじをはさんで対称位置に設けた2個の
貫通孔18aを有するストツパーナツト18をね
じ込むと共にその後端には当て板21を固定し、
一方、蓋13の内面に固定した2本のピン20を
前記ストツパーナツトの2個の貫通孔18aに挿
入したことを特徴とする電動弁の構造である。 〔作 用〕 本発明は、弁軸1を前後進させるためのおねじ
4の他に、弁軸1の前後進を停止させるためのね
じを弁軸1の後端部に一体的に設けられているか
ら、弁軸1に設けられた針状弁3が弁座2に着座
し完全閉弁する手前で、ストツパーナツト18の
背が当て板21に当たり、弁軸1の回転・直進運
動が停止する。この時にねじの締付力は、ねじ効
率ηが50%以上のものを使用している停止用ねじ
19部だけにはたらき、従来のように、閉弁時に
おける弁軸の停止に際して、おねじ4と推進軸受
のめねじ7がきつく咬み合うようなことがないの
で、閉弁後の弁軸1の逆方向起動(開弁)をスム
ーズに行うことができる。 また、弁軸1の開弁後においては、弁軸1のス
トツパーボルト17前方の太径部1a面に当た
り、弁軸1の回転・直進運動が停止し、閉弁停止
時と同様に作用する。 〔実施例〕 本発明の構成を第1図〜第3図によつて説明す
る。第1図、第2図において同一番号を符したも
のは従来品と同等のはたらきをする部品であり、
これらの詳細な説明は省略する。 本発明の従来品との相違点を以下に説明する
と、 本発明におけるおねじ4とめねじ7による推進
ねじ16は、ねじ効率50%未満(例えば、
M4P0.75×1条ねじ)のものを使用し、ねじの緩
みが起きにくいものにしている。このわけは、同
一モータの出力トルクであつても、推進ねじ16
部で推進力に変換され、流体力に打勝つて弁軸1
が前後進するのに必要な推進力を大きくするため
である。 また、弁軸1の最後端には、弁軸1と一体的に
ねじ効率50%以上(例えば、M3.5×P1.0×2条
ねじ)のストツパーボルト17が設けられてい
る。そして、このストツパーボルト17には、中
心のめねじをはさんで対称位置に設けた2個の貫
通孔18aを有するストツパーナツト18をねじ
込むと共に、その後端にストツパーボルト17の
外径より大なる当て板21がかしめなどの法によ
つて固定されている。 一方、蓋13の内には、ストツパーナツト18
の2個の貫通孔18aと対応する位置に同一ピツ
チで孔18aの径より小さい径の2本のピン20
が圧入などにより固定され、この2本のピン20
が前記ストツパーナツト18の2個の貫通孔18
a内に通されている。 なお、前記ピン20が挿入される貫通孔18a
にかえて、図示しないが縦方向の切り溝を設けて
もよい。また、推進ねじ16と停止用ねじ19の
ねじ巻き方向は右、左いずれでもよい。 次に、本発明の働きを、推進ねじリードl1<停
止用ねじリードl2とし同方向ねじの場合について
説明する。 固定子コイル10に一定量閉方向に回転るよう
通電されると、モータの回転子5および弁軸1は
一体的に回転し、推進ねじの作用で1回転につき
弁軸1はリードl1分前進する。 一方、ストツパーナツト18は、ピン20によ
り回転を止められているためストツパーボルト1
7に対してはリードl2分、ピン20に対しては
(l2−l1)分後方移動する。 そして、弁軸1が所定量閉弁方向に回転して針
状弁3が弁座2完全に着座する手前で、ストツパ
ーナツト18の背面が当て板21に当たり、弁軸
1の回転・直進運動が停止する。この状態が第1
図に示すものである。 なお、弁軸1の移動量とストツパーナツト18
の移動量との関係についけは、弁軸1がn回転
し、(n×l1)分弁軸が前進した距離と、ストツ
パーナツト18がn×(l2−l1)分、ピン20上を
滑つて当て板21に当たる距離が等しくなるよう
にしてある。 そして、弁軸1の回転・直進運動が停止する際
のねじの締付力は、ねじ効率ηが50%以上のもの
を使用している停止用ねじ19部だけにはたら
き、従来のように、閉弁時における弁軸の停止に
際して、おねじ4と推進軸受のめねじ7がきつく
咬み合うようなことがないので、閉弁後の弁軸1
の逆方向起動(開弁)をスムーズに行うことがで
きる。また、停止用ねじ19部が強力にねじ込め
ばねじ込むほど、ストツパーナツト18が当て板
21に当つた時の反力はねじが緩む方向の力とし
て作用することになり、次の開く方向への運動に
は支障をきたさない。 続いて開弁方向への通電が固定子コイル10に
なされると、ストツパーナツト18はすみやかに
当て板21面から離れ、弁軸1は後方向へ回転・
直進しストツパーナツト18は前方向へピン20
に沿つて摺動し、ついには第2図に示すように弁
軸1のストツパーボルト17前方の太径部1a面
に当たり、閉弁停止と同様ストツパーナツト18
の直進・弁軸1の回転・直進運動が停止する。 〔発明の効果〕 以上、説明したごとく、従来品においては推進
用と直進停止用の双方の機能を持つていたねじを
推進だけのねじ部と直進停止のためだけのねじ部
それぞれに分割して、弁軸1上に別々設けたこと
により各機能に即したねじ形状を選択でき、その
結果 (1) 弁軸1を前後進させるためのおねじ4の他
に、弁軸1の前後進を停止させるためのねじを
弁軸1の後端部に一体的に設けられているか
ら、弁軸1の回転・直進運動が停止する際のね
じの締付力は、ねじ効率ηが50%以上のものを
使用している停止用ねじ19部だけにはたらく
ので、停止後の逆方向への再起動がスムーズ行
える。 2 弁軸1を推進力を高くでき、モータの小形化
や人力電流の低減ができる。 といつた効果が得られ産業上有益な発明である。
The structure of the electrically operated valve of the present invention is such that the male thread 4 for moving the valve stem 1 back and forth allows a high propulsive force to be obtained, and the screw for stopping the valve stem 1 from moving back and forth. This screw is integrally provided at the rear end, and this screw is provided with a screw that loosens naturally when the screw efficiency is >50%. That is, by energizing the stator coil 10 of the motor fixed to the outer periphery of the case 9 made of a non-magnetic material,
A rotor 5 of a motor integrally formed with a valve shaft 1 having a male thread 4 housed in a case is rotated, and this rotation is transferred to the valve shaft 1 by a propulsion bearing 8 having a female thread 7.
In a motor-operated valve that controls the opening degree of the valve seat 2 by converting it into a linear motion, a stopper bolt 17 with a thread efficiency of 50% or more is provided integrally with the valve shaft 1 at the rear end of the valve shaft 1. To stopper bolt 17,
A stopper nut 18 having two through holes 18a provided at symmetrical positions across the center female thread is screwed in, and a backing plate 21 is fixed to the rear end.
On the other hand, this electric valve structure is characterized in that two pins 20 fixed to the inner surface of the lid 13 are inserted into two through holes 18a of the stopper nut. [Function] In addition to the external thread 4 for moving the valve stem 1 back and forth, the present invention has a screw integrally provided at the rear end of the valve stem 1 to stop the valve stem 1 from moving back and forth. Therefore, before the needle valve 3 provided on the valve stem 1 seats on the valve seat 2 and is completely closed, the back of the stopper nut 18 hits the backing plate 21, and the rotational and linear movement of the valve stem 1 stops. . At this time, the tightening force of the screw acts only on the 19 stop screws that have a screw efficiency η of 50% or more. Since the female thread 7 of the propulsion bearing does not mesh tightly, the valve shaft 1 can be smoothly started in the reverse direction (opening the valve) after the valve is closed. In addition, after the valve stem 1 is opened, it hits the large diameter portion 1a in front of the stopper bolt 17 of the valve stem 1, and the rotational and linear movement of the valve stem 1 is stopped, acting in the same manner as when the valve is closed and stopped. . [Example] The structure of the present invention will be explained with reference to FIGS. 1 to 3. Components with the same numbers in Figures 1 and 2 are parts that function in the same way as conventional products.
Detailed explanations of these will be omitted. The differences between the present invention and conventional products will be explained below.
M4P0.75 x 1 thread thread) is used to make it difficult for the screw to come loose. This is because even if the output torque of the same motor is the same, the propulsion screw 16
It is converted into propulsive force at the valve shaft 1, which overcomes the fluid force.
This is to increase the propulsive force required to move forward and backward. Further, at the rearmost end of the valve stem 1, a stopper bolt 17 with a thread efficiency of 50% or more (for example, M3.5×P1.0×2 thread thread) is provided integrally with the valve stem 1. Then, a stopper nut 18 having two through holes 18a provided at symmetrical positions across the central female thread is screwed into this stopper bolt 17, and a stopper nut 18 having a diameter larger than the outside diameter of the stopper bolt 17 is screwed into the rear end. The backing plate 21 is fixed by caulking or other methods. On the other hand, inside the lid 13 is a stopper nut 18.
Two pins 20 with the same pitch and a diameter smaller than the diameter of the holes 18a are placed at positions corresponding to the two through holes 18a.
are fixed by press fitting etc., and these two pins 20
are the two through holes 18 of the stopper nut 18.
It is passed through a. Note that the through hole 18a into which the pin 20 is inserted is
Alternatively, although not shown, vertical grooves may be provided. Further, the winding direction of the propulsion screw 16 and the stop screw 19 may be either right or left. Next, the operation of the present invention will be described in the case where the propulsion screw lead l 1 <the stopping screw lead l 2 and screws in the same direction. When the stator coil 10 is energized to rotate by a certain amount in the closing direction, the rotor 5 of the motor and the valve shaft 1 rotate integrally, and the valve shaft 1 has a lead l of 1 minute per rotation due to the action of the propulsion screw. Advance. On the other hand, since the stopper nut 18 is prevented from rotating by the pin 20, the stopper bolt 1
For pin 20, it moves backward by lead l 2 minutes, and for pin 20 it moves backward by (l 2 −l 1 ). Then, before the valve stem 1 rotates a predetermined amount in the valve-closing direction and the needle valve 3 is completely seated on the valve seat 2, the back of the stopper nut 18 hits the backing plate 21, and the rotation and linear movement of the valve stem 1 stops. do. This state is the first
This is shown in the figure. In addition, the amount of movement of the valve stem 1 and the stopper nut 18
Regarding the relationship between the amount of movement of The distance between the two sliders and the contact plate 21 is made equal. Then, the tightening force of the screw when the rotation and linear movement of the valve stem 1 is stopped acts only on the stop screw 19, which uses screw efficiency η of 50% or more, and as in the conventional case, When the valve stem stops when the valve is closed, the male thread 4 and the female thread 7 of the propulsion bearing do not mesh tightly, so the valve stem 1 after the valve closes
The reverse direction start (valve opening) can be performed smoothly. In addition, the more strongly the stopper screw 19 is screwed in, the more the reaction force when the stopper nut 18 hits the backing plate 21 will act as a force in the direction of loosening the screw, which will prevent the next movement in the opening direction. does not cause any hindrance. Subsequently, when the stator coil 10 is energized in the valve opening direction, the stopper nut 18 immediately separates from the backing plate 21 surface, and the valve shaft 1 rotates rearward.
Go straight and the stopper nut 18 will move forward to the pin 20
Finally, as shown in Fig. 2, the valve shaft 1 hits the large diameter portion 1a in front of the stopper bolt 17, and the stopper nut 18
The linear movement of the valve stem 1 and the rotation and linear movement of the valve stem 1 stop. [Effects of the Invention] As explained above, the screw, which had the functions of both propulsion and straight-line stopping in conventional products, is divided into a screw part only for propulsion and a threaded part only for straight-line stopping. By providing separate threads on the valve stem 1, it is possible to select the thread shape that suits each function.As a result, (1) In addition to the external thread 4 for moving the valve stem 1 forward and backward, Since the screw for stopping is integrally provided at the rear end of the valve stem 1, the tightening force of the screw when the rotational/linear motion of the valve stem 1 is stopped has a screw efficiency η of 50% or more. Since it works only on the stopping screw 19 that is used, restarting in the opposite direction after stopping can be performed smoothly. 2. The driving force of the valve shaft 1 can be increased, the motor can be made smaller, and the human power current can be reduced. This is an industrially useful invention with the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例で閉弁状態を示す縦
断面図、第2図は第1図の実施例で開弁状態を示
す縦断面図、第3図は停止用ねじ部を示す斜視
図、第4図は従来の縦断面図。 1……弁軸、2……弁座、3……針状弁、4…
…おねじ、5……モータの回転子、6……弁本
体、7……めねじ、8……推進軸受、9……ケー
ス、10……モータの固定子コイル、1112…
…出入口、13……蓋、1415……コイルバ
ネ、16……推進ねじ、17……ストツパーボル
ト、18……ストツパーナツト、19……停止用
ねじ、20……ピン、21……当て板、1a……
弁軸の太径部、1b……弁軸の段付部、18a…
…ストツパーナツトの外周孔。
Fig. 1 is a longitudinal sectional view showing an embodiment of the present invention in a valve closed state, Fig. 2 is a longitudinal sectional view showing the embodiment of Fig. 1 in an open state, and Fig. 3 shows a stop screw part. A perspective view, and FIG. 4 is a conventional longitudinal sectional view. 1... Valve stem, 2... Valve seat, 3... Needle valve, 4...
... Male thread, 5 ... Motor rotor, 6 ... Valve body, 7 ... Female thread, 8 ... Propulsion bearing, 9 ... Case, 10 ... Motor stator coil, 1112 ...
... Doorway, 13 ... Lid, 1415 ... Coil spring, 16 ... Propulsion screw, 17 ... Stopper bolt, 18 ... Stopper nut, 19 ... Stopping screw, 20 ... Pin, 21 ... Backing plate, 1a ……
Large diameter part of the valve stem, 1b...Stepped part of the valve stem, 18a...
...Peripheral hole of stopper nut.

Claims (1)

【特許請求の範囲】[Claims] 1 非磁性体からなるケース9外周部に固定した
モータの固定子コイル10への通電により、ケー
ス内に収納したおねじ4を有する弁軸1と一体的
に形成したモータの回転子5を回転させ、この回
転をめねじ7を切つた推進軸受8により弁軸1の
直進運動に変換することによつて弁座2の開口度
を制御する電動弁において、弁軸1の最後端にね
じ効率50%以上のストツパーボルト17を弁軸1
と一体的に設け、このストツパーボルト17に、
中心のめねじをはさんで対称位置に設けた2個の
貫通孔18aを有するストツパーナツト18をね
じ込むと共にその後端には当て板21を固定し、
一方、蓋13の内面に固定した2本のピン20を
前記ストツパーナツトの2個の貫通孔18aに挿
入したことを特徴とする電動弁の構造。
1 By energizing the stator coil 10 of the motor fixed to the outer periphery of the case 9 made of a non-magnetic material, the rotor 5 of the motor, which is integrally formed with the valve shaft 1 having the male thread 4 housed inside the case, is rotated. In this electric valve, the degree of opening of the valve seat 2 is controlled by converting this rotation into a linear movement of the valve stem 1 using a propulsion bearing 8 with a female thread 7. 50% or more of the stopper bolt 17 is attached to the valve stem 1
Provided integrally with this stopper bolt 17,
A stopper nut 18 having two through holes 18a provided at symmetrical positions across the central female thread is screwed in, and a backing plate 21 is fixed to the rear end.
On the other hand, the electric valve structure is characterized in that two pins 20 fixed to the inner surface of the lid 13 are inserted into the two through holes 18a of the stopper nut.
JP22252984A 1984-10-23 1984-10-23 Constitution of motor-operated valve Granted JPS61103077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22252984A JPS61103077A (en) 1984-10-23 1984-10-23 Constitution of motor-operated valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22252984A JPS61103077A (en) 1984-10-23 1984-10-23 Constitution of motor-operated valve

Publications (2)

Publication Number Publication Date
JPS61103077A JPS61103077A (en) 1986-05-21
JPH0366546B2 true JPH0366546B2 (en) 1991-10-17

Family

ID=16783856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22252984A Granted JPS61103077A (en) 1984-10-23 1984-10-23 Constitution of motor-operated valve

Country Status (1)

Country Link
JP (1) JPS61103077A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613125U (en) * 1991-12-18 1994-02-18 富士通テン株式会社 Vertical mounting electronic components
JP4550528B2 (en) 2004-09-01 2010-09-22 株式会社不二工機 Motorized valve
JP5649365B2 (en) * 2010-08-11 2015-01-07 三菱電機株式会社 Air conditioner
JP6175715B2 (en) * 2013-11-29 2017-08-09 株式会社テージーケー Stepping motor driven control valve

Also Published As

Publication number Publication date
JPS61103077A (en) 1986-05-21

Similar Documents

Publication Publication Date Title
JP2009156416A (en) Electric linear actuator
JP2000346227A (en) Expansion valve
JP2009502106A (en) Geared motor
US5070266A (en) Electromechanical device for stopping a shaft in at least one position
JPH0366546B2 (en)
JP2000274544A (en) Electric expansion valve
JP2001003770A (en) Motor-driven throttle valve device
JPH0333949B2 (en)
JP2005048779A (en) Control valve
JPH07217760A (en) Valve control device
JP3195743B2 (en) Motorized valve stopper structure
JP2000257740A (en) Electric expansion valve
JP2761787B2 (en) Motorized valve stopper structure
JP2000257739A (en) Stopper of electric valve
JPH0336770Y2 (en)
JP2000002355A (en) Motor-operated valve
JPH0249432B2 (en) DENDOBENNOBENJIKUKAITENTOMEICHINOCHOSEIHOHO
JP2594314Y2 (en) Electric linear actuator
JP2000352472A (en) Motor-driven expansion valve
JPH0235095Y2 (en)
JP3258168B2 (en) Linear drive
JP3014259B2 (en) Flow control valve
JPH08145220A (en) Control method for electrically-driven flow rate control valve
JPH0337671B2 (en)
JPS6332470Y2 (en)