JPH0365921A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPH0365921A
JPH0365921A JP20238489A JP20238489A JPH0365921A JP H0365921 A JPH0365921 A JP H0365921A JP 20238489 A JP20238489 A JP 20238489A JP 20238489 A JP20238489 A JP 20238489A JP H0365921 A JPH0365921 A JP H0365921A
Authority
JP
Japan
Prior art keywords
imaging
light beam
scanning
optical
optical scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20238489A
Other languages
Japanese (ja)
Other versions
JP2747608B2 (en
Inventor
Keishin Shiraiwa
敬信 白岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20238489A priority Critical patent/JP2747608B2/en
Priority to EP19900112793 priority patent/EP0406844A3/en
Publication of JPH0365921A publication Critical patent/JPH0365921A/en
Priority to US08/476,047 priority patent/US5627670A/en
Application granted granted Critical
Publication of JP2747608B2 publication Critical patent/JP2747608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Laser Beam Printer (AREA)

Abstract

PURPOSE:To correct both of the unequal feed pitch of a scanning line and the deviation in the imaging position of a light beam by providing a 1st control means and a 2nd control means which controls the optical scanning position in the direction perpendicular to a scanning surface in accordance with the information from a 2nd detecting means and making the imaging means to the rotating system of symmetry. CONSTITUTION:A reflection mirror 3 is so driven and controlled as to correct the surface inclination, etc., generated in a polygonal mirror 4, by which the unequal feed pitch of the scanning line is eliminated. On the other hand, a collimator lens 2 is driven and controlled, by which the imaging point position of the light beam of the recording body on a drum 6 can be changed in the optical axis direction. The means for detecting the optical scanning position of the light beam used for controlling the reflection mirror 3 and the collimator lens 2 and the means for detecting the imaging state and position of the light beam are executed by disposing a pair of photoelectric converting elements extending along the scanning line to the positions optically equivalent to the recording body. The imaging point position of the light beam is maintained constant in this way while the generation of the unequal feed pitch of the scanning line is suppressed.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、光ビームを被走査面上に走査する光走査装置
、特に、光ビームが被走査面上で常に適正に集光する様
に、且つ走査線の送りが一定間隔となる様に高精度に制
御され、複写装置,記録装置等において高品位の画像出
力等を与えることを可能にした光走査装置に関する。
[Industrial Field of Application] The present invention relates to an optical scanning device that scans a light beam on a surface to be scanned, and in particular, to an optical scanning device that scans a light beam on a surface to be scanned, and in particular, a method that allows the light beam to be properly focused on the surface to be scanned and to control the scanning line feed. The present invention relates to an optical scanning device that is controlled with high precision so as to have constant intervals, and is capable of providing high-quality image output in copying devices, recording devices, etc.

【従来の技術J 光ビームを記録体面上に走査露光する光走査装置におい
て、高品位な画像を得る為には、光ビームの結像点は記
録体の表面力1ら常↓こ一定の位置にあることが望°ま
しI/X16S光学系の収差或は熱膨張等によって必ず
しも一定の位置にはならない。 この為、光源或は光学系の一部を駆動することによって
、結像点の位置を一定の位置番こ保つ方式が提示されて
いる(V14えば、特開昭63−78167号参照)。 また、レーザー光を用いた複写装置、記録装置等におい
て、高速走lI装置として広く使用されている回転多面
1!(ポリゴン)をill、sた装置では、ポリゴンの
面倒れ↓こより走査ラインに送りピッチむらが生じ、高
品位な画像が得られないことがあり、これを解決する手
段として面倒れ補正光学系を用I/)るとし1う光学的
な倒れ補正の方式が知られてし)る(特公昭52−28
666号参照)。 更に、光学的な倒れ補正の方式&±1己録体の送りむら
によって生じる走査ライン送りピッチむらは補正できな
いこと及び光学系力s?1雑化して高価格となること等
の欠点を持つことから、非光学的な倒れ補正・の方式も
提示されている(例えば、特開昭59−15217号参
照)。 【発明が解決しようとする課B】 しかし乍ら、上記従来例においては、高品位な画像を得
る為には補正する必要がある走査線送りピッチむら及び
結像点ないし集光点位置ずれの両方ではなくいずれか一
方のみが補正され、高品位な画像を得る為には不充分で
ある。 一方、上記両者を補正制御する際に、ポリゴンの面倒れ
補正の為に光学的な補正方式を用いると結像光学系は回
転非対称系にならざるを得ない、そして、この結像光学
系において結像点位置ずれを補正する為に結像系の一部
を動かすと、位置ずれ補正に従って発生する収差は、一
般に、サジタル面(走査ビームが経時的に形成する走査
面と直角な面)とメリジオナル面(走査面)において、
量、質及び割合とも異なり、両面において共に所定の許
容収差量内に収めることは困難である。 従って1本発明の目的は、上記の課題に鑑み、回転非対
称系の結像光学系を用いないで走査ライン送りピッチむ
らと光ビームの結像位置ずれとを共に補正できる光走査
装置を提供することにある。 [課題を解決する為の手段1 上記目的を達成する為の本発明では、光源からの光束を
ポリゴンなどの走査手段と結像手段とを介して被走査体
上に集光、走査する光走査装置において、光束の結像位
置を検出する第1検出手段と、第1検出手段からの情報
に基づいて光束の結像位置を結像手段の光軸方向に制御
する第1$t制御手段と、被走査体上の光走査位置を検
出する第2検出手段と、第2検出手段からの情報に基づ
いて上記光走査位置を走査面に対して垂直な方向に制御
する第2制御手段とが具備され、上記結像手段が回転対
称系となっている。 より具体的には、第1制御手段は光源、走査手段、結像
手段の少なくとも一部を駆動して光束の結像位置を制御
したり、第2制御手段は光源、走査手段、結像手段、被
走査体の少なくとも一部を駆動して光走査位置を制御し
たり、或は第2制御手段は光源と被走査体との間の光路
中に設けられた光走査位置を走査面に対して垂直方向に
変える変更駆動手段であったりする。 [作用] 上記の構成の本発明によれば、光ビームの光走査位置を
制御補正する手段が、光ビームの結像位置を制御補正す
る手段と共に併せ設けられて、結像手段が回転対称な光
学系とされているので、上記制御補正する為に結像手段
などの一部を駆動制御しても、サジタル面とメリジオナ
ル面において複雑な態様で収差が発生するようなことは
なく、簡単な制御補正方式ないし手段によって光ビーム
の結像点の位置を適正な位置に保つことができる。 [実施例1 第1図は本発明の第1実施例を示す、同図において、半
導体レーザー光源lから射出された光ビームはコリメー
タレンズ2により平行光束とされ、反射ミラー3によっ
てポリゴンミラー4に導かれる。このポリゴンミラー4
で偏向、走査された光ビームは、結像用のf・θレンズ
5によりドラム6に巻かれた記録体上に結像され、この
上を走査される。 各走査において、ナイフェツジ7及び光検出器8はシリ
ンドリカルレンズ9を介して光ビームを検出し、これに
より得られる水平同期信号によってタイミングをとって
各走査毎にレーザー光源lは画像情報に応じて光変調さ
れる。 以上の構成の光走査装置において1反射ミラー3は、第
2図に示す様に、例えばPLZTやピエゾ素子の如き2
個の圧電性物質から成る支持体10.11上に固定され
ている。 そして、第2図(b)に示す様に、支持体10.11に
互いに極性の異なる電界を印加すれば、反射ミラー3の
反射面it制御可能に傾動させられる。 今、支持体10.11間の距離を4、各支持体1O11
1への印加電圧をVとしたときのこれの変位量をdとす
れば、支持体10.11に互いに逆極性の電界を印加し
たときの反射ミラー3の傾斜角θは、θ=2d/βとな
り、例えば、g=5mm%d=1amとすれば、θ=1
.38分となる。従って、この反射ミラー3を、ポリゴ
ンミラー4に生じる面倒れ等を補正する様に駆動制御す
ることによって、複雑な回転非対称な光学系を用いずに
、面倒れによって生じる記録体上の走査ライン送りピッ
チむらをなくすことができ、走査光学系に回転対称な光
学系を用いることが可能となる。 一方、コリメータレンズ2は、第3図に示す様に、例え
ば、PLZTやピエゾ素子の如き圧電性物質から成る支
持体12上に固定されており、第3図(b)に示す如く
、支持体12に電界を印加することに、よりコリメータ
レンズ2は光軸方向に駆動させられ得る。コリメータレ
ンズ2を基準の位置より光軸方向に移動させると、コリ
メータレンズ2を通過し、た光ビームはこの移動方向及
び移動量に依存して平行光束から発散光或は収束光に変
化し、ポリゴンミラー4によって偏向走査されf・θレ
ンズ5により結像される際に所定の位置とは異なる位置
に結像される。 従って、コリメータレンズ2を駆動制御することにより
、ドラム6上の記録体での光ビームの結像点位置が光軸
方向に変えられる。 よって、結像光学系の収差或は熱膨張等によりスポット
結像位置変動が生じても、光ビームの露光走査の際、常
に記録体に対して一定の位置に光ビームを結像させられ
る。この際、走査光学系に回転非対称な結像光学系を用
いていると、光学系を構成する要素の位置を変えたとき
に発生する収差は一般にサジタル面とメリジオナル面に
おいて量的、質的且つ割合的にも異なることになり゛、
上述したような方法では光ビームの結像位置の変動を所
定の許容量に収めることは困難である。従って、所定の
許容量に収めるには、結像光学系を複雑な形態のものに
し更には複雑な駆動制御を行なわざるをえなくなる。 上記実施例では、回転対称な結像光学系を用いているの
で、こうした問題は生じない。 上記実施例において、結像スポットの光走査位置を移動
する手段として結像系の部分内に反射ミラーを設けたが
1例えばプリズムなどの他の手段でもよい、一般に光軸
を傾けることが可能な方法、手段であればよいので、結
像手段などを駆動する手段を用いてもよい。 また、光ビームの結像位置を変える手段としては、コリ
メータレンズ2を駆動させていたが、他の部分(例えば
、f・θレンズ5など)を駆動させてもよく、一般に結
像系の焦点距離を変えられる方法、手段であればどの様
なものでもよい。 次に、上記反射ミラー3やコリメータレンズ2を制御す
る為に用いられる光ビームの光走査位置を検出する手段
や光ビームの結像状態ないし位置を検出する手段につい
て説明する。 光ビームがドラム6上に記録体上の所定の走査ラインか
らずれていたり、この走査線に対して傾いていたりする
ことは、例えば、走査ラインに沿って伸びる1対の光電
変換素子を記録体と光学的に等価な位置に配置して行な
う、所定の走査ラインに沿って光ビームが走査されると
きは上記1対の光電変換素子に同量の光が検知されて、
それを適当に処理することで光走査位置が適正であるこ
とが検知される。しかし、光ビームが所定の走査ライン
からずれると、一方の光電変換素子に多くの光量が検知
され、そのことを適当に処理することでそのずれ程度が
検知される。また、光ビームが走査ラインに対して傾く
ことは。 一方の光電変換素子から他方の光電変換素子へと検知さ
れる光量の大きさ・が変化し、その変化の度合を適当な
処理回路で測ることで上記傾きの程度が検知される。 従って、こうした光走査位置の検出情報に基づいて前述
の如く反射ミラー3などを制御することで、光走査位置
が適正に制御されることになる。 こうした制御は、記録などを行なう前に予め複数回のレ
ーザー走査を行なって反射ミラー3などを適正位置に固
定してもよいし、その状態で固定しないで、信号記録走
査などを行なう間のブランキング期間のうち、スポット
検出器付近でのみレーザーを発振させて前記の如く制御
動作を行ない信号記録走査の最中はこの適正位置に固定
する様にしてもよい、更には、一定の環境変動があった
ときなどに間欠的に制御動作を行なってもよいし、予め
各走査位置毎に制御値を検知してそれを記憶しておき光
ビーム走査時に実時間で制御動作を行なってもよい。 また、光走査位置を検出するスポット検出器は、有効走
査領域外に配置したり(例えば、片側に1個配置したり
、両側に2個配置したりする)、有効走査領域内に集光
されるビームをその手前で分割器で分割してその分割光
を受ける所に配置されたりする。 いずれにせよ、光走査位置を検出する手段としては何ら
制限はなく、適当なものが装置の設計に合わせて使用し
つる。 光ビームの結像状態を検出する手段としては、例えば、
−走査ラインに対して直角に伸びたスリット状の充電変
換素子を記録体と光学的に等価な位置に配置して行なう
。 光ビームの結像位置が被走査面である記録体に対して所
定の関係にあれば1例えば、スリット状光電変換素子で
は最大のピーク値が検出されたり、Is小の分散の光量
分布のスポットとして検出されたり、最大の尖鋭度のス
ポットとして検出されたりして、それを検出することで
光ビームの結像位置が適正であることが検出される。 そして、光ビームの結像位置が適正であると判断された
コリメータレンズ2などの制御状態の所で固定されて信
号記録走査などが行なわれる。結像位置の制御について
も、光走査位置制御と同様に、間欠的、実時間的、その
他種々の態様で行なわれうる。この様に、結像位置の検
出手段についても何らの制限はなく、適当なものが装置
の設計に合わせて使用しつる。 [発明の効果J 以上説明した様に1本発明によれば、光ビームの光走査
位置を制御補正する手段と光ビームの結像位置を制御補
正する手段を併せ設けているので、走査ライン送りピッ
チむらの発生を抑えつつも結像手段として回転対称な光
学系を用いることができ、簡単な制御補正方式ないし手
段で光ビームの結像点の位置を記録体などの被走査面の
位置から一定の関係4゜ に保つことが出来るので、高品位な画像記録等を容易に
行なうことが可能となる。
[Prior art J] In an optical scanning device that scans and exposes a light beam onto the surface of a recording medium, in order to obtain a high-quality image, the focal point of the light beam must always be at a constant position ↓ due to the surface force 1 of the recording medium. It is desirable that the position be at a constant position due to aberrations or thermal expansion of the I/X16S optical system. For this reason, a method has been proposed in which the position of the imaging point is maintained at a constant position by driving a part of the light source or the optical system (for example, see Japanese Patent Laid-Open No. 63-78167, V14). In addition, the rotating polygon 1! is widely used as a high-speed running II device in copying machines, recording devices, etc. that use laser light. (polygons), the unevenness of the feeding pitch may occur in the scanning line due to the polygon's surface tilt, making it impossible to obtain high-quality images.As a means of solving this problem, a surface tilt correction optical system is used. For example, an optical tilt correction method is known (Japanese Patent Publication No. 52-28).
(See No. 666). Furthermore, the scanning line feed pitch unevenness caused by the optical tilt correction method &±1 self-recording object feed unevenness cannot be corrected, and the optical system force s? Since this method has drawbacks such as complexity and high cost, non-optical tilt correction methods have also been proposed (for example, see Japanese Patent Laid-Open No. 15217/1983). Issue B to be Solved by the Invention However, in the conventional example described above, the scanning line feeding pitch unevenness and the positional deviation of the imaging point or light condensing point need to be corrected in order to obtain a high-quality image. Only one of them is corrected, not both, which is insufficient to obtain a high-quality image. On the other hand, when performing correction control for both of the above, if an optical correction method is used to correct the surface tilt of the polygon, the imaging optical system will inevitably become a rotationally asymmetric system. When a part of the imaging system is moved to correct the positional deviation of the imaging point, the aberrations that occur due to the correction of the positional deviation generally occur on the sagittal plane (the plane perpendicular to the scanning plane formed by the scanning beam over time). In the meridional plane (scanning plane),
It differs in quantity, quality, and proportion, and it is difficult to keep both surfaces within a predetermined allowable aberration amount. Therefore, in view of the above-mentioned problems, an object of the present invention is to provide an optical scanning device that can correct both scanning line feed pitch unevenness and optical beam imaging position deviation without using a rotationally asymmetric imaging optical system. There is a particular thing. [Means for Solving the Problems 1] In order to achieve the above object, the present invention uses optical scanning in which a light beam from a light source is focused and scanned on a scanned object via a scanning means such as a polygon and an imaging means. The apparatus includes: a first detection means for detecting the imaging position of the light beam; and a first $t control means for controlling the imaging position of the light flux in the optical axis direction of the imaging means based on information from the first detection means. , a second detection means for detecting the light scanning position on the object to be scanned, and a second control means for controlling the light scanning position in a direction perpendicular to the scanning surface based on information from the second detection means. The image forming means has a rotationally symmetrical system. More specifically, the first control means controls the imaging position of the light beam by driving at least a part of the light source, the scanning means, and the imaging means, and the second control means controls the light source, the scanning means, and the imaging means. The second control means controls the optical scanning position by driving at least a part of the object to be scanned, or the second control means controls the optical scanning position provided in the optical path between the light source and the object to be scanned with respect to the scanning surface. It may be a changing drive means for changing the vertical direction. [Operation] According to the present invention having the above configuration, the means for controlling and correcting the optical scanning position of the light beam is provided together with the means for controlling and correcting the imaging position of the light beam, so that the imaging means is rotationally symmetrical. Since it is an optical system, even if part of the imaging means is driven and controlled to make the above control correction, aberrations will not occur in a complicated manner on the sagittal plane and the meridional plane. The position of the imaging point of the light beam can be maintained at an appropriate position by means of a control correction method or means. [Embodiment 1] FIG. 1 shows a first embodiment of the present invention. In the figure, a light beam emitted from a semiconductor laser light source 1 is made into a parallel beam by a collimator lens 2, and is reflected by a reflection mirror 3 to a polygon mirror 4. be guided. This polygon mirror 4
The light beam deflected and scanned is imaged by an imaging f/theta lens 5 onto a recording medium wound around a drum 6, and scanned thereon. In each scan, the knife 7 and the photodetector 8 detect the light beam through the cylindrical lens 9, and the timing is determined by the horizontal synchronization signal obtained thereby. Modulated. In the optical scanning device having the above configuration, one reflection mirror 3 is made of two such as PLZT or piezo elements, as shown in FIG.
It is fixed on a support 10.11 made of piezoelectric material. Then, as shown in FIG. 2(b), by applying electric fields having mutually different polarities to the supports 10 and 11, the reflecting surface of the reflecting mirror 3 can be tilted in a controllable manner. Now the distance between supports 10.11 is 4, each support 1O11
When the voltage applied to the mirror 1 is V, and the amount of displacement of the mirror is d, the inclination angle θ of the reflecting mirror 3 when electric fields of opposite polarity are applied to the support 10.11 is θ=2d/ For example, if g=5mm%d=1am, θ=1
.. It will be 38 minutes. Therefore, by controlling the driving of the reflecting mirror 3 to correct the surface tilt etc. that occur in the polygon mirror 4, the scanning line on the recording medium caused by the surface tilt can be moved without using a complicated rotationally asymmetric optical system. Pitch unevenness can be eliminated, and a rotationally symmetrical optical system can be used as the scanning optical system. On the other hand, as shown in FIG. 3, the collimator lens 2 is fixed on a support 12 made of a piezoelectric material such as PLZT or a piezo element, and as shown in FIG. By applying an electric field to 12, the collimator lens 2 can be driven in the optical axis direction. When the collimator lens 2 is moved from the reference position in the optical axis direction, the light beam passing through the collimator lens 2 changes from a parallel beam to a diverging beam or a convergent beam depending on the direction and amount of movement, When deflected and scanned by the polygon mirror 4 and imaged by the f/θ lens 5, the image is formed at a position different from a predetermined position. Therefore, by driving and controlling the collimator lens 2, the position of the image point of the light beam on the recording medium on the drum 6 can be changed in the optical axis direction. Therefore, even if spot imaging position fluctuation occurs due to aberrations or thermal expansion of the imaging optical system, the light beam can always be imaged at a constant position with respect to the recording medium during exposure scanning of the light beam. At this time, if a rotationally asymmetric imaging optical system is used as the scanning optical system, the aberrations that occur when the positions of the elements that make up the optical system are changed are generally quantitative, qualitative, and The proportions will also differ.
With the method described above, it is difficult to keep the variation in the imaging position of the light beam within a predetermined tolerance. Therefore, in order to keep the amount within a predetermined tolerance, it is necessary to use a complicated imaging optical system and to perform complicated drive control. In the above embodiment, since a rotationally symmetrical imaging optical system is used, such a problem does not occur. In the above embodiment, a reflecting mirror is provided within the imaging system as a means for moving the optical scanning position of the imaging spot, but other means such as a prism may also be used, and generally the optical axis can be tilted. Any method or means may be used, and means for driving an imaging means or the like may be used. In addition, although the collimator lens 2 is driven as a means for changing the imaging position of the light beam, other parts (for example, the f/θ lens 5, etc.) may be driven, and generally the focal point of the imaging system is driven. Any method or means that can change the distance may be used. Next, a description will be given of means for detecting the optical scanning position of the light beam used to control the reflecting mirror 3 and collimator lens 2, and means for detecting the imaging state or position of the light beam. If the light beam on the drum 6 is deviated from a predetermined scanning line on the recording medium or is tilted with respect to this scanning line, for example, a pair of photoelectric conversion elements extending along the scanning line may be When a light beam is scanned along a predetermined scanning line, the same amount of light is detected by the pair of photoelectric conversion elements,
By appropriately processing it, it is detected that the optical scanning position is appropriate. However, when the light beam deviates from a predetermined scanning line, a large amount of light is detected by one photoelectric conversion element, and by appropriately processing this, the extent of the deviation can be detected. Also, the light beam is tilted with respect to the scan line. The magnitude of the amount of light detected from one photoelectric conversion element to the other photoelectric conversion element changes, and the degree of the above-mentioned inclination is detected by measuring the degree of the change using an appropriate processing circuit. Therefore, by controlling the reflecting mirror 3 and the like as described above based on the detection information of the optical scanning position, the optical scanning position can be appropriately controlled. Such control may be performed by performing multiple laser scans in advance to fix the reflecting mirror 3 in the proper position before recording, or by not fixing it in that state and by using a laser scan while performing signal recording scanning, etc. During the ranking period, the laser may be oscillated only in the vicinity of the spot detector, and the control operation may be performed as described above, and the position may be fixed at this appropriate position during the signal recording scan. The control operation may be performed intermittently when the light beam is scanned, or the control value may be detected and stored in advance for each scanning position, and the control operation may be performed in real time when the light beam is scanned. In addition, the spot detector that detects the optical scanning position may be placed outside the effective scanning area (for example, one on one side or two on both sides), or the spot detector may be placed within the effective scanning area. The beam splitter is used to split the beam before the splitter, and the splitter is placed in a place that receives the split light. In any case, there are no restrictions on the means for detecting the optical scanning position, and any suitable means can be used in accordance with the design of the apparatus. As means for detecting the imaging state of the light beam, for example,
- A slit-shaped charge conversion element extending perpendicularly to the scanning line is arranged at a position optically equivalent to the recording medium. If the imaging position of the light beam is in a predetermined relationship with respect to the recording medium, which is the scanned surface, 1. For example, in a slit-shaped photoelectric conversion element, the maximum peak value is detected, or a spot with a light intensity distribution with small Is dispersion is detected. By detecting this, it is detected that the imaging position of the light beam is appropriate. Then, the imaging position of the light beam is fixed at a controlled state of the collimator lens 2, etc., which is determined to be appropriate, and signal recording scanning and the like are performed. Control of the imaging position can also be performed intermittently, in real time, or in various other ways, similarly to the optical scanning position control. In this way, there are no restrictions on the means for detecting the imaging position, and any suitable means can be used in accordance with the design of the apparatus. [Effect of the Invention J As explained above, according to the present invention, means for controlling and correcting the optical scanning position of the light beam and means for controlling and correcting the imaging position of the light beam are both provided, so that the scanning line feed It is possible to use a rotationally symmetrical optical system as an imaging means while suppressing the occurrence of pitch unevenness, and by using a simple control correction method or means, the position of the imaging point of the light beam can be changed from the position of the scanned surface such as a recording medium. Since a constant relationship of 4° can be maintained, high-quality image recording, etc. can be easily performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す構成図、第2図(a)は
反射ミラーの側面図、第2図(b)は反射ミラーを傾動
させた状態の説明図、第3図(a)はコリメータレンズ
の断面図、第3図(b)はコリメータレンズを駆動させ
た状態の説明図である。 1・・・・・レーザー光源、2・・・・・コリメータレ
ンズ、3・・・・・反射ミラー4・・・・・回転反射鏡
、6・・・・・記録体巻き付はドラム、7・・・・・ナ
イフェツジ、8・・・・・光検出器、9・・・・・シリ
ンドリカルレンズ、10.11・・・・・反射ミラー支
持体、12・・・・・コリメータレンズ支持体
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2(a) is a side view of a reflecting mirror, FIG. 2(b) is an explanatory diagram of a state in which the reflecting mirror is tilted, and FIG. ) is a sectional view of the collimator lens, and FIG. 3(b) is an explanatory diagram of the state in which the collimator lens is driven. 1...Laser light source, 2...Collimator lens, 3...Reflection mirror 4...Rotating reflector, 6...Recording material is wound on drum, 7 ...Naifetsuji, 8...Photodetector, 9...Cylindrical lens, 10.11...Reflection mirror support, 12...Collimator lens support

Claims (1)

【特許請求の範囲】 1、光源からの光束を走査手段と結像手段を介して被走
査体上に集光、走査する光走査装置において、光束の結
像位置を検出する第1検出手段と、該第1検出手段から
の情報に基づいて光束の結像位置を結像手段の光軸方向
に制御する第1制御手段と、被走査体上の光走査位置を
検出する第2検出手段と、該第2検出手段からの情報に
基づいて光走査位置を走査面に対して垂直な方向に制御
する第2制御手段とを有し、前記結像手段が回転対称系
であることを特徴とする光走査装置。 2、前記第1制御手段は光源、走査手段、結像手段の少
なくとも一部を駆動して光束の結像位置を制御する請求
項1記載の光走査装置。 3、前記第2制御手段は光源、走査手段、結像手段、被
走査体の少なくとも一部を駆動して光走査位置を制御す
る請求項1記載の光走査装置。 4、前記第2制御手段は光源と被走査体との間の光路中
に設けられている請求項1記載の光走査装置。 5、前記第2制御手段は傾動可能に設けられた反射ミラ
ーである請求項4記載の光走査装置
[Scope of Claims] 1. In an optical scanning device that focuses and scans a light beam from a light source onto a scanned object via a scanning means and an imaging means, a first detection means detects the imaging position of the light beam; , a first control means for controlling the imaging position of the light beam in the optical axis direction of the imaging means based on information from the first detection means, and a second detection means for detecting the optical scanning position on the object to be scanned. , a second control means for controlling the optical scanning position in a direction perpendicular to the scanning plane based on information from the second detection means, and the imaging means is a rotationally symmetric system. optical scanning device. 2. The optical scanning device according to claim 1, wherein the first control means controls the imaging position of the light beam by driving at least part of the light source, the scanning means, and the imaging means. 3. The optical scanning device according to claim 1, wherein the second control means controls the optical scanning position by driving at least a part of the light source, the scanning means, the imaging means, and the object to be scanned. 4. The optical scanning device according to claim 1, wherein the second control means is provided in an optical path between the light source and the object to be scanned. 5. The optical scanning device according to claim 4, wherein the second control means is a tiltable reflection mirror.
JP20238489A 1989-07-05 1989-08-04 Optical scanning device Expired - Fee Related JP2747608B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20238489A JP2747608B2 (en) 1989-08-04 1989-08-04 Optical scanning device
EP19900112793 EP0406844A3 (en) 1989-07-05 1990-07-04 Scanning optical apparatus
US08/476,047 US5627670A (en) 1989-07-05 1995-06-07 Scanning optical apparatus having beam scan controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20238489A JP2747608B2 (en) 1989-08-04 1989-08-04 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH0365921A true JPH0365921A (en) 1991-03-20
JP2747608B2 JP2747608B2 (en) 1998-05-06

Family

ID=16456604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20238489A Expired - Fee Related JP2747608B2 (en) 1989-07-05 1989-08-04 Optical scanning device

Country Status (1)

Country Link
JP (1) JP2747608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245181A (en) * 1991-06-24 1993-09-14 Dainippon Screen Mfg. Co., Ltd. Method and apparatus of detecting deviation of scanning line of light beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245181A (en) * 1991-06-24 1993-09-14 Dainippon Screen Mfg. Co., Ltd. Method and apparatus of detecting deviation of scanning line of light beam

Also Published As

Publication number Publication date
JP2747608B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JPS61185716A (en) Optical beam scanner
US5627670A (en) Scanning optical apparatus having beam scan controller
US5550668A (en) Multispot polygon ROS with maximized line separation depth of focus
EP0580080B1 (en) Disk for light beam recording device and light beam recording device
JPS63142316A (en) Semiconductor laser array light source device and laser scanner using the same
JPH06208066A (en) Optical scanning device
JPH10221618A (en) Multi-beam optical device
JPH0365921A (en) Optical scanner
JPS62278521A (en) Light beam scanning device
JP3460440B2 (en) Multi-beam scanning optical device
JP2000255097A (en) Imaging apparatus
JPH08329488A (en) Out-of-focus compensation device
JPH0619494B2 (en) Optical scanning device
JP3521303B2 (en) Optical scanning device
JP2003066353A (en) Cylinder inner surface scanning type image recorder
JPH0343708A (en) Optical scanner
JPH02254409A (en) Scanning optical system and laser beam printer using its system
JP2787816B2 (en) Optical scanning device
JP2000314843A (en) Light beam interval adjusting device and image forming device having light beam interval adjusting device
JPS6226733Y2 (en)
JPH1184288A (en) Optical scanner
JPH10325929A (en) Optical scanner
JPS64684B2 (en)
JPH0287112A (en) Optical scanning device
JPH0634909A (en) Light beam scanning device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees