JPH0365917A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPH0365917A
JPH0365917A JP20238689A JP20238689A JPH0365917A JP H0365917 A JPH0365917 A JP H0365917A JP 20238689 A JP20238689 A JP 20238689A JP 20238689 A JP20238689 A JP 20238689A JP H0365917 A JPH0365917 A JP H0365917A
Authority
JP
Japan
Prior art keywords
scanning
optical
semiconductor laser
wavelength
scanning direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20238689A
Other languages
Japanese (ja)
Other versions
JP2914504B2 (en
Inventor
Jun Koide
純 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16456635&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0365917(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1202386A priority Critical patent/JP2914504B2/en
Priority to DE69014908T priority patent/DE69014908T3/en
Priority to EP90100307A priority patent/EP0378149B2/en
Publication of JPH0365917A publication Critical patent/JPH0365917A/en
Priority to US07/921,403 priority patent/US5270851A/en
Application granted granted Critical
Publication of JP2914504B2 publication Critical patent/JP2914504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To remove the discontinuity of recorded images by the wavelength fluctuation of a semiconductor laser and to allow the scanning recording of high-grade images by correcting the chromatic aberrations of magnifications in a main scanning direction within 1/2 the spot diameter in the scanning direction of a main scanning beam with respect to + or -5nm wavelength width. CONSTITUTION:The luminous flux oscillated from a semiconductor laser diode 1 is linearly optically scanned on a surface 9 to be irradiated by the rotation of a rotary polyhedral mirror 6. The axial chromatic aberration is corrected and the chromatic aberrations of the magnifications of anamorphic lenses 7a to 7c are corrected in order to assure the continuity of the optical scanning. The chromatic aberrations of the magnifications are corrected to the extent that the fluctuation in the value of the optical scanning position moves by about 2.5mum in max. with respect to 1nm wavelength fluctuation. The discrete discontinuous fluctuation of the scanning position with respect to + or -5nm wavelength width is, therefore, necessitated to be decreased down to about 1/2 the spot diameter of the scanning direction. The discontinuity of the semiconductor laser is eliminated in this way and the quality of the scanning recorded images is improved.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、電子写真プロセスを有し高精細画像出力を要
求されるレーザービームプリンタやレーザービーム複写
機等に使用される光走査装置、すなわち半導体レーザー
などからの光束を像担持体等の上に露光走査する光走査
装置に関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to an optical scanning device used in a laser beam printer, a laser beam copying machine, etc. that has an electrophotographic process and is required to output high-definition images. The present invention relates to an optical scanning device that exposes and scans an image carrier or the like with a light beam from a semiconductor laser or the like.

[従来の技術] 従来、レーザービームプリンタやレーザービーム複写装
置内において半導体レーザー素子を用いて像担持体上に
画像を光走査して書き込む光走査装置では、半導体レー
ザーの自己発熱や外周温度変化によって半導体レーザー
の出力モードが変化してレーザービームの波長変動が起
こり、それにより被走査面である像担持体上のピント(
ビームウェストの位置)の変動や光走査光学系の倍率の
色収差による光走査方向の走査位置変動が起こるという
現象がある。これに対する対策として、半導体レーザー
素子自体を一定の温度下に配置してその5#Iをコント
ロールするというものがあった。
[Prior Art] Conventionally, in an optical scanning device that uses a semiconductor laser element in a laser beam printer or a laser beam copying device to optically scan and write an image on an image carrier, the self-heating of the semiconductor laser and changes in the outer circumferential temperature cause The output mode of the semiconductor laser changes and the wavelength of the laser beam changes, which causes the focus (
There is a phenomenon in which scanning position variations in the optical scanning direction occur due to variations in the position of the beam waist (beam waist position) and chromatic aberration of magnification of the optical scanning optical system. As a countermeasure against this, there has been a method of placing the semiconductor laser element itself under a constant temperature and controlling its 5#I.

例えば、半導体レーザー素・子にベルチェ素子を熱的密
着させ、加熱、冷却によりレーザー素子の温度調節を行
なったり、ヒーターを設けて外気温度より高温でレーザ
ー素子の温度調節を行なったりして、上記半導体レーザ
ー素子の出力モード変化による波長変動を原因とするピ
ントや光走査位置の変動を防止し、光走査画像の低品位
化を防いでいた。
For example, by thermally adhering a Bertier element to a semiconductor laser element/device and controlling the temperature of the laser element by heating and cooling, or by providing a heater to adjust the temperature of the laser element at a higher temperature than the outside temperature, This prevents fluctuations in the focus and optical scanning position caused by wavelength fluctuations due to changes in the output mode of the semiconductor laser element, and prevents the quality of the optical scanning image from deteriorating.

また一方、半導体レーザーの発振波長に対する要求が短
波長化してきている現在においては、ゲインガイドタイ
プ(利得導波路型)の多モード発振の半導体レーザーで
あって波長バンド幅の広いもの(半値幅で2〜3nm)
を、短波長化された素子の代わりとして用いねばならな
いという状況がある。
On the other hand, as the demand for oscillation wavelengths of semiconductor lasers is becoming shorter, it is necessary to use gain guide type (gain waveguide type) multimode oscillation semiconductor lasers with a wide wavelength band width (half width). 2-3 nm)
There are situations in which it is necessary to use a device in place of a device with a shorter wavelength.

[発明が解決しようとする課!] しかし乍ら、上記一定の温度下にレーザー素子を置くと
いう従来例では、半導体レーザー素子を温度調節する為
にベルチェ素子、ヒーター、温度制御手段等を用いなけ
ればならず、光走査装置としては高価なものとなってし
まっていた。
[The problem that the invention tries to solve! ] However, in the conventional example of placing the laser element at a constant temperature, it is necessary to use a Vertier element, a heater, a temperature control means, etc. to adjust the temperature of the semiconductor laser element, which makes it difficult to use as an optical scanning device. It had become expensive.

また、この従来例では、半導体レーザー素子から出射し
た光がコリメーターレンズなどの光学部材によりその強
度の何パーセントか反射され、半導体レーザー素子自身
に戻ってくる自己発振光により出力モード変化を起こす
という現象に対しては、対処困難であった、この現象に
対する対処法としては、上記コリメーターレンズなどの
光学部材の反射防止膜を多層膜で構成して反射率を極力
小さくすることで戻り光を抑えるとか、偏光素子を半導
体レーザー素子と光学部材の間の光路中に設けて光学部
材からの反射光を遮断するなどの方法があるが、いずれ
にせよ高価なものになることは避けられない。
In addition, in this conventional example, some percent of the intensity of the light emitted from the semiconductor laser element is reflected by an optical member such as a collimator lens, and the self-oscillation light that returns to the semiconductor laser element itself causes an output mode change. It has been difficult to deal with this phenomenon.As a way to deal with this phenomenon, the anti-reflection coating of optical components such as the collimator lens mentioned above is made up of a multilayer film to minimize the reflectance, thereby reducing the return light. There are methods such as suppressing the amount of light reflected from the optical member, or installing a polarizing element in the optical path between the semiconductor laser element and the optical member to block the reflected light from the optical member, but in any case, it is inevitable that the product will be expensive.

更に、半導体レーザーの波長変動に対して走査像面の移
動を防止するものとして、光走査光学系全系を通して軸
上色収差を補正することも考えられるが、この方法では
像面移動を防止することは出来るが倍率の色収差の補正
が行なわれていないので、半導体レーザーの波長が周囲
温度変化によるモード跳躍によって変動すると光走査長
が変動(デイスト−ジョンの変動も同時に起こる)して
しまう為、光走査レンズの光軸から離れる程、理想的に
光照射したい位置から光照射位置がずれてしまうことに
なる。そして、極端な場合、モードホップは瞬時に起こ
る為に波長が連続的ではなく離散的に変化して、走査画
像がとぎれた状態で記録されてしまうことにもなる。
Furthermore, it is possible to correct longitudinal chromatic aberration through the entire optical scanning optical system to prevent the scanning image plane from shifting due to wavelength fluctuations of the semiconductor laser; however, this method does not prevent the scanning image plane from shifting. However, the chromatic aberration of magnification is not corrected, so if the wavelength of the semiconductor laser changes due to mode jumps due to changes in ambient temperature, the optical scanning length will change (distortion changes will also occur at the same time), so the optical The further away from the optical axis of the scanning lens, the more the light irradiation position deviates from the ideal position. In extreme cases, mode hopping occurs instantaneously, so the wavelength changes not continuously but discretely, resulting in a scanned image being recorded in an interrupted state.

従って1本発明の目的は、半導体レーザーの波長変動に
よる記録画像の不連続性を除去し高品位な画像を走査記
録することが出来る光走査装置を提供することにある。
Accordingly, one object of the present invention is to provide an optical scanning device that can scan and record high-quality images by eliminating discontinuities in recorded images due to wavelength fluctuations of semiconductor lasers.

[課題を解決する為の手段] 上記目的を達成する為の本発明では、レーザー発振器よ
り発振されたレーザー光を一面または多面反射鏡などの
光偏向器により偏向し被照射体または像担持体上に光走
査する光走査装置において、主走査方向(光走査方向)
の倍率色収差(横収差の一因)を、波長幅±5nmに対
して、光走査ビームの走査方向のスポット径の4以内に
補正した走査光学系が用いられている。
[Means for Solving the Problems] In the present invention to achieve the above object, a laser beam oscillated by a laser oscillator is deflected by an optical deflector such as a one-sided or multi-sided reflecting mirror, and is directed onto an irradiated object or an image carrier. In an optical scanning device that performs optical scanning in the main scanning direction (light scanning direction)
A scanning optical system is used in which the lateral chromatic aberration (a cause of lateral aberration) is corrected to within 4 of the spot diameter in the scanning direction of the optical scanning beam for a wavelength width of ±5 nm.

[実施例1 第1図は本発明の光走査装置の実施例の光路図である。[Example 1 FIG. 1 is an optical path diagram of an embodiment of the optical scanning device of the present invention.

第1図には、光ビームが経時的に形成する走査面におけ
る構成と共に、これと並行して走査面に垂直な方向であ
る副走査方向(すなわち光軸に直交する2軸のうち光走
査方向に直交する方向)における構成が示されている。
Figure 1 shows the configuration of the scanning plane formed by the light beam over time, as well as the sub-scanning direction, which is a direction perpendicular to the scanning plane (i.e., the optical scanning direction of the two axes orthogonal to the optical axis). The configuration is shown in a direction perpendicular to .

第1図において、画像信号に従って変調駆動される光源
である半導体レーザーダイオードlから発振される光束
は、コリメーターレンズ3a、3b、3c3dによって
平行光束に変換され、絞り部材10によってビーム外径
が決定される、そして、このビームは、シリントリカル
レンズ4a、4bで、光偏向器である回転多面鏡6の反
射面上に副走査方向にのみ集光されて線状光束となって
入射し、そこで偏向された後、光走査方向にf・θ特性
を持ち副走査方向に共役結像系として構成されたアナモ
フィックレンズ7a、7b、7Cによって被照射体面9
に集光される。このとき、回転多面鏡6の第1図の矢印
方向への等速回転によって、被照射体面9上のこの集光
ビームは線状に光走査される。
In FIG. 1, a light beam emitted from a semiconductor laser diode l, which is a light source that is modulated and driven according to an image signal, is converted into a parallel light beam by collimator lenses 3a, 3b, and 3c3d, and the outer diameter of the beam is determined by an aperture member 10. This beam is focused by the cylindrical lenses 4a and 4b only in the sub-scanning direction onto the reflecting surface of the rotating polygon mirror 6, which is an optical deflector, and becomes a linear light flux, and is incident thereon. After being deflected there, anamorphic lenses 7a, 7b, and 7C, which have f/θ characteristics in the optical scanning direction and are configured as a conjugate imaging system in the sub-scanning direction,
The light is focused on. At this time, by uniformly rotating the polygon mirror 6 in the direction of the arrow in FIG. 1, the focused beam on the surface of the irradiated object 9 is linearly scanned.

第1図の構成において、2.5.8は防塵の為のカバー
ガラスであり、アナモフィックレンズ7a〜7cは副走
査方向において回転多面1116の反射面と被照射体面
9上に共役点を持っている。この為、回転多面鏡6が回
転に伴って歳差運動を起こしても、また、回転多面鏡6
自体の反射面加工精度により隣接する面の傾きがあって
も、被照射体面9上では同一の走査線上を走査するよう
になっている以上に加えて本発明の実施例においては、
半導体レーザーlの環境温度変化(自己発熱も含む)に
よってレーザー発光モードが変化し発振波長が離散的に
変動した場合でも(第5図、第7図参照)光走査の連続
性を確保する為に、また、ゲインガイド型の半導体レー
ザー等で多モード発振型である波長バンド幅の広いレー
ザー(第6図参照)を用いたときの光走査集光スポット
の色収差によるボケを解消する為に、全系において軸上
色収差は当然のこととして補正すると共に、回転多面鏡
6による光偏向によってアナモフィックレンズ7a〜7
cの倍率の色収差を、レーザー波長変動±5nmにおい
て±13μmの光走査位置変動に抑えている。
In the configuration shown in FIG. 1, reference numeral 2.5.8 is a cover glass for dustproofing, and the anamorphic lenses 7a to 7c have conjugate points on the reflective surface of the rotating polygon 1116 and the irradiated object surface 9 in the sub-scanning direction. There is. Therefore, even if the rotating polygon mirror 6 causes precession as it rotates, the rotating polygon mirror 6
Even if there is an inclination of the adjacent surface due to the precision of the reflective surface processing itself, the same scanning line is scanned on the irradiated object surface 9. In addition to the above, in the embodiment of the present invention,
To ensure continuity of optical scanning even when the laser emission mode changes due to environmental temperature changes (including self-heating) of the semiconductor laser l and the oscillation wavelength fluctuates discretely (see Figures 5 and 7). In addition, in order to eliminate the blur caused by chromatic aberration of the light scanning condensed spot when using a multi-mode oscillation type laser with a wide wavelength band width such as a gain guide type semiconductor laser (see Figure 6), In the system, axial chromatic aberration is corrected as a matter of course, and the anamorphic lenses 7a to 7 are
The chromatic aberration of the magnification of c is suppressed to a variation in the optical scanning position of ±13 μm when the laser wavelength varies by ±5 nm.

即ち、軸上色収差に関しては、波長±5nmの変動に対
して±50um以内に補正している(第2図、第3図参
照)、この量を横収差に対応させると±2.5μm程度
の変動となり、換言すれば、レーザービームウェスト内
ではスポット径が変化することなく、ビームウェスト外
では、光走査のスポット径が30μmとすれば、レーザ
ーの波長変動±50mによって最大で30±2.5μm
程度のスポット径変動が起こるにすぎないことを意味す
る。
That is, regarding longitudinal chromatic aberration, a fluctuation of ±5 nm in wavelength is corrected to within ±50 um (see Figures 2 and 3), and when this amount corresponds to lateral aberration, it is corrected to within ±2.5 μm. In other words, if the spot diameter does not change within the laser beam waist, but outside the beam waist, the spot diameter of optical scanning is 30 μm, the laser wavelength fluctuation of ±50 m will result in a maximum of 30 ± 2.5 μm.
This means that only a slight variation in spot diameter occurs.

また、倍率の色収差に関しては、半導体レーザーのモー
ドホップは、−数的に、波長が670nm程度のもので
あると、約1nm程度の波長変動を起こす為(第7図参
@)、光走査中の任意の時刻にlnmの波長変動が起こ
ったとすると、光走査位置変動は最大で約2−5um 
(41315)移動する程度に補正されている(第4図
開側。
Regarding chromatic aberration of magnification, the mode hop of a semiconductor laser causes a wavelength fluctuation of about 1 nm numerically when the wavelength is about 670 nm (see Figure 7 @), so during optical scanning. If a wavelength fluctuation of lnm occurs at any time in
(41315) Corrected to the extent that it moves (Figure 4 open side).

この2.5μm程度の移動量は、本実施例の光走査ビー
ムスポット径(ピーク光強度に対して1 / e″にな
る強度の幅として測って)が走査方向に約30LLm 
(副走査方向には約65μm)である為、走査位置の離
散的不連続変動として走査方向のスポット径の1/10
以下となる。この程度の変動であると。
This amount of movement of about 2.5 μm means that the optical scanning beam spot diameter of this example (measured as the width of the intensity that is 1/e'' with respect to the peak light intensity) is about 30 LLm in the scanning direction.
(approximately 65 μm in the sub-scanning direction), so the discrete and discontinuous fluctuation of the scanning position is 1/10 of the spot diameter in the scanning direction.
The following is true. This is the extent of the fluctuation.

被照射体9上の記録像として人間の目では判別できない
為、画質的な劣化は認められず高品位な画像の光走査が
可能となる。
Since the recorded image on the irradiated object 9 cannot be discerned by the human eye, no deterioration in image quality is observed, and high-quality images can be optically scanned.

以上のことは、波長幅±5nmに対して言うなら、走査
位置の離散的不連続変動が走査方向のスポット径の尾程
度以下であればよいことになる。
The above means that for a wavelength width of ±5 nm, it is sufficient that the discrete and discontinuous fluctuation of the scanning position is equal to or less than the tail of the spot diameter in the scanning direction.

一方、多モード発振レーザーを用いる場合、そのレーザ
ーのモード数によって波長バンド幅は異なるが(第6図
参照)、本実施例によれば光走査位置において光軸上の
位置と光軸から離れた位置とでのスポット径の差を削減
することが出来るので、光走査画像において光軸近傍の
解像力は良いが光走査域の端部に行くに従って解像度が
悪化すると言ったことは解消される。
On the other hand, when using a multimode oscillation laser, the wavelength bandwidth differs depending on the number of modes of the laser (see Figure 6), but according to this example, the wavelength band width differs depending on the number of modes of the laser. Since the difference in spot diameter between positions can be reduced, it is possible to eliminate the problem of an optically scanned image having good resolution near the optical axis, but the resolution worsening toward the end of the optically scanning area.

以上の実施例の光学パラメータは以下の表1に詳細に記
載しである。符号1こついては第1図に示す通りである
The optical parameters of the above examples are detailed in Table 1 below. The reference numeral 1 is as shown in FIG.

表1 実施例(第1図において) 絞りloの径主走査方向1
3.2mm  副走査方向10゜5mm  使用レーザ
ー波長675±5nmθ=53“ (mm) d、    2 2   l d、   48.512 d4 2.73 dl4.19 d、   1.52 dtO,61 d、3.14 d、  27.71 (調!り d、。  4 d、、25(調整) 6口  6 d+x4 d、、  107.7 (調M) d、、   14. 59 a、、   29. 28 dtyl。
Table 1 Example (in Figure 1) Diameter of aperture lo Main scanning direction 1
3.2mm Sub-scanning direction 10°5mm Laser wavelength used: 675±5nmθ=53" (mm) d, 2 2 l d, 48.512 d4 2.73 dl4.19 d, 1.52 dtO, 61 d, 3. 14 d, 27.71 (key! d,. 4 d,, 25 (adjustment) 6 mouths 6 d+x4 d,, 107.7 (key M) d,, 14. 59 a,, 29. 28 dtyl.

Ia  2 dl。 24.11 d2゜ 4.83 d□  4.72 d、、  20.06 a、、2.28 d、  18. 13 d□ 286.81 26 2 a−50 主走査方向     副走査方向 (mm)        (mm) rl    CX3                
  C0rl    Q)             
     CK)r−166,67166,67 r、  −44,438−44,438r修   ω 
               ωa rテ a 9 lll ll r目 r目 I4 r目 H rt 1ll rI@ 20 rg+ r3軍 I2コ 35、 753 39、 996 −49. 716 0 151、 41 3 0 0 0 0 −80. 298 0 −1136. 15 −102. 9 0゜ −148,41 0゜ O n+ d 1、 51633 35、 753 39、 996 −49.716 0口 151 41 38.912 −42. 648 0 0口 0口 0 0 ■ ■ −90,473 −28,685 0 O νd 64、 l n*    1. 5 1633     64. 1
n、   1.72825     28.5n、  
 1. 6031 1     60. 7ns   
1. 51633     64. 1ns   i、
  51633     64. 1nt   1. 
72825     28. 5na   1.516
33     64.1ne   t、62004  
   36. 3nta   i、  603 1 1
     60. 7n、、   1. 62299 
    58. 2n+*   1. 51633  
   64. 1光走査長は光軸中心に対し±150m
m回転多面w!6はφ73 m mで6面体[発明の効
果1 以上説明した様に、本発明によれば、半導体レーザーを
用いた光走査光学系において、軸上の色収差はもとより
倍率の色収差が補正されることによって、半導体レーザ
ーの波長変動による走査位置の変動に起因する走査記録
画像の不連続性、または多モード発振半導4゜ 体レーザーの発振波長幅に起因する光軸外の解像度劣化
が改善され、走査記録画像の品質が向上させられる。し
かも、半導体レーザーの温度制御装置などを省くことが
出来るので、低価格化をも可能としている。
Ia2dl. 24.11 d2゜ 4.83 d□ 4.72 d,, 20.06 a,, 2.28 d, 18. 13 d□ 286.81 26 2 a-50 Main scanning direction Sub-scanning direction (mm) (mm) rl CX3
C0rl Q)
CK) r-166,67166,67 r, -44,438-44,438r modified ω
ωa rtea 9 lll ll rth rth I4 rth H rt 1ll rI@ 20 rg+ r3 army I2ko 35, 753 39, 996 -49. 716 0 151, 41 3 0 0 0 0 -80. 298 0 -1136. 15-102. 9 0°-148, 41 0°O n+ d 1, 51633 35, 753 39, 996 -49.716 0 mouth 151 41 38.912 -42. 648 0 0 0 0 0 ■ ■ -90,473 -28,685 0 O νd 64, l n* 1. 5 1633 64. 1
n, 1.72825 28.5n,
1. 6031 1 60. 7ns
1. 51633 64. 1ns i,
51633 64. 1nt 1.
72825 28. 5na 1.516
33 64.1net, 62004
36. 3nta i, 603 1 1
60. 7n,, 1. 62299
58. 2n+*1. 51633
64. The scanning length of one light is ±150m from the center of the optical axis.
m rotating polygon lol! 6 has a diameter of 73 mm and is a hexahedron [Effect of the Invention 1 As explained above, according to the present invention, in an optical scanning optical system using a semiconductor laser, not only axial chromatic aberration but also lateral chromatic aberration can be corrected. This improves the discontinuity of the scanned recorded image due to the variation of the scanning position due to the wavelength variation of the semiconductor laser, or the resolution deterioration off the optical axis caused by the oscillation wavelength width of the multimode oscillation semiconductor 4° body laser, The quality of the scanned recorded image is improved. Moreover, since a temperature control device for the semiconductor laser can be omitted, it is possible to reduce the cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図、第2図は実施例の走
査方向のビームウェスト像面湾曲量を示す収差図、第3
図は実施例の副走査方向のビームウェスト像面湾曲量を
示す収差図、第4図は実施例の倍率色収差を示す収差図
、第5図は単モード半導体レーザーの波長特性を示す図
、第6図は多モード半導体レーザーの波長特性を示す図
、第7図は半導体レーザーの発振波長温度依存性を示す
図である多面鏡、7a〜7C・・・・・アナモフィック
レンズ、9・・・・・被照q(体、10・・・ ・絞り
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is an aberration diagram showing the amount of beam waist field curvature in the scanning direction of the embodiment, and FIG.
The figures are an aberration diagram showing the amount of beam waist field curvature in the sub-scanning direction of the example, Figure 4 is an aberration diagram showing the lateral chromatic aberration of the example, Figure 5 is a diagram showing the wavelength characteristics of a single mode semiconductor laser, Figure 6 is a diagram showing the wavelength characteristics of a multimode semiconductor laser, and Figure 7 is a diagram showing the temperature dependence of the oscillation wavelength of the semiconductor laser.Polygon mirror, 7a to 7C...Anamorphic lens, 9...・Illuminated q (body, 10... ・Aperture

Claims (1)

【特許請求の範囲】 1、レーザー発振器より発振されたレーザー光を光偏向
器により偏向し被照射体上に光走査する光走査装置にお
いて、走査方向の倍率色収差を、波長幅±5nmに対し
て、光走査ビームの走査方向のスポット径の1/2以下
に補正した走査光学系が用いられている光走査装置2、
前記走査光学系の軸上色収差が全系において補正されて
いる請求項1記載の光走査装置3、前記レーザー発振器
は単モード半導体レーザー素子である請求項1記載の光
走査装置。 4、前記レーザー発振器は多モード半導体レーザー素子
である請求項1記載の光走査装置。
[Claims] 1. In an optical scanning device that deflects a laser beam oscillated by a laser oscillator using an optical deflector and scans it onto an irradiated object, the chromatic aberration of magnification in the scanning direction is determined for a wavelength width of ±5 nm. , an optical scanning device 2 using a scanning optical system corrected to 1/2 or less of the spot diameter in the scanning direction of the optical scanning beam;
2. The optical scanning device according to claim 1, wherein axial chromatic aberration of the scanning optical system is corrected in the entire system, and the optical scanning device according to claim 1, wherein the laser oscillator is a single mode semiconductor laser device. 4. The optical scanning device according to claim 1, wherein the laser oscillator is a multimode semiconductor laser device.
JP1202386A 1989-01-09 1989-08-04 Optical scanning device Expired - Lifetime JP2914504B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1202386A JP2914504B2 (en) 1989-08-04 1989-08-04 Optical scanning device
DE69014908T DE69014908T3 (en) 1989-01-09 1990-01-08 Achromatic optical laser scanning system.
EP90100307A EP0378149B2 (en) 1989-01-09 1990-01-08 Achromatic-type laser scanning optical system
US07/921,403 US5270851A (en) 1989-01-09 1992-07-30 Achromatic-type laser scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202386A JP2914504B2 (en) 1989-08-04 1989-08-04 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH0365917A true JPH0365917A (en) 1991-03-20
JP2914504B2 JP2914504B2 (en) 1999-07-05

Family

ID=16456635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202386A Expired - Lifetime JP2914504B2 (en) 1989-01-09 1989-08-04 Optical scanning device

Country Status (1)

Country Link
JP (1) JP2914504B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764399A (en) * 1995-07-07 1998-06-09 Asahi Kogaku Kogyo Kabushiki Kaisha Scanning lens
US7256815B2 (en) 2001-12-20 2007-08-14 Ricoh Company, Ltd. Image forming method, image forming apparatus, optical scan device, and image forming apparatus using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299927A (en) * 1986-06-20 1987-12-26 Nikon Corp Telecentric ftheta lens
JPS63249119A (en) * 1987-04-03 1988-10-17 Asahi Optical Co Ltd F-theta lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299927A (en) * 1986-06-20 1987-12-26 Nikon Corp Telecentric ftheta lens
JPS63249119A (en) * 1987-04-03 1988-10-17 Asahi Optical Co Ltd F-theta lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764399A (en) * 1995-07-07 1998-06-09 Asahi Kogaku Kogyo Kabushiki Kaisha Scanning lens
US7256815B2 (en) 2001-12-20 2007-08-14 Ricoh Company, Ltd. Image forming method, image forming apparatus, optical scan device, and image forming apparatus using the same

Also Published As

Publication number Publication date
JP2914504B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US5808775A (en) Laser beam scanning optical apparatus
US5521999A (en) Optical system for a laser printer
JPH07281113A (en) Optical scanner
KR100264761B1 (en) Optical scanning device
KR100384431B1 (en) Multi-beam scanning optical system and image forming apparatus using the same
JP2928552B2 (en) Scanning optical device
JP4817668B2 (en) Optical scanning device
JPH0365917A (en) Optical scanner
JPH03179420A (en) Optical apparatus
US5008686A (en) Optical scanning device for scanning a predetermined surface with a plurality of light beams
EP0465136A2 (en) Optical scanning apparatus having submicron wobble correction
EP0637770B1 (en) Compact ROS imaging system
JPH07128604A (en) Scanning optical device
JPH03177808A (en) Optical scanner
US5838481A (en) Achromatic telecentric f-theta scan lens optical system with improved linearity
EP0378149B1 (en) Achromatic-type laser scanning optical system
JP3198750B2 (en) Optical scanning device
KR100529339B1 (en) Laser scanning unit
JP3472205B2 (en) Optical scanning optical device and image forming apparatus using the same
JPH0980334A (en) Scanning optical device
JP2907292B2 (en) Achromatic laser scanning optics
JP2000002848A (en) Scanning optical device
JPH11202232A (en) Multibeam scanning device
JP3192537B2 (en) Scanning optical device
JP2767618B2 (en) Laser scanning optics