JPH0365906B2 - - Google Patents

Info

Publication number
JPH0365906B2
JPH0365906B2 JP60104336A JP10433685A JPH0365906B2 JP H0365906 B2 JPH0365906 B2 JP H0365906B2 JP 60104336 A JP60104336 A JP 60104336A JP 10433685 A JP10433685 A JP 10433685A JP H0365906 B2 JPH0365906 B2 JP H0365906B2
Authority
JP
Japan
Prior art keywords
film
silicon nitride
solar cell
nitride film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60104336A
Other languages
Japanese (ja)
Other versions
JPS61260682A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60104336A priority Critical patent/JPS61260682A/en
Publication of JPS61260682A publication Critical patent/JPS61260682A/en
Publication of JPH0365906B2 publication Critical patent/JPH0365906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、アモルフアス・シリコン半導体を
用いた太陽電池とその製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solar cell using an amorphous silicon semiconductor and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、半導体を用いた太陽電池として、光吸収
率を向上させるため光を受ける表面積が大きくな
るよう半導体の表面を光学的粗面とした構成の太
陽電池があつた。
Conventionally, solar cells using semiconductors have been constructed so that the surface of the semiconductor is optically roughened to increase the surface area that receives light in order to improve the light absorption rate.

そして、半導体の表面を光学的粗面とする製造
方法として、半導体の表面層をレーザ・ビームで
照射し、この半導体の表面を光学的粗面に形成し
た(特開昭59−117274大公報参照)。
Then, as a manufacturing method for making the surface of a semiconductor optically rough, the surface layer of the semiconductor was irradiated with a laser beam to form the surface of this semiconductor into an optically rough surface (see Japanese Patent Application Laid-open No. 117274-1983). .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述したような従来の太陽電池とその
製造方法には、次の問題点があつた。
However, the conventional solar cells and their manufacturing methods as described above have the following problems.

すなわち、この従来の太陽電池の構造は、半導
体の表面層が粗面であつたため、この半導体内の
導電型を決める不純物のトーピングを行うと、不
純物量の深さ方向分布が不均一となつて、光電変
換率を低下させる欠点があつた。また半導体の表
面に鋭い突起が現れることもあり、この突起が半
導体の表面層の上に設ける電極膜にピンホールを
発生させる欠点があつた。
In other words, in the structure of this conventional solar cell, the surface layer of the semiconductor was rough, so when doping with impurities that determine the conductivity type in this semiconductor was performed, the depth distribution of the amount of impurities became non-uniform. However, it had the disadvantage of lowering the photoelectric conversion rate. Moreover, sharp protrusions may appear on the surface of the semiconductor, and these protrusions have the disadvantage of generating pinholes in the electrode film provided on the surface layer of the semiconductor.

さらに、従来の製造方法は、半導体の表面へ高
エネルギーのレーザ・ビームを照射して半導体表
面層を粗面としていたので、表面の凹凸の幾何学
的形状が不均一となり前述の欠点を助長させてい
た。またこの製造方法では、レーザ・ビームで溶
融した半導体の小塊が飛散し、半導体の表面層の
上へ設ける上部電極膜にピンホールを発生させる
だけでなく、光学変換効率を上げるための反射防
止膜や、太陽電池を外気から守つたり、機械的擦
傷を避けたりするための上部電極膜の上へ設ける
表面保護膜にもピンホールを発生させる欠点があ
つた。
Furthermore, in conventional manufacturing methods, the surface of the semiconductor is irradiated with a high-energy laser beam to make the semiconductor surface layer rough, resulting in non-uniform geometric shapes of surface irregularities, which exacerbates the aforementioned drawbacks. was. In addition, with this manufacturing method, small lumps of the semiconductor melted by the laser beam are scattered, not only creating pinholes in the upper electrode film provided on the surface layer of the semiconductor, but also preventing reflections to increase optical conversion efficiency. The membrane and the surface protective film provided on top of the upper electrode film to protect the solar cell from the outside air and to avoid mechanical scratches also have the drawback of generating pinholes.

この発明は、このような問題点を解消するため
になされたもので、表面積を大として光吸収率を
高くした太陽電池とその製造方法を提供すること
を目的とする。
The present invention was made to solve these problems, and an object of the present invention is to provide a solar cell with a large surface area and a high light absorption rate, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る太陽電池は、基板の上面に滑ら
かな形状のふくれ群を有するプラズマ窒化シリコ
ン膜、下部電極膜、アモルフアス・シリコン膜、
上部電極膜を順次形成したものである。
The solar cell according to the present invention includes a plasma silicon nitride film having smooth-shaped bulges on the upper surface of the substrate, a lower electrode film, an amorphous silicon film,
Upper electrode films are sequentially formed.

また、この発明に係る太陽電池の製造方法は、
プラズマ窒化シリコン膜中に含まれる水素を熱処
理によつて放出させ、この水素によつてプラズマ
窒化シリコン膜にふくれ群を形成するものであ
る。
Further, the method for manufacturing a solar cell according to the present invention includes:
Hydrogen contained in the plasma silicon nitride film is released by heat treatment, and this hydrogen forms blisters in the plasma silicon nitride film.

〔作用〕[Effect]

この発明の太陽電池においては、基板の上面に
ふくれ群が形成されているので表面積が大とな
る。
In the solar cell of the present invention, since the bulges are formed on the upper surface of the substrate, the surface area becomes large.

また、この発明の太陽電池の製造方法において
は、プラズマ窒化シリコン膜によつてこれに含ま
れる水素が熱処理によつて放出され、プラズマ窒
化シリコン膜に多数のふくれ群が形成される。
Further, in the solar cell manufacturing method of the present invention, hydrogen contained in the plasma silicon nitride film is released by heat treatment, and a large number of bulges are formed in the plasma silicon nitride film.

〔実施例〕〔Example〕

以下、この発明の実施例を図によつて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の太陽電池の一実施例を示す
斜視図である。この図において、100は太陽電
池の全体を示し、1は基板、2はプラズマ窒化シ
リコン膜、3は下部電極膜、4はアモルフアス・
シリコン膜、5は上部電極膜、6はふくれ群であ
る。
FIG. 1 is a perspective view showing an embodiment of the solar cell of the present invention. In this figure, 100 indicates the entire solar cell, 1 is the substrate, 2 is the plasma silicon nitride film, 3 is the lower electrode film, and 4 is the amorphous
5 is a silicon film, 5 is an upper electrode film, and 6 is a bulge group.

基板1には、例えば酸化シリコンを主成分とす
るガラス板を用いる。下部電極膜3には、例えば
モリブデンのような金属を用いる。アモルフア
ス・シリコン膜4としては、モノシラン・ガスの
グロー放電や、水素雰囲気中での高周波スパツタ
リングによるアモルフアス・シリコン膜を用い
る。なお、図示はしていないが、このアモルフア
ス・シリコン膜4の内部には、光起電力を発生さ
せるために硼素や砒素などの不純物がドーピング
されている。上部電極膜5としては、光を透過
し、かつ導電性のある、例えば酸化インジユウ
ム・酸化錫などの透明導電膜を用いる。プラズマ
窒化シリコン膜2は、滑らかな形状のふくれ群6
を有する膜である。このプラズマ窒化シリコン膜
2の上に順次構築されている下部電極膜3、アモ
ルフアス・シリコン膜4、上部電極膜5の形状
は、ふくれ群6を有するプラズマ窒化シリコン膜
2の形状が転写され、何れも滑らかな形状となつ
ている。光電変換される光は上部電極膜5を通過
した後、アモルフアス・シリコン膜4内で光起電
力を発生させる。この光起電力は、上部電極膜5
と下部電極膜3から外部に取り出される。
For the substrate 1, for example, a glass plate containing silicon oxide as a main component is used. For the lower electrode film 3, a metal such as molybdenum is used, for example. As the amorphous silicon film 4, an amorphous silicon film formed by glow discharge of monosilane gas or high frequency sputtering in a hydrogen atmosphere is used. Although not shown, the inside of this amorphous silicon film 4 is doped with impurities such as boron and arsenic in order to generate photovoltaic force. As the upper electrode film 5, a transparent conductive film that transmits light and is conductive, such as indium oxide or tin oxide, is used. The plasma silicon nitride film 2 has a group of smooth bulges 6
It is a film with The shape of the lower electrode film 3, the amorphous silicon film 4, and the upper electrode film 5, which are successively constructed on the plasma silicon nitride film 2, is the same as that of the plasma silicon nitride film 2 having the bulges 6. It also has a smooth shape. After the photoelectrically converted light passes through the upper electrode film 5, a photovoltaic force is generated within the amorphous silicon film 4. This photovoltaic force is generated by the upper electrode film 5
and is taken out from the lower electrode film 3.

第2図a〜fは、第1図の実施例の太陽電池の
製造方法を説明するための各工程における部分断
面図である。これらの図において、7は水素を示
し、その他は第1図と同じものである。
FIGS. 2a to 2f are partial cross-sectional views at each step for explaining the method for manufacturing the solar cell of the embodiment shown in FIG. 1. FIGS. In these figures, 7 represents hydrogen, and the rest are the same as in Figure 1.

はじめに、製造方法の原理を説明する。周知の
ごとくプラズマ窒化シリコン膜2は、アンモニア
−モノシラン−窒素(またはアルゴン)のガス系
を使つて作られ、水素を多く含んでおり、これら
のガス流量比・圧力やプラズマの周波数・パワー
を変えて水素をより多く含ませることもできる。
そして、このプラズマ窒化シリコン膜2を昇温す
ると、この水素7が膜外へ放出されるとともに、
プラズマ窒化シリコン膜2の硬度が大きくなる性
質がある。
First, the principle of the manufacturing method will be explained. As is well known, the plasma silicon nitride film 2 is made using an ammonia-monosilane-nitrogen (or argon) gas system and contains a large amount of hydrogen. It is also possible to contain more hydrogen.
When the temperature of this plasma silicon nitride film 2 is increased, this hydrogen 7 is released to the outside of the film, and
There is a property that the hardness of the plasma silicon nitride film 2 increases.

したがつて、耐熱性の基板1の上にプラズマ窒
化シリコン膜2を被膜した後熱処理すれば、基板
1とプラズマ窒化シリコン膜2との界面に水素7
が溜り、プラズマ窒化シリコン膜2面に多数のふ
くれ、つまりふくれ群6ができる。そして、この
ふくれ群6は、プラズマ窒化シリコン膜2が硬化
するので熱処理が終了してもそのまま残存する。
これらのふくれの形状は極めて滑らかであるか
ら、こうしたふくれ群6を有するプラズマ窒化シ
リコン膜2面上にアモルフアス・シリコン膜4な
どを形成しても、同様に滑らかで、しかも凹凸の
多い形状のアモルフアス・シリコン膜4を形成す
ることができる。
Therefore, if heat treatment is performed after coating the plasma silicon nitride film 2 on the heat-resistant substrate 1, hydrogen 7 will be formed at the interface between the substrate 1 and the plasma silicon nitride film 2.
As a result, a large number of bulges, ie, bulge groups 6, are formed on the surface of the plasma silicon nitride film 2. Since the plasma silicon nitride film 2 is hardened, the blisters 6 remain even after the heat treatment is completed.
Since the shape of these bulges is extremely smooth, even if an amorphous silicon film 4 or the like is formed on the plasma silicon nitride film 2 having such bulge groups 6, the amorphous silicon film 4, etc., which is similarly smooth but has many irregularities, will be formed. - A silicon film 4 can be formed.

したがつて、このような滑らかで、しかも凹凸
の多い形状のアモルフアス・シリコン膜4によれ
ば、光を受ける表面積が大きいから光吸収率がよ
いだけでなく、不純物の深さ方向分布も従来より
均一となつて優れた光電変換特性を示すようにな
り、さらに、鋭い突起や飛散物によるピンホール
がないので大きい歩留りで製造ができるのみなら
ず、信頼性の高い太陽電池を提供できることとな
る。
Therefore, the amorphous silicon film 4, which is smooth and has many irregularities, not only has a high light absorption rate because it has a large surface area for receiving light, but also has a better depth distribution of impurities than before. It becomes uniform and exhibits excellent photoelectric conversion characteristics, and since there are no sharp protrusions or pinholes caused by flying objects, it not only can be manufactured with a high yield, but also provides highly reliable solar cells.

さて、第2図aに示す基板1の上にアンモニア
−モノシラン−窒素(またはアルゴン)のガス系
を使つて、公知のプラズマ気相成長法を用い、第
2図bのように水素7を含んだプラズマ窒化シリ
コン膜2を形成する。次に、基板1とプラズマ窒
化シリコン膜2を熱処理すると、プラズマ窒化シ
リコン膜2から水素7が放出され、この水素7が
基板1とプラズマ窒化シリコン膜2の界面に溜
り、第2図cのようにプラズマ窒化シリコン膜2
にふくれ群6を生ずる。このふくれ群6は、熱処
理によつてプラズマ窒化シリコン膜2が硬化する
ので、熱処理終了後も残存する。次に、例えばモ
リブデンなどの金属を公知の高周波スパツタリン
グ法によつて、第2図dのようにプラズマ窒化シ
リコン膜2の上に下部電極膜3を形成する。続い
て、モノシラン・ガスのグロー放電や水素雰囲気
中での高周波スパツタリング法によつて、第2図
eに示すようにアモルフアス・シリコン膜4を形
成する。なお、このアモルフアス・シリコン膜4
の形成中または形成後に、硼素や砒素などの不純
物をドーピングする。その後、アモルフアス・シ
リコン膜4の上に、例えば酸化インジユウム、酸
化錫などの透明導電膜を上部電極膜5として第2
図fのごとく形成し、その後、反射防止膜、表面
保護膜(図示せず)を設け、パツケージにアセン
ブリすれば太陽電池が完成する。
Now, using a known plasma vapor phase epitaxy method using an ammonia-monosilane-nitrogen (or argon) gas system, a substrate 1 containing hydrogen 7 as shown in FIG. 2b is deposited on the substrate 1 shown in FIG. 2a. Then, a plasma silicon nitride film 2 is formed. Next, when the substrate 1 and the plasma silicon nitride film 2 are heat-treated, hydrogen 7 is released from the plasma silicon nitride film 2, and this hydrogen 7 accumulates at the interface between the substrate 1 and the plasma silicon nitride film 2, as shown in FIG. 2c. plasma silicon nitride film 2
This causes swelling group 6. Since the plasma silicon nitride film 2 is hardened by the heat treatment, the blisters 6 remain even after the heat treatment is completed. Next, as shown in FIG. 2d, a lower electrode film 3 is formed on the plasma silicon nitride film 2 using a metal such as molybdenum by a known high frequency sputtering method. Subsequently, an amorphous silicon film 4 is formed as shown in FIG. 2e by glow discharge of monosilane gas or high frequency sputtering in a hydrogen atmosphere. Note that this amorphous silicon film 4
Doping with impurities such as boron or arsenic during or after the formation of. After that, a transparent conductive film such as indium oxide or tin oxide is formed as a second upper electrode film 5 on the amorphous silicon film 4.
A solar cell is completed by forming the solar cell as shown in FIG.

第3図はこの発明による太陽電池の構造の他の
実施例を示す断面図である。この図において、2
00はこの実施例の太陽電池を示し、8は反射膜
である。反射膜8は基板1とプラズマ窒化シリコ
ン膜2の間に設けられている。反射膜8には、長
波長の光に対する反射率が高い、例えば金のよう
な金属膜を比較的厚さを大きくして用いる。
FIG. 3 is a sectional view showing another embodiment of the structure of the solar cell according to the present invention. In this figure, 2
00 indicates the solar cell of this example, and 8 is a reflective film. A reflective film 8 is provided between the substrate 1 and the plasma silicon nitride film 2 . For the reflective film 8, a relatively thick metal film such as gold, which has a high reflectance to long wavelength light, is used.

第4図はこの発明による太陽電池の構造の他の
実施例を示す断面図である。この図において、3
00はこの実施例の太陽電池を示し、基板1に
は、例えば酸化シリコンを主成分とするような透
明なガラス板を用いる。反射膜8を基板1の裏面
に設けている。
FIG. 4 is a sectional view showing another embodiment of the structure of the solar cell according to the present invention. In this figure, 3
00 indicates the solar cell of this example, and the substrate 1 is a transparent glass plate whose main component is, for example, silicon oxide. A reflective film 8 is provided on the back surface of the substrate 1.

第3図および第4図は何れも反射膜8により、
アモルフアス・シリコン膜4、下部電極膜3、プ
ラズマ窒化シリコン膜2を透過し易い長波長の光
を反射して、アモルフアス・シリコン膜4内で再
び光吸収させ光電変換効率を向上させるものであ
る。なお、その製造方法は、第2図a〜fに示し
た工程に、反射膜8を形成する工程を加えればよ
いので、その説明は省略する。
In both FIGS. 3 and 4, the reflection film 8
Long-wavelength light that easily passes through the amorphous silicon film 4, the lower electrode film 3, and the plasma silicon nitride film 2 is reflected, and the light is absorbed again within the amorphous silicon film 4, thereby improving photoelectric conversion efficiency. Incidentally, since the manufacturing method thereof can be performed by adding a step of forming the reflective film 8 to the steps shown in FIGS. 2a to 2f, the explanation thereof will be omitted.

〔発明の効果〕〔Effect of the invention〕

この発明は以上詳しく述べたように、基板の上
面に滑らかな形状のアモルフアス・シリコン膜で
構成されているので、光を受ける表面積が大きく
なり、そのため、光吸収率がよいだけでなく、均
一な不純物の深さ方向分布を有する優れた光電変
換特性を持ち、さらに、鋭い突起や飛散物による
ピンホールがないので大きい歩留りで製造がで
き、信頼性の高い太陽電池を提供できる。
As described in detail above, this invention is composed of a smooth amorphous silicon film on the top surface of the substrate, which increases the surface area that receives light, resulting in not only good light absorption but also uniform It has excellent photoelectric conversion characteristics with a depth distribution of impurities, and since there are no sharp protrusions or pinholes caused by flying objects, it can be manufactured at a high yield and provide highly reliable solar cells.

さらに、この発明の太陽電池の製造方法によれ
ば、熱処理によつてプラズマ窒化シリコン膜から
放出させた水素によつてふくれ群を作成するの
で、一度に多数のふくれを滑らかな形状に形成で
きる利点がある。
Furthermore, according to the solar cell manufacturing method of the present invention, the bulges are created by hydrogen released from the plasma silicon nitride film through heat treatment, so there is an advantage that many bulges can be formed into a smooth shape at once. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による太陽電池の一実施例を
示す斜視図、第2図a〜fは第1図の実施例の太
陽電池の製造方法を説明するための各工程におけ
る部分断面図、第3図および第4図はこの発明に
よる太陽電池の他の実施例をそれぞれ示す断面図
である。 図において、1は基板、2はプラズマ窒化シリ
コン膜、3は下部電極膜、4はアモルフアス・シ
リコン膜、5は上部電極膜、6はふくれ群、7は
水素、8は反射膜である。なお、各図中の同一符
号は同一または相当部分を示す。
FIG. 1 is a perspective view showing an embodiment of the solar cell according to the present invention, FIGS. 3 and 4 are cross-sectional views showing other embodiments of the solar cell according to the present invention. In the figure, 1 is a substrate, 2 is a plasma silicon nitride film, 3 is a lower electrode film, 4 is an amorphous silicon film, 5 is an upper electrode film, 6 is a bulge group, 7 is hydrogen, and 8 is a reflective film. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 基板の上面に滑らかな形状のふくれ群を有す
るプラズマ窒化シリコン膜、下部電極膜、アモル
フアス・シリコン膜、上部電極膜を順次形成した
ことを特徴とする太陽電池。 2 基板は、上面に反射膜を備えたことを特徴と
する特許請求の範囲第1項記載の太陽電池。 3 基板は、透明基板であり、かつ下面に反射膜
を備えたことを特徴とする特許請求の範囲第1項
記載の太陽電池。 4 基板面上にプラズマ窒化シリコン膜を形成す
る工程、前記プラズマ窒化シリコン膜に熱処理を
施し前記プラズマ窒化シリコン膜中に含まれる水
素により滑らかなふくれ群を発生させる工程、前
記プラズマ窒化シリコン膜面上に下部電極膜を形
成する工程、この下部電極膜面上にアモルフア
ス・シリコン膜を形成する工程、このアモルフア
ス・シリコン膜面上に上部電極膜を形成する工程
とを含むことを特徴とする太陽電池の製造方法。
[Scope of Claims] 1. A solar cell characterized in that a plasma silicon nitride film having smooth-shaped bulges, a lower electrode film, an amorphous silicon film, and an upper electrode film are sequentially formed on the upper surface of a substrate. 2. The solar cell according to claim 1, wherein the substrate is provided with a reflective film on its upper surface. 3. The solar cell according to claim 1, wherein the substrate is a transparent substrate and has a reflective film on its lower surface. 4. A step of forming a plasma silicon nitride film on the substrate surface, a step of subjecting the plasma silicon nitride film to heat treatment to generate smooth bulges due to hydrogen contained in the plasma silicon nitride film, and a step of forming a smooth bulge group on the plasma silicon nitride film surface. A solar cell characterized by comprising the steps of: forming a lower electrode film on the surface of the lower electrode film, forming an amorphous silicon film on the surface of the lower electrode film, and forming an upper electrode film on the surface of the amorphous silicon film. manufacturing method.
JP60104336A 1985-05-14 1985-05-14 Solar cell and manufacture thereof Granted JPS61260682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60104336A JPS61260682A (en) 1985-05-14 1985-05-14 Solar cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60104336A JPS61260682A (en) 1985-05-14 1985-05-14 Solar cell and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61260682A JPS61260682A (en) 1986-11-18
JPH0365906B2 true JPH0365906B2 (en) 1991-10-15

Family

ID=14378087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60104336A Granted JPS61260682A (en) 1985-05-14 1985-05-14 Solar cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61260682A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005027229A1 (en) * 2003-08-29 2007-11-08 旭硝子株式会社 Substrate with transparent conductive film and method for producing the same
JP2014165354A (en) * 2013-02-26 2014-09-08 Panasonic Corp Porous silicon manufacturing method

Also Published As

Publication number Publication date
JPS61260682A (en) 1986-11-18

Similar Documents

Publication Publication Date Title
EP0112646A2 (en) Photovoltaic device
EP2356687A2 (en) Deep grooved rear contact photovoltaic solar cells
FR2906405A1 (en) METHOD OF MAKING DOPED REGIONS IN A SUBSTRATE AND PHOTOVOLTAIC CELL
JP3469729B2 (en) Solar cell element
US4903102A (en) Semiconductor photoelectric conversion device and method of making the same
JPH0793447B2 (en) Photoelectric conversion element
JP2000058892A (en) Silicon based thin film photoelectric converter
JPS59224183A (en) Photoelectric converter device
JPH0365906B2 (en)
JPS61278171A (en) Thin film photoelectric conversion device
JP2775543B2 (en) Photoelectric conversion device
JPH01125988A (en) Solar cell element
JP3222945B2 (en) Method for manufacturing photovoltaic device
US4734379A (en) Method of manufacture of solar battery
JPS6134268B2 (en)
JPS6213829B2 (en)
JP3172365B2 (en) Photovoltaic device and manufacturing method thereof
JP2994716B2 (en) Photovoltaic device
JPH0750794B2 (en) Method for manufacturing photoelectric conversion element
JP2699659B2 (en) Solar cell
JPS58111379A (en) Thin-film solar cell
JP2000252504A (en) Silicon thin film optoelectric transducer device and manufacture thereof
JP2012501075A (en) Local contact formation and local doping method of semiconductor layer
JPH0645627A (en) Photovoltaic element
JP2005327871A (en) Solar battery and its manufacturing method