JPH0365678A - Distance measuring apparatus using wave - Google Patents

Distance measuring apparatus using wave

Info

Publication number
JPH0365678A
JPH0365678A JP20103989A JP20103989A JPH0365678A JP H0365678 A JPH0365678 A JP H0365678A JP 20103989 A JP20103989 A JP 20103989A JP 20103989 A JP20103989 A JP 20103989A JP H0365678 A JPH0365678 A JP H0365678A
Authority
JP
Japan
Prior art keywords
pulse
waveform
time
wave
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20103989A
Other languages
Japanese (ja)
Inventor
Shigenobu Mikami
成信 三上
Masao Kodera
小寺 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP20103989A priority Critical patent/JPH0365678A/en
Publication of JPH0365678A publication Critical patent/JPH0365678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To enable highly accurate measurement even when the detection of peak is impossible by computing a time difference up to a true rising time of a received waveform, computed from a differentiated value at the rising of the waveform received, from the start of transmission. CONSTITUTION:A pulse (a) at the start of transmission is generated with a pulse generator 1 and a wave thereof is modulated with a pulse modulator 2. The pulse wave is transmitted with a transmitter 3a. The reflected pulse wave from an object 4 to be measured is receive 3b to be detected 5 and amplified 6 and inputted into comparators 7a and 7b different in a comparator level. A processing circuit (microcomputer) 8 calculates a correction time Td upto a true rising point P0 of a received waveform (b) determined primarily from a time difference DELTAt between comparator outputs (c) and (d) to determine time Tm(=Tc-Td and Tc is time until a level of the comparator 7a is exceeded from the generation of a pulse) proportional to a distance L to an object 4. At this point, a level difference DELTAV of the comparator is fixed to determine a differentiated value DELTAV/DELTAt of a waveform (b). The distance L is obtained from L=CXTm/2(C: speed of wave).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、音波、電波、或いは光等の波動をパルス変調
し、送受波に要する時間から被測定物までの距離を測定
する装置に関するもので、車高値検出、車間距離検出2
 ロボットの目等の非接触で距離を高精度に測定する用
途に適している。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device that pulse-modulates waves such as sound waves, radio waves, or light, and measures the distance to an object from the time required for transmitting and receiving waves. Detects vehicle height, detects inter-vehicle distance 2
Suitable for use in measuring distance with high precision without contact, such as with the eyes of robots.

〔従来の技術〕[Conventional technology]

従来、波動を用いた距離測定装置では、コンパレータの
レベルが一定でも、反射強度の変化により特性曲線の傾
きが変わるため測定誤差が生じていた。これに対して、
精度向上のために次の2つの従来技術が提案されていた
Conventionally, in distance measuring devices using waves, even if the comparator level is constant, measurement errors occur because the slope of the characteristic curve changes due to changes in reflection intensity. On the contrary,
The following two conventional techniques have been proposed to improve accuracy.

第1に受渡波形のピークを検出し、送波時点から受波波
形がピークに達する迄の時間から距離を求める方法(特
開昭54−89778)。
The first method is to detect the peak of the transmitted waveform and calculate the distance from the time from the time of transmitting the wave until the received waveform reaches its peak (Japanese Patent Laid-Open No. 54-89778).

第2に測定値を平均化して誤差を低減しようとする方法
(米国特許明細書第4225950)。
The second method attempts to reduce errors by averaging measured values (US Pat. No. 4,225,950).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記第1の従来技術において、被測定物体が非常に近い
場合や大きい場合、第2図に示すように受波信号が飽和
し、ピークが検出できない。そのために、α点とβ点の
中間を算出する等の追加処理が必要となる。また、第3
図のように被測定物が台の上にあり、上方から波動を送
波する場合、受渡波形は、第4図のようになり、被測定
物からの反射ピークを検出することが不可能になるとい
う問題点がある。
In the first conventional technique, when the object to be measured is very close or large, the received signal is saturated as shown in FIG. 2, and the peak cannot be detected. For this purpose, additional processing such as calculating the intermediate point between the α point and the β point is required. Also, the third
If the object to be measured is placed on a table as shown in the figure and the wave is transmitted from above, the delivered waveform will be as shown in Figure 4, making it impossible to detect the reflection peak from the object to be measured. There is a problem with that.

第2の従来技術においては、応答性が低下するという問
題点を有する。
The second conventional technique has a problem in that responsiveness is reduced.

本発明の目的とするところは、応答性を低下させること
なく、ピーク検出が不可能な場合でも高精度に距離測定
をする装置を提供することである。
An object of the present invention is to provide a device that can measure distance with high accuracy even when peak detection is impossible, without reducing responsiveness.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明では、例えば第5図のように、受波波形の
立ち上がりP+を検出すると同時にその微分値(ΔV/
Δt)を検出して、真の立ち上がり時点Poを算出する
ものである。
Therefore, in the present invention, as shown in FIG. 5, for example, as shown in FIG.
Δt) to calculate the true rising point Po.

言いかえれば本発明は、音波、電波、或いは光のいずれ
かよりなる波動をパルス変調し、送波する送波器、 被測定物からの反射波を受波する受渡器、受波した波形
の立ち上がり時の微分値(ΔV/Δt)を測定する微分
値測定手段および、前記微分値より受波した波形の真の
立ち上がり時点を算出する演算手段を設け、 前記送波器での送波開始時点から前記演算手段で算出し
、た真の受波立ち上がり時点までの時間差から、前記被
測定物までの距離を計測することを特徴とする波動を用
いた距離測定装置を構成したものである。
In other words, the present invention includes a transmitter that pulse-modulates and transmits waves consisting of sound waves, radio waves, or light; a receiver that receives reflected waves from an object under test; A differential value measuring means for measuring a differential value (ΔV/Δt) at the time of rising, and an arithmetic means for calculating the true rising point of the received waveform from the differential value, and the transmitting start point at the transmitter. This is a distance measuring device using waves, characterized in that the distance to the object to be measured is measured from the time difference calculated by the calculation means from 1 to the time of the rise of the true received wave.

〔作用〕[Effect]

本発明においては、受波波形の立ち上がりを利用するた
め、反射信号が飽和したり、被測定物からの反射ピーク
が検出不可能な場合でも、高精度に距離測定ができる。
In the present invention, since the rise of the received waveform is utilized, distance can be measured with high accuracy even when the reflected signal is saturated or the reflection peak from the object to be measured cannot be detected.

また、平均化処理も必要としないので、応答性を低下さ
せることもない。
Further, since no averaging process is required, responsiveness does not deteriorate.

〔実施例〕〔Example〕

本発明の実施例を第1図に示す、パルス発生器1で、送
波開始のパルスを発生させ、パルス変調器2で波動をパ
ルス変調させる。送波器3aでパルス波動を送波する。
An embodiment of the present invention is shown in FIG. 1. A pulse generator 1 generates a pulse to start transmitting a wave, and a pulse modulator 2 pulse-modulates the wave. A pulse wave is transmitted by the wave transmitter 3a.

被測定物体4より反射してもどってきたパルス波動を受
波器3bで受波し、検波器5で検波し、アンプ6で増幅
させ、コンパレータレベルの異なる2種類のコンパレー
タ7a。
A pulse wave reflected from the object to be measured 4 and returned is received by a wave receiver 3b, detected by a wave detector 5, and amplified by an amplifier 6, and two types of comparators 7a with different comparator levels are provided.

7bに入力する。マイコン等の処理回路8で2つのコン
パレータ出力c、dの時間差Δt(第6図参照)から−
義に決まる受渡波形の真の立ち上がり点Poまでの補正
時間Tdを算出し、被測定物までの距離に比例したTm
を求める。
7b. From the time difference Δt (see Fig. 6) between the two comparator outputs c and d in the processing circuit 8 such as a microcomputer, -
Calculate the correction time Td to the true rising point Po of the transfer waveform determined by the equation, and calculate Tm proportional to the distance to the object to be measured.
seek.

この実施例では、コンパレータのレベル差ΔVを固定し
、コンパレータ出力c、dの時間差Δtを求めることに
より、受波波形の微分値(ΔV/Δt)を求めている。
In this embodiment, the differential value (ΔV/Δt) of the received waveform is determined by fixing the level difference ΔV of the comparator and determining the time difference Δt between the comparator outputs c and d.

なお、第1図において、aはパルス発生器1の出力波形
、bは増幅後の受波波形、Lは求める距離である。
In FIG. 1, a is the output waveform of the pulse generator 1, b is the received waveform after amplification, and L is the distance to be determined.

なお、前記点Poを求めるための補正値Tdは、第7図
のす、のように反射強度が大きい場合、コンパレ−タレ
ベルlの電圧をVl、前記コンパレータレベル1とコン
パレータレベル2との電圧差をΔV、前記時間差をΔt
とするとTd/V、=Δt/Δ■であるから、 ■1 Td=−一・Δt、−Ko  ・Δt     ・・・
(1)Δ■ という直線式で求まるが、第7図のす、のように反射強
度が小さい場合、前記直線式で求まらないため、第8図
の曲1a領域のごとく、測定により、あらかじめ求めて
おくことで、前記時間差Δtから一義に求めることがで
きる。パルス発生から前記点P、までの時間Tm(第6
図)は、前記Tdト、パルス発生から前記コンパレータ
7aのレベルをきるまでの時間]゛cより、 Tm−T c −T d           ・”(
2)で求まる。また、第8図の曲線領域は、第9図のよ
うな複数の直線で近似できる。この第9図に関連して、
マイコンで処理した時のフローチャートを第10図に示
す。
Incidentally, when the reflection intensity is large as shown in FIG. is ΔV, and the time difference is Δt.
Then, since Td/V, = Δt/Δ■, ■1 Td=-1・Δt, −Ko・Δt...
(1) Δ■ is determined by the linear equation, but when the reflection intensity is small as shown in Figure 7, it cannot be determined by the linear equation, so by measurement, as in the area of track 1a in Figure 8, By determining it in advance, it can be uniquely determined from the time difference Δt. Time Tm from pulse generation to point P (sixth
(Figure) is Tm - T c - T d ・''(
2). Further, the curved area in FIG. 8 can be approximated by a plurality of straight lines as shown in FIG. 9. In relation to this Figure 9,
FIG. 10 shows a flowchart when processing is performed by a microcomputer.

この第10図において、ステップ100では内部クロッ
クにより、第6図のTcと前述のΔtとを計測する。次
に、ステップ101において、第9図のΔtがdt、よ
り大きいか否か判定する。
In this FIG. 10, in step 100, Tc in FIG. 6 and the aforementioned Δt are measured using an internal clock. Next, in step 101, it is determined whether Δt in FIG. 9 is greater than dt.

dtlくΔtのときは、更にステップ102に進みdt
、<Δtか否かを判定する。以下、このようにしてステ
ップ102〜103までは第9図の複数の直線領域のど
の領域に該当するかを判定し、夫々、領域に合った直線
式をステップ106〜107の如く求める。なお、ステ
ップ104は第9図の一直線領域、ステップ105はd
tlからdt2の間の領域である。
When dtl is less than Δt, the process further advances to step 102 and dt
, <Δt. Hereinafter, in steps 102 to 103, it is determined which of the plurality of straight line areas shown in FIG. 9 corresponds, and a linear equation suitable for each area is determined as in steps 106 to 107. Note that step 104 is a straight line area in FIG. 9, and step 105 is d
This is the area between tl and dt2.

このようにして、Tdを求め、ステップ108で第6図
のTmを求め、更に、ステップ109において距離L−
CXTm/2の式から(なおCは波動の速度)、被測定
物までの距離を求めるのである。
In this way, Td is determined, Tm in FIG. 6 is determined in step 108, and further, in step 109, the distance L−
The distance to the object to be measured is determined from the formula CXTm/2 (where C is the velocity of the wave).

他の実施例を第11図に示す、受渡電圧をアンプ6で増
幅して波形すを得、コンパレータ7で波形整形し、単安
定マルチバイブレーク81が作り出す一定の遅延時間Δ
を秒後に、受渡波形すのアナログ値は、第12図の波形
lのようにピークホールド82でホールドされ、A/D
変換器83により、マイコン等の処理回路8に入力され
、ピークホールド値とコンパレータレベルとの差Δ■を
求めるための値となる。マイコン8で、前記ΔVから一
義に決まる受渡波形の真の立ち上がり点Po(第12図
)までの補正時間Tdを算出し、被測定物4までの距離
に比例したTmを求める。なお、第11図、第12図に
おいて、a、  b、  c、  h。
Another embodiment is shown in FIG. 11, in which the delivered voltage is amplified by an amplifier 6 to obtain a waveform, the waveform is shaped by a comparator 7, and a monostable multi-bi break 81 creates a constant delay time Δ.
seconds later, the analog value of the transfer waveform is held by the peak hold 82 as shown in waveform l in FIG.
The converter 83 inputs it to the processing circuit 8 such as a microcomputer, and it becomes a value for determining the difference Δ■ between the peak hold value and the comparator level. The microcomputer 8 calculates the correction time Td from the ΔV to the true rising point Po (FIG. 12) of the transfer waveform, which is uniquely determined, and calculates Tm proportional to the distance to the object to be measured 4. In addition, in FIG. 11 and FIG. 12, a, b, c, h.

lは各点の波形である。l is the waveform at each point.

前記点P、を求めるための補正値Tdは、第13図のb
lのように反射強度が大きい場合、前記コンパレータレ
ベルの電圧をVl、前記遅延時間をΔtとすると、Δt
/ΔV−Td/V、であるから、 Td−V、  ・Δt□          ・・・(
3)ΔV という反比例関係で求まるが、第13図のb!のように
反射強度が小さい場合、前記反比例関係で求まらないた
め、第14図のマツプ領域のごとく、測定により求めて
おくことで、前記ΔVから一義に求めることができる。
The correction value Td for determining the point P is given by b in FIG.
When the reflection intensity is large like l, if the voltage at the comparator level is Vl and the delay time is Δt, then Δt
/ΔV-Td/V, so Td-V, ・Δt□...(
3) It is determined by the inversely proportional relationship ΔV, but b! in Figure 13! When the reflection intensity is small, as in the case of ΔV, it cannot be determined by the inversely proportional relationship, so it can be determined uniquely from the ΔV by first determining it by measurement, as shown in the map area of FIG.

前記Tdは、測定したΔ■が第14図の反比例領域の場
合、回路によりすでに決定されている■1.Δtの値を
あらかじめマイコンにプログラムしておくことで、前記
(3)式で求め、測定したΔ■が第14図のマツプ領域
の場合、このマツプをあらかじめマイコンにプログラム
しておくことで求める。マイコンでは、さらに前記Td
と、パルス発生から前記コンパレータ7のレベルに達す
るまで時間Tcより、パルス発生から前記点P、までの
時間Tmを前記(2)式より求める。
When the measured Δ■ is in the inverse proportional region shown in FIG. 14, the Td is already determined by the circuit 1. By programming the value of Δt in the microcomputer in advance, it can be determined using the equation (3), and if the measured Δ■ is in the map area shown in FIG. 14, it can be determined by programming this map in the microcomputer in advance. In the microcomputer, the above-mentioned Td
Then, from the time Tc from the pulse generation until reaching the level of the comparator 7, the time Tm from the pulse generation to the point P is calculated from the equation (2).

〔発明の効果〕〔Effect of the invention〕

本発明においては、路面等の状況により反射信号の精度
が悪い場合でも高精度の距離測定が可能であるため、実
用性が高く、かつ、応答性良く距離を測定できるため、
この距離を用いて他の車載装置等を高精度に制御できる
In the present invention, since it is possible to measure distance with high accuracy even when the accuracy of the reflected signal is poor due to conditions such as the road surface, it is highly practical and can measure distance with good response.
Using this distance, other in-vehicle devices etc. can be controlled with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示すブロック回路図、第
2図は本発明にかかわる受渡信号の一例を示す波形図、
第3図は本発明装置と被測定物との関係の一例を示す模
式図、第4図は第3図の場合の受渡信号の波形図、第5
図は本発明の詳細な説明する説明図、第6図は第1図の
各部波形図、第7図は第1図装置の受渡波形の例を示す
波形図、第8図は第7図の波形において、微少時間と補
正時間との関係を示す説明図、第9図は第8図の直線近
似図、第10図は第1図のマイコン内での処理を示すフ
ローチャート、第11図は第2実施例のブロック回路図
、第12図は第11図の各部波形図、第13図は第11
図の受渡波形図、第14図は第13図の波形において補
正時間の求め方を説明する説明図である。 1・・・パルス発生器、2・・・パルスミl[L  3
a・・・送波器。 3b・・・受渡器。 4・・・被測定物。 5・・・検波 器。 6・・・アンプ。 7a。 7b・・・コンパレータ。 ・・・マイコン等の処理回路。
FIG. 1 is a block circuit diagram showing a first embodiment of the present invention, FIG. 2 is a waveform diagram showing an example of a transfer signal related to the present invention,
FIG. 3 is a schematic diagram showing an example of the relationship between the device of the present invention and the object to be measured, FIG. 4 is a waveform diagram of the transfer signal in the case of FIG. 3, and FIG.
6 is a waveform diagram for each part of FIG. 1, FIG. 7 is a waveform diagram showing an example of the transfer waveform of the device in FIG. 1, and FIG. 8 is a diagram for explaining the present invention in detail. In the waveform, an explanatory diagram showing the relationship between minute time and correction time, FIG. 9 is a linear approximation diagram of FIG. 8, FIG. 10 is a flowchart showing the processing in the microcomputer of FIG. A block circuit diagram of the second embodiment, FIG. 12 is a waveform diagram of each part of FIG. 11, and FIG. 13 is a waveform diagram of each part of FIG.
FIG. 14 is an explanatory diagram illustrating how to obtain the correction time in the waveform of FIG. 13. 1...Pulse generator, 2...Pulse mill [L 3
a... Transmitter. 3b...Delivery device. 4...Object to be measured. 5...Detector. 6...Amplifier. 7a. 7b... Comparator. ...Processing circuits such as microcomputers.

Claims (1)

【特許請求の範囲】 音波、電波、或いは光のいずれかよりなる波動をパルス
変調し、送波する送波器、 被測定物からの反射波を受波する受波器、 受波した波形の立ち上がり時の微分値(ΔV/Δt)を
測定する微分値測定手段および、前記微分値より受波し
た波形の真の立ち上がり時点を算出する演算手段を設け
、 前記送波器での送波開始時点から前記演算手段で算出し
た真の受波立ち上がり時点までの時間差から、前記被測
定物までの距離を計測することを特徴とする波動を用い
た距離測定装置。
[Claims] A transmitter that pulse-modulates and transmits waves consisting of sound waves, radio waves, or light; A receiver that receives reflected waves from an object to be measured; A receiver that receives reflected waves from an object to be measured; A differential value measuring means for measuring a differential value (ΔV/Δt) at the time of rising, and an arithmetic means for calculating the true rising point of the received waveform from the differential value, and the transmitting start point at the transmitter. A distance measuring device using waves, characterized in that the distance to the object to be measured is measured from the time difference between 1 and 2 and the true reception rise point calculated by the calculation means.
JP20103989A 1989-08-02 1989-08-02 Distance measuring apparatus using wave Pending JPH0365678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20103989A JPH0365678A (en) 1989-08-02 1989-08-02 Distance measuring apparatus using wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20103989A JPH0365678A (en) 1989-08-02 1989-08-02 Distance measuring apparatus using wave

Publications (1)

Publication Number Publication Date
JPH0365678A true JPH0365678A (en) 1991-03-20

Family

ID=16434415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20103989A Pending JPH0365678A (en) 1989-08-02 1989-08-02 Distance measuring apparatus using wave

Country Status (1)

Country Link
JP (1) JPH0365678A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805527A (en) * 1995-12-27 1998-09-08 Denso Corporation Method and apparatus for measuring distance
WO2004095057A1 (en) * 2003-04-24 2004-11-04 Fujitsu Limited Radar device
WO2012121337A1 (en) * 2011-03-08 2012-09-13 国立大学法人静岡大学 Distance measurement signal processing circuit and distance measuring apparatus
JP2019095421A (en) * 2017-11-17 2019-06-20 株式会社リコー Distance measuring apparatus, mobile device and distance measuring method
WO2019181691A1 (en) * 2018-03-19 2019-09-26 日本電産株式会社 Distance measuring device, and moving body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205879A (en) * 1982-05-27 1983-11-30 Nissan Motor Co Ltd Apparatus for monitoring surroundings of vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205879A (en) * 1982-05-27 1983-11-30 Nissan Motor Co Ltd Apparatus for monitoring surroundings of vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805527A (en) * 1995-12-27 1998-09-08 Denso Corporation Method and apparatus for measuring distance
WO2004095057A1 (en) * 2003-04-24 2004-11-04 Fujitsu Limited Radar device
US7030807B2 (en) 2003-04-24 2006-04-18 Fujitsu Limited Radar device
WO2012121337A1 (en) * 2011-03-08 2012-09-13 国立大学法人静岡大学 Distance measurement signal processing circuit and distance measuring apparatus
JP2019095421A (en) * 2017-11-17 2019-06-20 株式会社リコー Distance measuring apparatus, mobile device and distance measuring method
WO2019181691A1 (en) * 2018-03-19 2019-09-26 日本電産株式会社 Distance measuring device, and moving body

Similar Documents

Publication Publication Date Title
JP3224286B2 (en) Temperature measurement device using ultrasonic waves
Carullo et al. An ultrasonic sensor for distance measurement in automotive applications
US7000476B2 (en) Inclination angle measurement apparatus
JPS61172080A (en) Ultrasonic measuring apparatus
JPS6064282A (en) Ultrasonic type distance measuring apparatus
US20200209388A1 (en) Ultrasonic echo processing in presence of doppler shift
JPH0365678A (en) Distance measuring apparatus using wave
JP3660388B2 (en) Electric field strength measuring device
JPH063384B2 (en) Ultrasonic flow meter
JPS631987A (en) Ultrasonic distance measuring device
JPH08271322A (en) Ultrasonic liquid level measuring method
JPH0381687A (en) Laser distance measuring instrument
JPH08334321A (en) Ultrasonic distance-measuring apparatus
JP2000171232A (en) Ultrasonic wave measuring instrument
JPH0760187B2 (en) Road area snow depth meter
JP2856042B2 (en) Radar equipment for vehicles
SU851109A1 (en) Method of weighing rapidly moving objects
JPH05172793A (en) Sound characteristic value measuring device
JPS6225698Y2 (en)
JPS60146172A (en) Non-contact type distance measuring apparatus
JPS6339659Y2 (en)
JPS5825225B2 (en) Sound wave propagation time measurement method and position locating method
JPH04370781A (en) Apparatus and method for measuring closest distance of moving object and entry prevention method of the moving object
JPH01263514A (en) Acoustic wave measuring system
JP2749908B2 (en) Pulse type ultrasonic distance measuring device