JPH0365513A - Raw material for superconductor, production thereof and production of superconductor using the same raw material - Google Patents

Raw material for superconductor, production thereof and production of superconductor using the same raw material

Info

Publication number
JPH0365513A
JPH0365513A JP1202201A JP20220189A JPH0365513A JP H0365513 A JPH0365513 A JP H0365513A JP 1202201 A JP1202201 A JP 1202201A JP 20220189 A JP20220189 A JP 20220189A JP H0365513 A JPH0365513 A JP H0365513A
Authority
JP
Japan
Prior art keywords
raw material
superconductor
thallium
copper
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1202201A
Other languages
Japanese (ja)
Inventor
Shuichiro Shimoda
下田 修一郎
Toranosuke Ashizawa
寅之助 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1202201A priority Critical patent/JPH0365513A/en
Publication of JPH0365513A publication Critical patent/JPH0365513A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the subject raw material having a low carbon content and capable of providing the subject superconductor having a high critical temperature by blending raw materials respectively containing Ba, Ca and copper in a specified ratio, carrying out preliminary calcining, grinding, calcining and regrinding and adding a specified amount of a Tl-containing raw material thereto. CONSTITUTION:Respective raw materials containing thallium, barium, calcium and copper are weighed out so that the atomic ratio of thallium : barium : calcium : copper may be (1.8-4.1):(1.8-2.1):(1.9-4.1):(2.9-5.1). The raw materials containing barium, calcium and copper are initially subjected primary blending and subsequently subjected to preliminarily calcination, grinding, calcination and regrinding. To the obtained ground material the thallium-containing raw material is then added and the secondary blending is carried out to obtain the subject raw material for a superconductor containing thallium, barium, calcium and copper in the above mentioned atomic ratio and containing <=0.7wt.% carbon in the whole composition. In addition, the objective saperconductor having a high critical temperature is obtained by sintering the above obtained raw material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超電導体用原料及びその製造法並びに該原料を
用いた超電導体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a raw material for a superconductor, a method for producing the same, and a method for producing a superconductor using the raw material.

(従来の技術) Te−Ba−Ca−Cu−0系の超電導体は、一般にタ
リウム(T1り、バリウム(Ba)、カルシウム(Ca
 ) 、銅(Cu)等の出発原料を同時に混合するか又
はBa −Ca −Cu−0化合物とT/化合物とを混
合して超電導体用原料とし、これを焼成するととにより
得ることができる。
(Prior art) Te-Ba-Ca-Cu-0 superconductors are generally made of thallium (T1), barium (Ba), calcium (Ca
), by simultaneously mixing starting materials such as copper (Cu), or by mixing a Ba-Ca-Cu-0 compound and a T/compound to obtain a superconductor raw material, which is then fired.

Tl−Ba −Ca  Cu−0系の超電導体は、12
0に以上の高い臨界温度(以下T2eroとする)を有
する材料であることは知られている。
The Tl-Ba-Ca Cu-0 system superconductor has 12
It is known that it is a material having a high critical temperature of 0 or more (hereinafter referred to as T2ero).

しかし出発原料に用いるTI!化合物、詳しくはTI!
酸化物はその融点が酸素中で約717℃と低く、  T
l−Ba−Ca−Cu−0系の超電導体を得るための焼
成温度範囲(800〜900℃)で焼成するとタリウム
が揮散し易い。このため組成ずれが生じ易くなC,T、
   も低下し易くなる。
However, the TI used as the starting material! For more information on compounds, please visit TI!
The oxide has a low melting point of about 717°C in oxygen, and T
If the firing is performed within the firing temperature range (800 to 900°C) for obtaining an l-Ba-Ca-Cu-0 based superconductor, thallium will easily volatilize. For this reason, C, T, which are prone to compositional deviation,
It also tends to decrease.

焼成時のタリウムの揮散を防止する方法としてLri、
  Tl−Ba−Ca−Cu−0系の超電導体用原料を
成形した試料を金箔で包み石英管に封入して焼成するか
アルミナ、マグネシア等のセラミックス製の密閉容器で
焼成する方法等が知られてbる。
As a method of preventing thallium volatilization during firing, Lri,
There are known methods such as wrapping a molded sample of Tl-Ba-Ca-Cu-0-based superconductor raw material in gold foil and enclosing it in a quartz tube and firing it, or firing it in a closed container made of ceramics such as alumina or magnesia. Tebru.

上記に示したセラ□ツクス製の密閉容器で焼成する方法
において、容器の密閉方法としては、容器と蓋の接触面
を銀(Ag)ペーストで7−ルドするなどの工夫がなさ
れていた。
In the above-mentioned method of firing in a closed container made of ceramics, the container was sealed by coating the contact surface between the container and the lid with silver (Ag) paste.

(発明が解決しようとする課題) しかしながら出発原料、溶剤等に含有している炭素(C
)が超電導体用原料に多量残存I−でいる状態のとき密
閉容器内で焼成すると、炭素を含む分解ガスにより容器
の内部圧力が高くなり、これによって気密性が保持でき
ず、タリウムが揮散し易くなり1組成ずれが生じるとい
う問題点がある。
(Problem to be solved by the invention) However, carbon (C) contained in starting materials, solvents, etc.
) remains in a superconductor raw material in a state in which a large amount of I- is fired in a closed container, the internal pressure of the container increases due to decomposition gas containing carbon, which makes it impossible to maintain airtightness and thallium volatilizes. There is a problem in that it becomes easy to use and a one-component deviation occurs.

さらに炭素を多量含有しているとTI!化合物が還元さ
れタリウムが揮散し易くなり、また焼結体に気孔が発生
し易くなるなどの問題がある。
Furthermore, if it contains a large amount of carbon, TI! There are problems in that the compound is reduced, thallium is more likely to volatilize, and pores are more likely to be generated in the sintered body.

本発明Fiかかる問題点を解消した超電導体用原料及び
その製造法並びに核原料を用いた超電導体本発明はタリ
ウム、バリウム、カルシウム及び鋼を主成分とし、その
比率が原子比でタリウム:バリウム:カルシウム:銅が
1.8〜4.1:1.8〜2.1:1.9〜4.12.
.9〜5.1であり、かつ全組成物中に炭素を0.73
ii%以下含有してなる!電導体用原料、上記の組成と
なるようにタリウム。
The present invention Fi is a raw material for a superconductor that solves such problems, a method for producing the same, and a superconductor using a nuclear raw material.The present invention has thallium, barium, calcium, and steel as main components, and the atomic ratio is thallium:barium: Calcium: Copper: 1.8-4.1: 1.8-2.1: 1.9-4.12.
.. 9 to 5.1 and 0.73 carbon in the total composition
Contains less than ii%! Raw material for conductors, thallium with the above composition.

バリウム、カルシウム及び銅を含む各原料を秤量し、つ
いでバリウム、カルシウム及び銅を含む原料を一次混合
した後、予備焼成、粉砕、仮焼、再粉砕し、さらに前記
粉砕物にタリウムを含む原料を加えて二次混合する超電
導体用原料の製造法並びに該超電導体用原料を焼成する
超電導体の製造法に関する。
Each raw material containing barium, calcium, and copper is weighed, and then the raw materials containing barium, calcium, and copper are mixed together, and then pre-calcined, pulverized, calcined, and re-pulverized, and the raw material containing thallium is added to the pulverized material. In addition, the present invention relates to a method for producing a raw material for a superconductor that is subjected to secondary mixing, and a method for producing a superconductor that involves firing the raw material for a superconductor.

本発明に釦いて超電導体用原料を構成する主成分のタリ
ウム、バリウム、カルシウム及び銅を含む原料(出発原
料)については特に制限はないが。
In the present invention, there are no particular restrictions on the raw materials (starting raw materials) containing thallium, barium, calcium, and copper, which are the main components constituting the raw materials for superconductors.

例えばこれらの酸化物、炭r1i!塩、硝酸塩、蓚酸塩
等の1種又は2種以上が用すられる。
For example, these oxides, carbon r1i! One or more of salts, nitrates, oxalates, etc. are used.

本発明において、タリウムは原子比で1.8〜4.1の
範囲とされ、1.8未満であるとタリウムが揮散し易く
組成の制御が困難になると共にT:eroが110に以
上の安定した超電導体が得られにくくなり、一方4.1
を越えると均一な組成の超電導体が得られにくくなり、
またタリウムの持つ強い毒性の問題、得られる超電導体
が高価になるという問題などがある。
In the present invention, thallium has an atomic ratio in the range of 1.8 to 4.1, and if the atomic ratio is less than 1.8, thallium will easily volatilize, making it difficult to control the composition, and the T: ero must be stable at 110 or higher. It becomes difficult to obtain a superconductor with 4.1
If the
There are also problems with thallium's strong toxicity and the fact that the resulting superconductor is expensive.

バリウムは原子比で1.8〜Z1の範囲とされ。Barium has an atomic ratio in the range of 1.8 to Z1.

この範囲から外れると超電導体以外の結晶相が生威し易
く、高T:eroの超電導体が得られにくくなり T 
:erOが低下する。
Outside this range, crystal phases other than superconductors tend to grow, making it difficult to obtain a high T: ero superconductor.
: erO decreases.

カルシウムは原子比で1.9〜4.1の範囲とされ。Calcium has an atomic ratio in the range of 1.9 to 4.1.

1.9未満であると高T :erOの超電導体が得られ
にくくなり rjeroが低下し、4.lを越えると超
電導体以外の結晶相か生成し易くなる。
If it is less than 1.9, it becomes difficult to obtain a high T:erO superconductor and rjero decreases; 4. If it exceeds 1, crystal phases other than superconductors tend to form.

銅#″i原子比で′2..9〜5.1のN囲とされ、2
.9未満であるとr(:eroは低下し、5.1を越え
ると超電導体以外の結晶相が生成し易くなる。
Copper #''i atomic ratio is ``2..9~5.1 N range, 2
.. When it is less than 9, r(:ero decreases, and when it exceeds 5.1, crystal phases other than superconductors tend to be generated.

炭素の含有量は、全組成物中に0.7重i%以下とされ
、0.7重ffi%を越えるとTJ化合物が還元され易
くなると共に融点が低下してタリウムが揮散し易くなる
。その結果2組成ずれが生じ、超電導体以外の結晶相が
生じ易くなり T :e rQが低下し、また焼結体に
気孔が発生し、密度が低くなるなどの欠点が生じる。
The content of carbon in the entire composition is 0.7% by weight or less, and if it exceeds 0.7% by weight, the TJ compound is easily reduced, the melting point is lowered, and thallium is easily volatilized. As a result, a deviation between the two compositions occurs, and crystal phases other than superconductors tend to occur, T:erQ decreases, and pores are generated in the sintered body, causing disadvantages such as a decrease in density.

上記に示す組成の超電導体用原料を焼成すればT %e
roが110 K以上の超電導体を得ることができる。
If the raw material for superconductor having the composition shown above is fired, T %e
A superconductor with an ro of 110 K or more can be obtained.

混合方法については特に制限はないが1例えば合成樹脂
製のボールミル内に合成樹脂で被覆したポール、エタノ
ール、メタノール等の溶媒及び原料を充填し、湿式混合
することが好壕しb0タリウムを含む原料は、他の原料
を一次混合した後、予備!Aff、粉砕、仮焼し、それ
を粉砕した粉砕物に添加して二次混合するものとし、も
し他の原料と共に一次混合した後予備焼戒及び仮焼成す
るとタリウムが揮散して組成ずれが生じ rP:e r
 Oが110に以上の超電導体を得ることができなり0
予備焼成温度及び仮焼温度は各原料の配合割合などによ
り適宜選定されるが、予備焼成温度は830〜900℃
の範囲、仮焼温度は860〜980℃の範囲が好筐しく
、普た雰囲気は大気中。
There are no particular restrictions on the mixing method, but for example, it is preferable to fill a synthetic resin ball mill with a synthetic resin-coated pole, a solvent such as ethanol, methanol, and raw materials, and perform wet mixing. After the primary mixing of other raw materials, reserve! Aff, crushed, calcined, and then added to the crushed pulverized material for secondary mixing.If pre-calcined and calcined after primary mixing with other raw materials, thallium will volatilize and composition deviation will occur. rP: e r
It is not possible to obtain a superconductor with O of 110 or more, which is 0.
The pre-firing temperature and calcination temperature are appropriately selected depending on the blending ratio of each raw material, etc., but the pre-firing temperature is 830 to 900°C.
The calcination temperature is preferably in the range of 860 to 980°C, and the general atmosphere is air.

酸素雰囲気中、真空中、還元雰囲気中等で予備焼成及び
仮焼することができ特に制限はない。
Preliminary firing and calcining can be carried out in an oxygen atmosphere, a vacuum, a reducing atmosphere, etc., and there are no particular restrictions.

粉砕についてFi特に制限はな〈従来公知の方法。There are no particular restrictions on pulverization (any conventionally known method).

例えば乳鉢などを用いて粉砕される。For example, it is ground using a mortar or the like.

焼成は密閉容器内で焼成することが好ましい。Firing is preferably performed in a closed container.

密閉容器としては、アルミナ、マグネシア等のセラミッ
クス製の容器を用いることが好ましい。
As the closed container, it is preferable to use a container made of ceramics such as alumina or magnesia.

焼成温度は各原料の配合割合などによ勺適宜選定される
が、800〜900℃の範囲で焼成することが好筐しい
Although the firing temperature is appropriately selected depending on the blending ratio of each raw material, it is preferable to perform the firing in the range of 800 to 900°C.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例l BaC05(和光純薬工業製、純度99.9%)。Example l BaC05 (manufactured by Wako Pure Chemical Industries, purity 99.9%).

CaC05(高純度化学研究新製、純度99.99%)
及びCuOC高純度化学研究新製、純度99.9%)を
第1表に示す割合に秤量し出発原料とした。
CaC05 (manufactured by Koujun Kagaku Kenkyu Shin, purity 99.99%)
and CuOC Kojundo Kagaku Kenkyushin Co., Ltd., purity 99.9%) were weighed in the proportions shown in Table 1 and used as starting materials.

この後上記の出発原料を合成樹脂製のボールミル内に合
成樹脂で被覆した鋼球ボール及びメタノールと共に充填
し、毎分50回転の条件で60時時間式混合、粉砕した
。乾燥後、電気炉を用いて大気中で880℃で10時間
予備焼成し、ついで乳鉢で粉砕した後、酸化雰囲気中で
第1表に示す程を繰り返し行い、賦香8については予備
焼成粉を粉砕したものをその11用いた。
Thereafter, the above starting materials were charged into a synthetic resin ball mill together with steel balls coated with synthetic resin and methanol, and mixed and pulverized at 50 revolutions per minute for 60 hours. After drying, the powder was pre-calcined in the air at 880°C for 10 hours using an electric furnace, and then crushed in a mortar, and the process shown in Table 1 was repeated in an oxidizing atmosphere. The pulverized material No. 11 was used.

次にTlzOs f高純度化学研究新製、純度99.9
%)を第1表に示す割合に秤量して上記の粉砕物中に添
加し、乳鉢で均一に混合、粉砕して超電導体用原料を得
た。得られた超電導体用原料について高周波燃焼赤外線
吸収法により炭素の含有量を測定した。この結果を第2
表に示す。iたタリウム、バリウム、カルシウム及び銅
の比率を原子比で第2表に示す。
Next, TlzOs f high purity chemical research new product, purity 99.9
%) were weighed and added to the above-mentioned pulverized material in the ratio shown in Table 1, mixed uniformly in a mortar, and pulverized to obtain a raw material for a superconductor. The carbon content of the obtained superconductor raw material was measured by high frequency combustion infrared absorption method. This result is the second
Shown in the table. Table 2 shows the atomic ratios of thallium, barium, calcium and copper.

さらに上記で得た超[導体用原料を金型ブレスで100
MPaの圧力で成形して厚さ2ffilの成形体を得た
。ついでこの成形体を密閉したアルミするつぼ中で86
5℃で第2表に示す時間焼成してT/系の超電導体を得
た。
Furthermore, the superconductor raw material obtained above was heated to 100% by mold press.
A molded product having a thickness of 2ffil was obtained by molding at a pressure of MPa. This molded body was then placed in a sealed aluminum pot for 86 hours.
A T/type superconductor was obtained by firing at 5° C. for the time shown in Table 2.

次に得られたT/系の超電導体を長さ20mmX幅3肋
×厚さ2InI11の直方体に加工し、四端子法で抵抗
の温度変化を測定し T Ze roを求めた。その結
果を第2表に示す。
Next, the obtained T/based superconductor was processed into a rectangular parallelepiped with a length of 20 mm, a width of 3 ribs, and a thickness of 2 InI11, and the temperature change in resistance was measured using the four-probe method to determine T Zero. The results are shown in Table 2.

−〇: *印は不発明に言1れないもの會小丁。−〇: *marked is the uninvented thing.

第2表から明らかなように本発明の実施例になる超電導
体用原料を用いた超電導体は rp:erOが110に
以上の値を示し9本発明に含オれない組成の超電導体用
原料を用いた超電導体に比較してTZeroが高いこと
がわかる。
As is clear from Table 2, the superconductors using the superconductor raw materials according to the present invention have rp:erO values of 110 or more, and the superconductor raw materials have compositions that are not included in the present invention. It can be seen that TZero is higher than that of a superconductor using .

(発明の効果) 本発明によれば、タリウムの揮散を押え rp:er。(Effect of the invention) According to the present invention, volatilization of thallium is suppressed.

の高い超電導体を得ることができ、また上記の効果を有
する超電導体を提供する超電導体用原料を得ることがで
きる。
It is possible to obtain a superconductor having a high .

Claims (3)

【特許請求の範囲】[Claims] 1.タリウム,バリウム,カルシウム及び銅を主成分と
し,その比率が原子比でタリウム:バリウム:カルシウ
ム:銅が1.8〜4.1:1.8〜2.1:1.9〜4
.1:2.9〜5.1であり,かつ全組成物中に炭素を
0.7重量%以下含有してなる超電導体用原料。
1. The main components are thallium, barium, calcium and copper, and the atomic ratio of thallium:barium:calcium:copper is 1.8-4.1:1.8-2.1:1.9-4
.. 1:2.9 to 5.1, and the total composition contains 0.7% by weight or less of carbon.
2.請求項1記載の組成となるようにタリウム,バリウ
ム,カルシウム及び銅を含む各原料を秤量し,ついでバ
リウム,カルシウム及び銅を含む原料を一次混合した後
,予備焼成,粉砕,仮焼,再粉砕し,さらに前記粉砕物
にタリウムを含む原料を加えて二次混合することを特徴
とする超電導体用原料の製造法。
2. Each raw material containing thallium, barium, calcium, and copper is weighed so as to have the composition according to claim 1, and then the raw materials containing barium, calcium, and copper are primarily mixed, and then pre-calcined, pulverized, calcined, and re-pulverized. A method for producing a raw material for a superconductor, which further comprises adding a raw material containing thallium to the pulverized material for secondary mixing.
3.請求項2記載の超電導体用原料を焼成することを特
徴とする超電導体の製造法。
3. A method for producing a superconductor, comprising firing the raw material for a superconductor according to claim 2.
JP1202201A 1989-08-03 1989-08-03 Raw material for superconductor, production thereof and production of superconductor using the same raw material Pending JPH0365513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202201A JPH0365513A (en) 1989-08-03 1989-08-03 Raw material for superconductor, production thereof and production of superconductor using the same raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202201A JPH0365513A (en) 1989-08-03 1989-08-03 Raw material for superconductor, production thereof and production of superconductor using the same raw material

Publications (1)

Publication Number Publication Date
JPH0365513A true JPH0365513A (en) 1991-03-20

Family

ID=16453640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202201A Pending JPH0365513A (en) 1989-08-03 1989-08-03 Raw material for superconductor, production thereof and production of superconductor using the same raw material

Country Status (1)

Country Link
JP (1) JPH0365513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573804A2 (en) * 1992-06-09 1993-12-15 Vacuumschmelze GmbH Oxide-ceramic superconducting material and process of fabrication thereof
US6001761A (en) * 1994-09-27 1999-12-14 Nippon Shokubai Co., Ltd. Ceramics sheet and production method for same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573804A2 (en) * 1992-06-09 1993-12-15 Vacuumschmelze GmbH Oxide-ceramic superconducting material and process of fabrication thereof
EP0573804A3 (en) * 1992-06-09 1994-05-11 Vacuumschmelze Gmbh Oxide-ceramic supraconducting material and process of fabrication thereof
US6001761A (en) * 1994-09-27 1999-12-14 Nippon Shokubai Co., Ltd. Ceramics sheet and production method for same

Similar Documents

Publication Publication Date Title
JPH0365513A (en) Raw material for superconductor, production thereof and production of superconductor using the same raw material
WO1989008077A1 (en) PROCESS FOR PRODUCING SUPERCONDUCTING (Bi, Tl)-Ca-(Sr, Ba)-Cu-O CERAMIC
JPH03103321A (en) Raw material for superconductor, production thereof and production of superconductor using same raw material
JPH0196055A (en) Superconductive ceramic composition
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JPH04154619A (en) Raw material for superconductor, its production and production of superconductor using the raw material
JPH01141871A (en) Production of superconducting material
JP2760999B2 (en) Oxide superconducting sintered body and method for producing the same
JPH0375261A (en) Oxide superconductor and production thereof
JPH0292826A (en) Oxide superconductor
JPH01126258A (en) Production of oxide high-temperature superconductive material
JPH06333422A (en) Dielectric ceramic composition
JPH06325621A (en) Dielectric ceramic composition
JPH042611A (en) Production of superconductor
JPH04104941A (en) Oxide superconductor and production thereof
JPH0492852A (en) Oxide superconductor and production thereof
JPH01131048A (en) Superconducting porcelain composition
JPS6049152B2 (en) Manufacturing method of low loss dielectric material
JPH04104940A (en) Oxide superconductor and production thereof
JPH0492853A (en) Oxide superconductor and production thereof
JPH01278464A (en) Production of superconductor
JPH04124025A (en) Oxide superconductor and its production
JPH04124016A (en) Oxide superconductor and its production
JPH03146417A (en) Oxide superconductor
JPH0543233A (en) Oxide superconductor and production thereof