JPH0364582B2 - - Google Patents

Info

Publication number
JPH0364582B2
JPH0364582B2 JP20325686A JP20325686A JPH0364582B2 JP H0364582 B2 JPH0364582 B2 JP H0364582B2 JP 20325686 A JP20325686 A JP 20325686A JP 20325686 A JP20325686 A JP 20325686A JP H0364582 B2 JPH0364582 B2 JP H0364582B2
Authority
JP
Japan
Prior art keywords
fibers
granular
fiber
content
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20325686A
Other languages
Japanese (ja)
Other versions
JPS6244543A (en
Inventor
Keisuke Ban
Akemasa Daimaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP20325686A priority Critical patent/JPS6244543A/en
Publication of JPS6244543A publication Critical patent/JPS6244543A/en
Publication of JPH0364582B2 publication Critical patent/JPH0364582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

A 発明の目的 (1) 産業上の利用分野 本発明は少なくとも一部をセラミツク繊維によ
り強化した繊維強化軽合金部材に関する。 (2) 従来の技術 従来、軽合金製部材に対する強化用無機繊維と
しては、例えば金属繊維、セラミツク繊維等が用
いられているが、その性能、生産性、コスト等を
考慮すると、一般に断熱材として市販されている
セラミツク繊維が有利である。このセラミツク繊
維を製造する場合には、最も効率的で安価な方法
としてブローイング法が採用されており、この方
法は繊維原料を溶融した後、それを高速エアによ
りブローイングして繊維化するもので、チツプ状
繊維を得る上に非常に優れた方法であるが、ブロ
ーイング時溶融原料が粒状になり、その後繊維化
されるため、得られた繊維は一部に粒状部を有す
る形状となる。これら粒状部はブランケツト作製
時または繊維成形体成形時脱落してブランケツト
または繊維成形体中に粒状繊維(一般にシヨツト
と称される)として含有されることとなり、この
粒状繊維は一般に50重量%以上含有されている。 (3) 発明が解決しようとする問題点 本発明者等は、軽合金部材として内燃機関用ピ
ストンを選定し、そのトツプランド部およびリン
グ地帯を前記セラミツク繊維により強化した場合
に上記粒状繊維が与える影響について種々検討し
たところ下記のような問題のあることを究明し
た。 即ち、リング溝の旋削加工において、粒状繊維
はバイトとの接触により脆性破壊を惹起するた
め、その旋削面は平滑ではなく、ぎざぎざの凹凸
粗面となり、大きな切欠きをもつこととなるの
で、疲労起点になり易い。この切欠き効果は粒状
繊維の粒度および含有量と近密な相関関係を有
し、例えば、粒度が100メツシユ以下である第8
図斜線領域においては繊維強化部の疲れ強さが著
しく低下する。この傾向は繊維直径の大小、繊維
量の多少によつてはあまり影響されない。またリ
ング溝旋削加工時バイト刃先が粒度の粗い粒状繊
維に断続的に接触すると旋削抵抗が断続的に増
し、その結果バイト刃先の摩耗が激しく、繊維強
化部の被削性が悪くなり、リング溝加工精度が低
下する。さらに粒度の粗い粒状繊維は脱落し易い
ので、その脱落した粒状繊維により相手材である
シリンダスリーブの摩耗が促進される。 本発明は上記に鑑み、セラミツク繊維に含まれ
る粒状繊維の粒度及びその含有量を調整して疲れ
強さ、加工精度及び摺動特性の優れた前記繊維強
化軽合金部材を提供することを目的とする。 B 発明の構成 (1) 課題を解決するための手段 上記目的を達成するために本発明は、少なくと
も一部をセラミツク繊維により強化した繊維強化
軽合金部材において、前記セラミツク繊維に含ま
れる粒状繊維の全含有量を使用繊維量に対して
34.0重量%以下に設定し、また粒度が100メツシ
ユ以下の前記粒状繊維の含有量を前記使用繊維量
に対して10.0重量%以下に設定したことを特徴と
する。 (2) 作用 前記のように粒状繊維の粒度およびその含有量
を調整することにより、粒状繊維に起因する切欠
き効果を抑制して疲れ強さを向上させ、また被削
性を良好にして優れた加工精度を有し、さらに粒
度の粗い粒状繊維の脱落を回避して優れた摺動特
性を有する軽合金部材を提供することができる。 (3) 実施例 以下、本発明の一実施例について説明する。 〔実施例〕 セラミツク繊維として下記の性状を有するもの
を使用した。 化学成分:Al2O3 47.3重量% SiO2 52.3重量% その他 0.36重量% 繊維長:短繊維〜250mm 平均繊維径:2.8μ 融 点:1760℃ 最高使用温度:1260℃ 上記繊維よりなるブラケツトを用いて、外形68
mm、内径54mm、厚さ20mmで、かさ密度0.2g/c.c.
の環状繊維成形体を作製した。この成形体の使用
繊維量に対する全粒状繊維含有量は53.0重量%、
また粒度が100メツシユを上回る粒状繊維含有量
xは使用繊維量に対して33.0重量%、さらに粒度
が100メツシユ以下の粒状繊維含有量yは使用繊
維量に対して19.7重量%、さらにまたy/xは
59.6であつた。この成形体をAとする。こゝで粒
度100メツシユ以下とは、粒径149μm以上のもの
が該当する。 上記ブランケツトに加振および湿式法からなる
粒大粒状繊維除去処理を施して粒状繊維含有量を
減少させ、粒状繊維含有量を異にする複数のブラ
ンケツトを作製し、これらブランケツトから三種
のものを選定して前記と同一形状で、且つ同一か
さ密度の環状繊維成形体B〜Dを作製した。 各環状繊維成形体A〜Dの使用繊維量に対する
全粒状繊維含有量等をまとめれば下表の通りであ
る。
A. Object of the Invention (1) Industrial Application Field The present invention relates to a fiber-reinforced light alloy member that is at least partially reinforced with ceramic fibers. (2) Conventional technology Conventionally, metal fibers, ceramic fibers, etc. have been used as reinforcing inorganic fibers for light alloy members, but considering their performance, productivity, cost, etc., they are generally used as insulation materials. Commercially available ceramic fibers are preferred. When producing ceramic fibers, the blowing method is used as the most efficient and inexpensive method. This method involves melting the fiber raw material and then blowing it with high-speed air to make it into fibers. Although this is an excellent method for obtaining chip-like fibers, the molten raw material becomes granular during blowing and is then turned into fibers, so the resulting fibers have a shape that partially has granular parts. These granular parts fall off during blanket production or fiber molding and are contained in the blanket or fiber molding as granular fibers (generally called shots), and these granular fibers generally contain 50% by weight or more. has been done. (3) Problems to be Solved by the Invention The present inventors selected a piston for an internal combustion engine as a light alloy member, and investigated the influence of the above-mentioned granular fibers when the top land portion and ring zone were reinforced with the above-mentioned ceramic fibers. After conducting various studies, we discovered the following problems. In other words, when turning a ring groove, the granular fibers cause brittle fracture when they come into contact with the cutting tool, so the turned surface is not smooth, but has a jagged rough surface with large notches, which reduces fatigue. It can be a good starting point. This notch effect has a close correlation with the particle size and content of granular fibers, for example,
In the shaded area in the figure, the fatigue strength of the fiber-reinforced portion is significantly reduced. This tendency is not affected much by the size of the fiber diameter or the amount of fiber. In addition, when turning the ring groove, if the tip of the cutting tool intermittently comes into contact with coarse granular fibers, the turning resistance increases intermittently, resulting in severe wear of the cutting edge and poor machinability of the fiber-reinforced part. Machining accuracy decreases. Further, coarse granular fibers tend to fall off, and the granular fibers that fall off accelerate wear of the cylinder sleeve, which is the mating material. In view of the above, an object of the present invention is to provide a fiber-reinforced light alloy member with excellent fatigue strength, processing accuracy, and sliding properties by adjusting the particle size and content of granular fibers contained in ceramic fibers. do. B. Structure of the Invention (1) Means for Solving the Problems In order to achieve the above object, the present invention provides a fiber-reinforced light alloy member at least partially reinforced with ceramic fibers, in which granular fibers contained in the ceramic fibers are The total content is based on the amount of fiber used.
The content of the granular fibers having a particle size of 100 mesh or less is set to 10.0% by weight or less based on the amount of fiber used. (2) Effect By adjusting the particle size and content of the granular fibers as described above, the notch effect caused by the granular fibers can be suppressed and fatigue strength can be improved, and machinability can be improved to achieve excellent results. It is possible to provide a light alloy member that has high processing accuracy, and also has excellent sliding characteristics by avoiding falling off of coarse granular fibers. (3) Example An example of the present invention will be described below. [Example] Ceramic fibers having the following properties were used. Chemical composition: Al 2 O 3 47.3% by weight SiO 2 52.3% by weight Others 0.36% by weight Fiber length: Short fiber ~ 250mm Average fiber diameter: 2.8μ Melting point: 1760℃ Maximum operating temperature: 1260℃ Using a bracket made of the above fibers External size 68
mm, inner diameter 54mm, thickness 20mm, bulk density 0.2g/cc
A circular fiber molded body was produced. The total granular fiber content of this molded body is 53.0% by weight based on the amount of fiber used.
In addition, the content x of granular fibers with a particle size of more than 100 mesh is 33.0% by weight based on the amount of fiber used, and the content y of granular fibers with a particle size of 100 mesh or less is 19.7% by weight based on the amount of fiber used, and furthermore, y/ x is
It was 59.6. This molded body is designated as A. Here, the particle size of 100 mesh or less refers to particles with a particle size of 149 μm or more. The above blanket was subjected to a treatment for removing large granular fibers using vibration and a wet method to reduce the granular fiber content, and a plurality of blankets with different granular fiber contents were produced, and three types of blankets were selected from these blankets. Annular fiber molded bodies B to D having the same shape and the same bulk density as above were produced. The total granular fiber content and the like relative to the amount of fiber used in each of the annular fiber molded bodies A to D are summarized in the table below.

【表】 第2図は各環状繊維成形体A〜Dにおける粒状
繊維の粒度に対する含有量の分布を示したもの
で、粒状繊維含有量の多いもの程度然にその分布
が広がるため粒度の粗大な粒状繊維の含有量も多
くなる。環状繊維成形体Aにおいては粒度が100
〜150メツシユの粒状繊維が最も多く、粗大粒状
繊維除去処理を施し、またその処理の程度を増
す、即ち環状繊維成形体B〜Cに至るに従い粗大
な粒状繊維が除去されて、その分布幅が狭まると
同時に粒度150〜200メツシユの微細な粒状繊維が
最も多くなる傾向にある。上記粗大粒状繊維除去
処理をさらに行つても粒度100メツシユ以下の粒
状繊維を完全に除去することは困難であり、第3
図に示すように粒度100メツシユ以下の粒状繊維
の減少は全粒状繊維含有量の減少となる。 前記各環状繊維成形体A〜Dを順次ピストン鋳
造用の鋳型内に設置し、マトリツクスMとしてマ
グネシウム合金を用いて高圧凝固鋳造法により第
1図に示すトツプランド部Lおよびリング地帯R
(但し、油かきリング溝部を除く。)を繊維強化し
た四種類の内燃機関用ピストンA′〜D′を鋳造し
た。この種ピストンは、トツプランド部Lおよび
リング地帯Rが繊維強化されているので、それら
の高温強度が高く、またトツプランド部Lに囲繞
されるヘツド主体部がマグネシウム合金より構成
されているので放熱性が良好であるといつた利点
を有する。 鋳造後各ピストンA′〜D′に旋削加工等の機械
加工を施して第1、第2リング溝R1,R2、油か
きリング溝O等を形成した後、各ピストンA′〜
D′のリング溝加工精度を比較したところ第4、
第5図の結果が得られた。 第4図はリング溝幅精度を示し、ピストンB′,
C′,D′が許容される精度範囲に属し、ピストン
A′は不適当であつた。 また第5図はリング溝たおれを示し、ピストン
C′,D′が許容される精度範囲に属しピストンA′,
B′は不適当であつた。 この場合、リング溝たおれとは、第1リング溝
R1の底面に、その開口縁より20mmだけ突出する
ような長さを持つた角棒3の一端を当接した状態
において、或基準面よりリング溝開口縁での角棒
3上面までの距離aと、前記基準面より角棒3の
先端上縁までの距離bとの差を意味する。また、
第4、第5図において、旋削長さとは、その長さ
分旋削加工を行つた工具を用いてリング溝を旋削
加工した場合を意味する。 第4、第5図から明らかなように、リング溝幅
精度およびリング溝たおれの両方の許容精度範囲
に属するピストンC′,D′が加工精度の面から最適
であり、これはピストンC′,D′において用いられ
た環状繊維成形体の全粒状繊維含有量が26.4、
16.4重量%と低く、また粒度100メツシユ以下の
粒状繊維含有量も7.0、0.8重量%と低いので、リ
ング溝加工時にバイト刃先に作用する断続的な旋
削抵抗が軽減され、その結果バイト刃先の摩耗を
低減して繊維強化部の被削性が著しく向上するこ
とに起因する。これはリング幅(軸方向高さ)
1.5mm以下において、その効果が大きい。 各ピストンA′〜D′に疲れ試験を行うため、そ
れらの第1リング溝R1に第6図に示す単体疲れ
試験機1のチヤツク2を挟み、ガス圧(最高50
Kg/cm2)相当の負荷を400時間繰返して第1リン
グ溝R1に加え、S−N値とばらつきを考慮して
疲労破損確率を求めたところ第7図の結果が得ら
れた。 第7図から明らかなように、粒度100メツシユ
以下の粒状繊維含有量が10.0重量%以下であるピ
ストンC′,D′は十分な疲れ強さを有するが、粒度
100メツシユ以下の粒状繊維量が10.0重量%を越
えると粒度の粗い粒状繊維が増加して、切欠き効
果が著しく増大するため疲れ強さが減少し、実用
上信頼性にかけることが判明した。 また摺動特性について調べたところ、ピストン
C′,D′については粒度が100メツシユ以下の粒状
繊維含有量が少ないので、その脱落も抑制され、
これによりシリンダスリーブの摩耗量が減少し、
ピストンC′,D′は優れた摺動特性を有することが
判明した。 さらに各種環状繊維成形体を用いてピストンを
鋳造し、それらピストンについて前記同様の比較
等を行つたところ、疲れ強さ、加工精度および摺
動特性を向上させるためには、第2図斜線領域の
ように、全粒状繊維含有量が34.0重量%以下、粒
度100メツシユを上回る粒状繊維含有量xが24.0
重量%以下、粒度100メツシユ以下の粒状繊維含
有量yが10.0重量%以下およびy/xが41.7以下
の各条件を満たす必要のあることが確認された。 C 発明の効果 本発明によれば、粒状繊維の粒度およびその含
有量を前記のように調整することにより、粒状繊
維に起因する切欠き効果を抑制して疲れ強さを向
上させ、また被削性を良好にして優れた加工精度
を有し、さらに粒度の粗い粒状繊維の脱落を回避
して優れた摺動特性を有する軽合金部材を提供す
ることができる。
[Table] Figure 2 shows the content distribution of granular fibers with respect to particle size in each of the annular fiber molded bodies A to D. The content of granular fibers also increases. In the annular fiber molded body A, the particle size is 100
~150 mesh granular fibers are the most numerous, and coarse granular fibers are removed, and as the degree of the treatment increases, that is, as the annular fiber molded bodies B to C are reached, coarse granular fibers are removed and the distribution width increases. As it narrows, fine granular fibers with a particle size of 150 to 200 mesh tend to become the most numerous. Even if the above-mentioned coarse granular fiber removal treatment is further performed, it is difficult to completely remove granular fibers with a particle size of 100 mesh or less.
As shown in the figure, a decrease in granular fibers with a particle size of 100 mesh or less results in a decrease in the total granular fiber content. The annular fiber molded bodies A to D are sequentially placed in a piston casting mold, and a top land portion L and a ring zone R shown in FIG. 1 are formed by high-pressure solidification casting using a magnesium alloy as the matrix M.
Four types of pistons A' to D' for internal combustion engines were cast with fiber-reinforced pistons (excluding the oil scrubbing ring grooves). In this type of piston, the top land portion L and the ring zone R are reinforced with fibers, so they have high high-temperature strength, and the head main body surrounded by the top land portion L is made of magnesium alloy, so it has good heat dissipation. It has the advantage of being good. After casting, each piston A' to D' is subjected to machining such as turning to form the first and second ring grooves R 1 and R 2 , oil ring groove O, etc., and then each piston A' to D' is
Comparing the ring groove machining accuracy of D', the fourth
The results shown in Figure 5 were obtained. Figure 4 shows the ring groove width accuracy, piston B',
C′ and D′ belong to the allowable accuracy range, and the piston
A′ was inappropriate. Figure 5 also shows the ring groove sag, and the piston
C′, D′ are within the permissible accuracy range, and piston A′,
B' was inappropriate. In this case, the ring groove sag means the first ring groove
When one end of the square bar 3 with a length that protrudes 20 mm from the opening edge is in contact with the bottom of R 1 , the distance from a certain reference plane to the top surface of the square bar 3 at the ring groove opening edge It means the difference between a and the distance b from the reference plane to the upper edge of the tip of the square bar 3. Also,
In FIGS. 4 and 5, the turning length refers to the case where the ring groove is turned using a tool that has turned the length. As is clear from Figs. 4 and 5, pistons C' and D', which fall within the allowable accuracy ranges for both ring groove width accuracy and ring groove sag, are optimal from the perspective of machining accuracy; The total granular fiber content of the annular fiber molded body used in D′ was 26.4,
The content of granular fibers with a grain size of 100 mesh or less is as low as 16.4% by weight, and the content of granular fibers with a particle size of 100 mesh or less is also low at 7.0% and 0.8% by weight, which reduces the intermittent turning resistance that acts on the cutting tool tip during ring groove machining, resulting in less wear on the cutting tool tip. This is due to the fact that the machinability of the fiber-reinforced portion is significantly improved by reducing the This is the ring width (axial height)
The effect is large at 1.5 mm or less. In order to conduct a fatigue test on each piston A' to D', the chuck 2 of the single fatigue tester 1 shown in Fig. 6 was inserted into the first ring groove R1 of each piston, and the gas pressure
A load equivalent to Kg/cm 2 ) was repeatedly applied to the first ring groove R 1 for 400 hours, and the probability of fatigue failure was determined taking into account the S-N value and variation, and the results shown in FIG. 7 were obtained. As is clear from Fig. 7, pistons C' and D' in which the content of granular fibers with a particle size of 100 mesh or less is 10.0% by weight or less have sufficient fatigue strength;
It has been found that when the amount of granular fibers of 100 meshes or less exceeds 10.0% by weight, coarse granular fibers increase and the notch effect increases significantly, reducing fatigue strength and impairing practical reliability. In addition, when we investigated the sliding characteristics, we found that the piston
As for C' and D', the content of granular fibers with a particle size of 100 mesh or less is small, so their shedding is suppressed,
This reduces the amount of wear on the cylinder sleeve,
Pistons C' and D' were found to have excellent sliding properties. Furthermore, when pistons were cast using various annular fiber molded bodies and the pistons were compared in the same manner as described above, it was found that in order to improve fatigue strength, machining accuracy, and sliding characteristics, it is necessary to So, the total granular fiber content is 34.0% by weight or less, and the granular fiber content x greater than 100 mesh is 24.0% by weight.
It was confirmed that it is necessary to satisfy the following conditions: the content of granular fibers (y) with a particle size of 100 mesh or less is 10.0% by weight or less, and y/x is 41.7 or less. C Effects of the Invention According to the present invention, by adjusting the particle size and content of the granular fibers as described above, the notch effect caused by the granular fibers is suppressed and fatigue strength is improved, and the fatigue strength of the granular fibers is improved. It is possible to provide a light alloy member having good properties, excellent processing accuracy, and excellent sliding properties by avoiding falling off of coarse granular fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断側面図、第2
図は粒状繊維の粒度と粒状繊維の含有量の関係を
示すグラフ、第3図は全粒状繊維含有量と粒度
100メツシユ以下の粒状繊維含有量の関係を示す
グラフ、第4図はリング溝幅精度において、旋削
長さと誤差の関係を示すグラフ、第5図はリング
溝たおれにおいて、旋削長さと誤差の関係を示す
グラフ、第6図は疲れ試験の説明図、第7図は粒
度100メツシユ以下の粒状繊維含有量と破損確率
の関係を示すグラフ、第8図は粒状繊維の粒度と
応力の関係を示すグラフである。 C′……ピストン、C……環状繊維成形体、L…
…トツプランド部、M……マトリツクス、R……
リング地帯。
Fig. 1 is a longitudinal cross-sectional side view of one embodiment of the present invention;
The figure is a graph showing the relationship between the particle size of granular fibers and the content of granular fibers, and Figure 3 is a graph showing the relationship between the total granular fiber content and particle size.
A graph showing the relationship between the granular fiber content of 100 mesh or less, Figure 4 is a graph showing the relationship between turning length and error in ring groove width accuracy, and Figure 5 is a graph showing the relationship between turning length and error in ring groove sag. Fig. 6 is an explanatory diagram of the fatigue test, Fig. 7 is a graph showing the relationship between the content of granular fibers with a particle size of 100 mesh or less and probability of failure, and Fig. 8 is a graph showing the relationship between the particle size of granular fibers and stress. It is. C'... Piston, C... Annular fiber molded body, L...
...Totsuprand part, M...matrix, R...
ring zone.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも一部をセラミツク繊維により強化
した繊維強化軽合金部材において、前記セラミツ
ク繊維に含まれる粒状繊維の全含有量を使用繊維
量に対して34.0重量%以下に設定し、また粒度が
100メツシユ以下の前記粒状繊維の含有量を前記
使用繊維量に対して10.0重量%以下に設定したこ
とを特徴とする、繊維強化軽合金部材。
1. In a fiber-reinforced light alloy member at least partially reinforced with ceramic fibers, the total content of granular fibers contained in the ceramic fibers is set to 34.0% by weight or less based on the amount of fibers used, and the particle size is
A fiber-reinforced light alloy member, characterized in that the content of the granular fibers of 100 mesh or less is set to 10.0% by weight or less based on the amount of fibers used.
JP20325686A 1986-08-29 1986-08-29 Fiber reinforced light alloy member Granted JPS6244543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20325686A JPS6244543A (en) 1986-08-29 1986-08-29 Fiber reinforced light alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20325686A JPS6244543A (en) 1986-08-29 1986-08-29 Fiber reinforced light alloy member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56094461A Division JPS57210140A (en) 1981-06-18 1981-06-18 Fiber reinfoced piston for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6244543A JPS6244543A (en) 1987-02-26
JPH0364582B2 true JPH0364582B2 (en) 1991-10-07

Family

ID=16471010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20325686A Granted JPS6244543A (en) 1986-08-29 1986-08-29 Fiber reinforced light alloy member

Country Status (1)

Country Link
JP (1) JPS6244543A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210140A (en) * 1981-06-18 1982-12-23 Honda Motor Co Ltd Fiber reinfoced piston for internal combustion engine

Also Published As

Publication number Publication date
JPS6244543A (en) 1987-02-26

Similar Documents

Publication Publication Date Title
JPS6233425B2 (en)
KR950014939B1 (en) Reinforced pistons
EP0189508B1 (en) Method of making short fiber preform
US4336076A (en) Method for manufacturing engine cylinder block
US6383656B1 (en) Perform for metal matrix composite material and cylinder block made of the same
DE3506069A1 (en) MACHINE PART FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR THE PRODUCTION THEREOF
US4643078A (en) Fiber-reinforced lightweight alloy piston for an internal-combustion engine and associated method
JPS6198948A (en) Piston for internal-combustion engine
JP3145094B2 (en) Lightweight metal piston
EP0656428A1 (en) Fibre-reinforced metal pistons
EP0864660A2 (en) Piston for internal combustion engine and method for producing same
JPH0364582B2 (en)
JPH1024347A (en) Core for water jacket of engine and core piece for forming hole as cast between cylinder bores
JP2591872B2 (en) Silicon nitride cast-in piston
JPH01230737A (en) Member made of composite material and its manufacture
JP2002130048A (en) Piston for internal combustion engine
US20030056361A1 (en) Method for manufacturing forged product, and apparatus for manufacturing forged product
JPS59229034A (en) Piston for internal-combustion engine
Verma et al. Manufacturing of composites by squeeze casting
EP0447701B1 (en) Reinforced heat resisting member and production method
JPH051622A (en) Al alloy piston for internal combustion engine and its manufacture
JPH11279698A (en) Non-heat treated steel for hot forging, easy of separation by fracture, and its production
JPH0570879A (en) Connecting rod for internal combustion engine
JP4209067B2 (en) Sleeve guide for steel guide
JPH03149B2 (en)