JPH0364558B2 - - Google Patents

Info

Publication number
JPH0364558B2
JPH0364558B2 JP63229593A JP22959388A JPH0364558B2 JP H0364558 B2 JPH0364558 B2 JP H0364558B2 JP 63229593 A JP63229593 A JP 63229593A JP 22959388 A JP22959388 A JP 22959388A JP H0364558 B2 JPH0364558 B2 JP H0364558B2
Authority
JP
Japan
Prior art keywords
raw material
gas
water
heat
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63229593A
Other languages
Japanese (ja)
Other versions
JPH01138295A (en
Inventor
Toshihisa Kanamaru
Shoji Urano
Masayuki Inoe
Chikashi Nishino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemicals Engineering Co Ltd
Original Assignee
Mitsubishi Petrochemicals Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemicals Engineering Co Ltd filed Critical Mitsubishi Petrochemicals Engineering Co Ltd
Priority to JP22959388A priority Critical patent/JPH01138295A/en
Publication of JPH01138295A publication Critical patent/JPH01138295A/en
Publication of JPH0364558B2 publication Critical patent/JPH0364558B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の背景) 最近、大都市圏を中心に都市ガス原料として
LNG(液化天然ガス)の導入が図られ都市ガスの
高熱量化が進められているが、LNGの場合マイ
ナス162℃という超低温にして輸送、貯蔵する必
要があり、中小都市の都市ガス事業面では輸送、
貯蔵等についての技術的、経済的問題が多い。こ
のため、常温において液体であり輸送、貯蔵等が
容易なメタノールを原料として都市ガスを製造す
る手段の開発が進められている。 このメタノールは、前記輸送、貯蔵の面での利
点に加え、資源的に豊富な海外産の石炭、天然ガ
ス等から安価、恒常的に得ることができ、またイ
オウ分、チツソ分、重金属等の不純物を含まず脱
硫手間が掛らない等の利点があり、今後の都市ガ
ス原料として有望視されている。 (従来技術) 従来、メタノールを原料として高発熱量の燃料
ガスを製造するものとして、特公昭57−24835号
公報に記載のものが知られている。 上記公報のものは、メタノールと水との混合原
料を反応器においてルテニウム(Ru)系触媒の
存在下で接触分解してメタン(CH4)、水素
(H2)、一酸化炭素(CO)、二酸化炭素(CO2
を含有する反応ガスを生成し、さらにこの反応ガ
スをメタネータに導入して水素、一酸化炭素をメ
タン化させて富メタン高発熱量のガスを生成する
ものであり、接触分解方法は分解に伴う発熱が著
しいため反応器から反応ガスを取り出すラインを
反応器とメタネータの間で分岐させてコンプレツ
サーを介して原料供給ラインに接続し、反応器か
ら取り出した反応ガスの大部分をコンプレツサー
で反応器にリサイクルさせること(製品ガスに対
して数倍以上)によりメタノール濃度を稀釈して
反応器でのガスの温度上昇を抑えるようにしたり
(ガスリサイクル方式)、接触分解反応器を2器に
分割して発生熱を除去するようになすと共にこれ
でも上がり過ぎる反応温度を抑えるために第1段
と第2段の反応器の間に原料の液体メタノールを
フイードして冷却するようにしている(多段断熱
反応方式)。 (発明が解決しようとする課題) 上記従来のものは接触分解による生成ガスにつ
いて更にメタン化操作を継続して行う多段反応式
であるため、装置構造が複雑大型化し、製造コス
トが高くなる上、制御も複雑になる。 しかもガスリサイクル方式を採る場合にはガス
リサイクルライン、コンプレツサー等特別な設備
を必要とするばかりでなく、反応器で発生する熱
を除去するために生成ガスの内から製品として取
り出すガスの10倍程度ものガスをリサイクル用に
回さなければならず生産効率が悪く、経済的では
ない。 更に工業化を考えた場合、10000Nm3/Day
(417Nm3/Hr)のプラントにすると循環リサイ
クルさせるガス量は4300Nm3/Hrにもなり、リ
サイクルさせるためのコンプレツサー動力のみで
50Kw位にもなつてしまい全つたく経済的ではな
い。 しかも、リサイクルのための昇圧を市販のコン
プレツサーを用いて行なおうとしてもリサイクル
するガスの温度を常温まで下げてやらないと反応
器から出て来た高温(270℃)のままでは昇圧で
きず、特別のコンプレツサーの開発が必要とな
る。 また、多段断熱反応方式を採る場合には接触分
解反応器を2段にするため装置はガスリサイクル
方式のものに比べても更に大型となり、触媒の量
も多くなる。 しかも、このものは接触分解反応器を2器に分
割して発生熱を除去するが、これでも反応温度が
上がりすぎるため第1段と第2段の接触分解反応
器間に原料メタノールの20%をフイードして冷却
しなければならず、効率が非常に悪い。 また、上記従来技術においては反応系で必要と
される熱量を生成される反応ガスとの熱交換によ
りまかなうようになつているが、反応系に連続し
て設けられる精製系における脱炭酸ガス及び熱調
用ブタンの蒸発に必要とされる多量の熱は外部熱
源により賄わなければならない。 即ち、脱炭酸ガスのためには周知のように吸収
一放散システムが必要であるが、10000Nm3
Dayプラントの場合、メタン化反応で発生する熱
量360000Kcol/Hr、脱CO2に必要な熱量
144000Kcol/Hr、ブタン蒸発に必要な熱量
10000Kcol/Hrとなり、例えばガスリサイクル
方式の場合、各機器での熱ロス及びリサイクルガ
ス系での熱ロスも考えると工業化する場合には反
応系が必要とする熱量だけでも不足する。 本発明は従来技術が有する上記問題点に鑑みて
なされたもので、その目的とする処はメタノール
と水の混合原料から一段階の反応工程のみによ
り、しかも反応器入出間の温度差を小さくするた
めに反応ガスをリサイクルさせる必要もなく、高
発熱量の富メタンガスを効率よく製造することが
でき、しかもスタートアツプ時以外には外部加熱
を必要としない経済性、生産性に優れたメタノー
ルを原料とする高熱量富メタンガスの製造装置を
提供することにある。 また、本発明は上記富メタンガス製造装置での
富メタンガス製造に引き続いて該富メタンガスを
精製熱調することにより高熱量の都市ガスを製造
し、その際、脱炭酸ガス及び熱調用ブタンの蒸発
にも外部加熱を必要とせず、反応系、精製系を通
して全工程において外部からの熱供給が不要な高
熱量都市ガスの製造装置の提供をも目的とする。 (課題を解決するための手段) 上記目的を達成するために本発明のメタノール
原料高発熱量富メタンガスの製造装置では、イオ
ウ化合物の含有量を低下させ、また比表面積を低
減させたアルミナ系担体にニツケル系を担持させ
た触媒の存在下でメタノールと水の混合原料を気
相接触させて一段反応で富メタン反応ガスを生成
するガス化手段と、メタノールと水を一定割合で
混合してガス化手段に送り込む原料供給ライン
と、ガス化手段を経由して熱媒を循環流動させて
反応熱を熱媒に吸熱させる熱媒循環系路と、ガス
化手段で生成した富メタン反応ガスを取り出す反
応ガス取出ラインと、原料供給ライン途中に設け
られガス化手段から取出した富メタン反応ガスと
の熱交換により原料を予熱する予熱手段と、予熱
手段より下流において原料供給ラインに設けられ
熱媒との熱交換により予熱後の原料を更に加熱す
る原料加熱手段と、反応ガス取出ラインに設けら
れ、富メタン反応ガスから水を分離する反応ガス
分離手段、上記反応ガス分離手段で分離した分離
水をメタノール・水混合原料用水として上記原料
供給ラインに供給する水リサイクル手段とを備え
るものである。 また高熱量都市ガスの製造装置では、上記各手
段に加えて、反応ガス分離手段の下流において反
応ガス取出ラインに設けられて、吸収液(炭酸カ
リ水溶液)に富メタン反応ガス中の炭酸ガスを選
択的に吸収する炭酸ガス吸収塔、炭酸ガス吸収塔
で炭酸ガスを吸収した吸収液を再生するために付
設された炭酸ガス放散塔及びガス化手段から取出
した富メタン反応ガスとの熱交換により放散塔に
熱を供給する再沸器から構成される脱炭酸ガス手
段と、脱炭酸ガス手段の下流において反応ガス取
出ラインに設けられ富メタン反応ガスから水分を
除去する脱水手段と、脱水手段の下流において反
応ガス取出ラインに接続され、上記脱炭酸ガス手
段及び脱水手段を経て精製された精製ガスにブタ
ンを添加して熱量を増熱調整する熱量調整手段
と、熱量調整手段に付設され脱炭酸ガス手段通過
後の精製ガスとの熱交換によりブタンを蒸発され
るブタン蒸発器とを備えるものである。 (作用) 以上のように構成したメタノールを原料とする
高熱量富メタンガスの製造装置にあつては、原料
予熱手段及び原料加熱手段を介して反応開始温度
迄上昇されたメタノールと水との混合原料をガス
化手段に送り込むことに上記原料を触媒に接触さ
せ、300℃程度の低温度反応条件下で反応させて
一段反応で直接富メタン反応ガスを発生させる。 この富メタン反応ガスに混在する水は、同ガス
が反応ガス分離手段で同ガスと分離され適量リサ
イクル用の再利用水供給手段によつて原料(混合
物)の供給ラインに供給される。 その際、原料(混合物)の供給ラインに接続さ
れた給水源をストツプさせておくことによつてこ
の再利用水を、メタノールとの混合水として利用
可能とする。 ガス化手段では気相接触反応によるメタン化反
応熱が発生し、得られる富メタン反応ガスも熱を
持つ。富メタン反応ガスの熱は反応ガス取出ライ
ン内を流動し原料予熱手段でメタノール・水混合
原料に熱回収される。一方メタン化反応熱は、原
料加熱手段を循環流動する熱媒を加熱して同原料
加熱手段を通過するメタノール・水混合原料によ
り更に熱回収され、メタノール・水混合原料をメ
タン化反応開始温度に加熱気化させる。 これにより、メタン化反応熱と、反応により発
生する富メタン反応ガスの熱は該ガスの生成に必
要な熱量の全てを賄うことになる。 そして、ガス化手段においては反応で発生する
熱量が熱媒で急速に吸収され第8図に示すように
ガス化手段(反応器)内の一部で温度で高くなる
がすぐに冷却される。 また高熱量都市ガス製造装置にあつては、上記
作用に加え、上記富メタン反応ガスから炭酸ガス
と水が取り除かれ、更にブタン添加により増熱調
整され高熱量の都市ガスが製造される。 そして、脱炭酸ガス及び熱調用ブタンの蒸発の
ためにガス化手段で製造される富メタンガスの熱
が利用される。 即ち、この高熱量都市ガスの製造装置において
は定常時、反応系及び精製系を通して外部からの
熱の供給は一切不要である。 (発明の効果) 本発明は以上のように構成したので、下記の利
点がある。 Γ 高熱量富メタンガスの製造装置について (1) イオウ化合物の含有量を低下させ、また比表
面積を低減させたアルミナ系担体にニツケル系
を担持させた触媒の存在下でメタノールと水の
混合原料を気相接触させて一段反応で富メタン
反応ガスを生成するガス化手段を用いるので、
接触分解反応器とメタネータの組み合せや、2
段の接触分解反応器とメタネータの組み合せを
用いてメタノールをメタン化するものに比べて
設備が削減され装置の小型化、簡易化及び設備
コストの低減が図られる。 (2) しかもガス化手段を経由して熱媒を循環流動
させて反応熱を熱媒に吸熱させる熱媒循環系路
を設けたので、反応熱を速やかに吸収除去する
ことができ、反応器の出入の温度差がなく、出
口温度も低いため、熱損失も少なくなり、メタ
ン収率上及び経済効率上有利である。また、反
応器でのガス温度の上昇を抑えるためにガスリ
サイクルラインを設けて生成ガスの可成りの割
合に達するガスをリサイクルに回してメタノー
ル濃度を稀釈したり、1段目と2段目の反応器
の間に原料メタノールをフイードして冷却する
必要がなく、従つて、効率が良く経済的である
ばかりでなく、リサイクルライン、コンプレツ
サー等の特別な設備も必要としない。 (3) 熱媒の温度はプロセスガス側と別に制御可能
であり、熱媒の保有熱によりプロセスガス側の
変化に対する影響が少なく安定性に優れてい
る。 (4) 熱媒循環系路の温度を保持しておけば、運転
停止後の再運転も容易であり、直ちにガス製造
に入ることができる。 (5) 原料供給ライン途中に設けられガス化手段か
ら取出した富メタン反応ガスとの熱交換により
原料を予熱する予熱手段と、予熱手段より下流
において原料供給ラインに設けられ熱媒との熱
交換により予熱後の原料を更に加熱する原料加
熱手段とを設け、メタン化反応熱及び富メタン
反応ガスの潜熱を、直接原料をメタン化反応開
始温度まで昇温させるエネルギーとして充当す
るようにしたので、メタノール原料から高熱量
富メタンガスを製造するのに必要な熱量を外部
から得る必要が全つたくなく燃料コストの大幅
な低減が図られる。 Γ 高熱量都市ガスの製造について (1) 脱炭酸ガス手段において炭酸ガス吸収塔で、
炭酸ガスを吸収した吸収液を再生するために、
ガス化手段から取り出した富メタンガスとの熱
交換により放散塔に熱を供給する再沸器と熱量
調整手段に付設され脱炭酸ガス手段通過後の反
応ガスとの熱交換によりブタンを蒸発させるブ
タン蒸発器とを備え反応系を出る富メタンガス
の熱を脱炭酸ガス、熱調用ブタン蒸発の加熱エ
ネルギーとして充当するようにしたので上記高
熱量富メタンガス製造装置が有する各効果に加
えて反応系から精製系の全系において外部から
の熱量供給を一切必要としないという効果を有
する。 (実施例) 次に、本発明の実施例を図面に基いて説明す
る。 第1図に示すように、この実施例は富メタン反
応ガスを製造する反応部Aと再利用水供給部B、
その富メタン反応ガスから高熱量燃料ガスに精製
する脱炭酸ガス手段Cと脱水手段Dと熱量調整手
段E、反応部Aの反応器a1内に活性温度雰囲気を
作り出すスタートアツプ機構Fからなる。 反応部Aは水H2Oを混合したメタノール
(CH3OH)を原料として富メタン反応ガス
(CH472%、CO225%、H23%)を生成するもの
で、反応器a1、反応器a1に接続された原料の供給
ライン100、その供給ライン100に配設され
た原料予熱手段a2及び原料加熱手段a3、その原料
加熱手段a3の熱源となる熱媒循環系路a4からな
る。 供給ライン100は、メタノール供給ポンプ
1、水供給ポンプ2によつてメタノール、水の供
給比を調整することにより適切なモル比の原料を
原料予熱手段a2、原料加熱手段a3を経由して反応
器a1へ供給する。 原料予熱手段a2は、メタノール・水の混合原料
が最初に送り込まれる設備であり、後述の反応器
a1から生成された富メタン反応ガスを取出すべく
反応器a1に接続された反応ガス取出ライン200
と原料の供給ライン100とを交差せしめて、富
メタノール反応ガスの潜熱によつて原料を加熱す
る熱交換構造を構成している。 原料加熱手段a3は蒸発器3、過熱器4からな
り、蒸発器3は原料予熱手段a2で予熱されたメタ
ノール・水の混合原料を更に加熱して気化させる
設備であり、後述する熱媒循環系路a4を流動する
熱媒から供給される熱によつて加熱する熱交換構
造を備え、過熱器4は蒸発器3で加熱気化された
メタノール・水の混合原料を更に加熱してメタン
化反応開始温度迄昇温させる設備であり、前記蒸
発器3同様後述する熱媒循環系路a4の熱媒から供
給される熱で加熱する熱交換構造を構成してい
る。 反応器a1は原料予熱手段a2、蒸発器3、過熱器
4で過熱気化されたメタノール・水の混合原料を
触媒の存在下で気相接触反応させてメタン含有混
合ガスを生成するもので、例えばシエルアンドチ
ユーブ型構造からなる。この反応器a1に内蔵され
る触媒はイオウ化合物の含有量を低下させまたは
比表面積を低減させたアルミナ系担体にニツケル
系を担持させてなるもので、例えばイオウ化合物
含有量(SO4 2-として)1.2重量%以下の微粉状γ
−アルミナまたは微粉状アルミナ水和物の担体に
ニツケル(Ni)および(または)ニツケルの酸
化物ないしその還元物を担持させてなるもの、ま
たは、比表面積350m2/g以下のシリカ・アルミ
ナの担体にニツケルの還元物を担持させてなるも
のである。この触媒は低温高活性、高メタン化率
を示す特性を有しており、300℃程度以下の反応
条件で6900Kcal/Nm3程度の発熱量のメタン含
有混合ガスを生成することができる。 熱媒循環系路a4は前記反応器a1に付設され、反
応器a1におけるメタン化反応熱を回収した熱を、
蒸発器3、過熱器4を通過するメタノール・水の
混合原料に熱回収させるべく反応器a1から熱媒加
熱炉5、前記過熱器4、前記蒸発器3、熱媒貯槽
6、熱媒ポンプ7、熱媒温度調節器8へと熱媒が
流通し再度反応器a1に戻るように形成している。
熱媒加熱炉5は装置の起動時にのみ適宜の燃料で
熱媒を加熱するもので、起動時における蒸発器
3、過熱器4でのメタノール・水の混合原料加熱
機能を確保させ、反応器a1においてメタン化反応
熱が発生すれば、熱媒加熱炉5を作動させる必要
はない。前記反応器a1でのメタン化反応が300℃
程度以下で行なわれるため、この熱媒循環系路a4
による熱回収によつて反応器a1の機能が阻害され
ることはなく、また蒸発器3、過熱器4でのメタ
ノール・水の混合原料の加熱も充分に行なわれ
る。尚、熱媒としては142℃で溶融する溶融塩を
用いる。 再利用水供給部Bは反応器a1に接続された反応
ガス取出ライン200に配設され、富メタン反応
ガスから水を分離する手段b1と、その手段b1から
分離された水を原料供給ライン100にリサイク
ルする再利用水供給手段b2とを有する。 反応ガス分離手段b1は、反応ガス分離槽9を用
いる常法手段であり、富メタン反応ガスは、反応
器a1から出て反応ガス分離槽9に送られる過程に
おいて、原料予熱手段a2でメタノール・水混合原
料に熱回収されると共に後述する脱炭酸ガス吸
収・放散機構c2中の再沸器10で炭酸カリ水溶液
に熱回収され、更に冷却器11で冷却されてから
反応ガス分離槽9に送り込まれるようになつてい
る。 再利用水供給手段b2は反応ガスの分離槽9に装
着された循環ポンプ12と、原料供給ライン10
0に連絡する送水ライン300とからなり、分離
槽9から分離された水(再利用水)を循環ポンプ
12を用いて前記メタノール供給源から供給され
てくるメタノールと所定のモル比になるように混
合し前記原料予熱手段a2、蒸発器3、過熱器4を
介して前記反応器による富メタン反応ガスの生成
に伴つて作動する。言いかえれば、装置作動初期
には前記水供給ポンプ2が水の供給機能を果たす
が、反応器a1から富メタン反応ガスが充分生成さ
れるようになれば水供給ポンプ2を停止し、これ
に代えて循環ポンプ12で水の供給機能を果たす
ことになる。 ちなみに、水・メタノールモル比は0.5に調整
するのが最適である。即ち水が反応器a1での気相
接触反応によるカーボン析出防止を図る為であ
り、水・メタノールモル比を0.7以上にすると、
メタノール・水混合原料を所要温度に加熱するた
めに必要な熱量が多くなり、その熱量の全てを反
応器a1から出る富メタン反応ガスの熱及びメタン
化反応による反応熱でまかなうためには装置の断
熱、保温を十分にしないと困難であり、また循環
系統の負担も増大するため製造コスト的に不利に
なり、水・メタノールモル比を0.3以下にすると
長期間の定常運転中にはカーボン析出の問題が生
じる心配がある。 反応ガス分離槽9は、水を分離貯溜しリサイク
ルに必要とされる以上の余剰の水を排出する。 脱炭酸ガス手段Cは前記反応ガス分離手段b1
続いて配設され、水を分離処理された富メタン反
応ガスから二酸化炭素(炭酸ガス)を除去するも
ので、炭酸ガス吸収塔c1、炭酸ガス放散塔c1′、
再沸器10及び炭酸ガス吸収・放散機構c2とから
なる。 炭酸ガス吸収塔c1は、炭酸カリ水溶液によつて
炭酸ガスを吸収するもので、炭酸ガスが除去され
たガスの熱量を9200Kcol/Nm3程度に高めるこ
とができる。 炭酸ガス吸収・放散機構c2は、前記炭酸ガス吸
収塔c1及びそれと対になる炭酸ガス放散塔c1′、
炭酸ガス吸収塔c1と炭酸ガス放散塔c1′との間に
炭酸カリ水溶液を循環させる炭酸カリ貯槽13、
炭酸カリ供給ポンプ14、炭酸カリ循環ポンプ1
5、炭酸カリの循環中の消泡を行なう消泡剤貯槽
16、消泡剤ポンプ17、炭酸ガス放散塔c1′に
付設されて炭酸ガスを分離排出する凝縮器18、
炭酸ガス分離槽19、還流ポンプ20、炭酸ガス
放散塔c1′に付設して反応ガス分離手段b1と反応
部Aとの間に設けられる再沸器10からなる。 脱水手段Dは前記脱炭酸ガス手段Cに続いて配
設され、メタン含有混合ガスから水分を除去して
製造ガスを精製するもので、三つの冷却器21,
22,23、精製ガス水分離槽24、冷却機構2
5からなる。 冷却器21,22,23の中第二番目の冷却器
22は水分が除去された製造ガスで冷却される熱
交換構造を備え、また第三番目の冷却器23は冷
却機構25(冷凍機ユニツト25A、ブラインポ
ンプ25B、ブライン貯槽25C、ブラインポン
プ25Dで冷却される熱交換構造を備えている。 精製ガス水分離槽24は水分を分離貯溜し必要
に応じ排出するものである。 熱量調整手段Eは前記脱水手段に続いて配設さ
れており、製造ガスにブタンLPGを混合して
11000Kcol/Nm3程度の熱量に調整するもので、
ブタン供給ポンプ26、ブタン蒸発器27、ミキ
サー28からなる。 ブタン供給ポンプ26はブタンをブタン蒸発器
27を介してミキサー28に供給するもので、ブ
タン供給量を調整することにより製造ガスの熱量
を調整することができる。 ブタン蒸発器27は前記脱水手段Dに入る前の
反応ガスと熱交換してブタンを気化させるもの
で、脱水手段Dにとつては冷却器として機能す
る。 ミキサー28は、製造ガスとブタンとを混合す
るものである。 このような実施例によれば、水を混合したメタ
ノールが反応器a1における前記触媒の存在下での
気相接触反応により一段階でメタン化される。ま
た、メタノールに対する水の混合を、反応で得ら
れ富メタン反応ガスから分離した水(再利用水)
で充当することができるため、供給水が削減され
ることになり、さらに、水を混合したメタノール
に対する加熱を、反応ガスの潜熱と、反応器a1
の反応熱を熱媒循環系路a4で回収して充当するこ
とができるため、加熱エネルギーも削減されるこ
とになる。 以上、図示実施例の外に、脱炭酸ガス手段Cを
乾式(PSA法)等他の構造のものを採用する実
施例とすることもできる。また、脱水手段D、熱
量調整手段Eについても、製造規模等との関係か
ら他の構造のものを採用することも可能である。 次に、装置起動時反応器a1内に活性温度雰囲気
を作り出すスタートアツプ機構Fについて説明す
る。 スタートアツプ機構Fは、定常運転時に、反応
器a1から熱媒加熱炉5、過熱器4、蒸発器3、熱
媒貯槽6、熱媒ポンプ7、熱媒温度調節器8へと
熱媒が流通し再度反応器a1に戻る熱媒循環系路a4
(第4循環路a4−4)に適宜バイパス管を設けて、
ヒーター6′を内蔵した熱媒貯槽6の出口から直
接熱媒貯槽6の入口に戻り凝固した溶融塩を溶融
させる第1循環路a4−1、熱媒貯槽6から熱媒加
熱炉5を経由して再じ熱媒貯槽6に戻る第2循環
路a4−2、熱媒貯槽6、熱媒加熱炉5、原料加熱
手段a1を経由して再び熱媒貯槽6に戻る第3循環
路a4−3を切替可能な循環路として形成すると共
に、原料供給ライン100と反応ガス取出ライン
200の一部を循環系400に切替可能とし、該
循環系400に、加熱気体を吹き込む送気手段
(スタートアツプブロアー)Gを接続することに
よつて構成される。 このスタートアツプ機構Fの簡単な作用を説明
すると、先ずヒーター6′により熱媒貯槽6内の
熱媒を加熱しつつポンプ7を作動させて熱媒を第
1循環路a4−1に循環流動させ、熱媒温度度を
170℃程度まで昇温させる(第4図)。 続いて熱媒の流動を第2循環路a4−2に切替え
ると共に熱媒加熱炉5に燃料を供給し燃焼させて
加熱し、熱媒温度を250℃程度に昇温させる(第
5図)。 次に、熱媒の流動を第3循環路a4−3に切替え
る(第6図)。 然る後、スタートアツプブロアーGにより原料
供給ライン100と反応ガス取出ライン200の
一部により形成された循環系400に加熱用気体
として、例えばチツソN2を送り込み循環流動さ
せる。 すると、この循環系400を流動する加熱用気
体、例えばチツソN2は蒸発器3、過熱器4で熱
媒の熱を回収して熱媒温度の250℃程度に昇温し、
反応器a1を加熱して活性温度を作り出す(第1
図)。 そして上記反応条件が整つたところで、熱媒の
流動を正規の熱媒循環系路a4、即ち第4循環路a4
−4に切替え、メタノールに水を加えた原料を反
応器a1に送り込む。 これにより反応熱が発生すると共に反応ガスか
ら水が分離させるをもつて、以後この反応熱と反
応ガスの潜熱及び分離水を使用し、水の供給、加
熱炉5への燃料の供給を停止して定常運転が行な
われる。 本発明に係る都市ガス製造装置に基づいて実際
に都市ガスを製造した例を以下に示す。 実験例 1 原料の水・メタノールモル比を0.5として、前
記反応器a1で反応温度305℃、反応圧力9.0Kg/cm2
Gの条件下で運転したところ、次のような性状の
製造ガスを得た。 発熱量 11000Kcol/Nm3 比 重 0.68 WI(ウオツベ指数) 13340 CP(燃焼速度) 41.9cm/s なお、この実験例における第2図に示すフロー
チヤートの各ストリームナンバーの各種数値を第
1表に示す。 実験例 2 原料の水・メタノールモル比を0.5として、前
記反応器a1で反応温度299℃、反応圧力8.9Kg/cm2
Gの条件下で運転したところ、次のような性状の
製造ガスを得た。 発熱量 11000Kcol/Nm3 比 重 0.68 WI(ウオツベ指数) 13340 CP(燃焼速度) 41.6cm/s なお、この実験例における第2図に示すフロー
チヤートの各ストリームナンバーの各種数値を第
2表に示す。
(Background of the invention) Recently, gas has been used as a raw material for city gas mainly in metropolitan areas.
With the introduction of LNG (liquefied natural gas), the calorific value of city gas is increasing, but in the case of LNG, it is necessary to transport and store it at an ultra-low temperature of minus 162 degrees Celsius. ,
There are many technical and economic problems regarding storage, etc. For this reason, efforts are underway to develop means for producing city gas using methanol as a raw material, which is liquid at room temperature and easy to transport and store. In addition to the above-mentioned advantages in terms of transportation and storage, methanol can be obtained constantly and inexpensively from overseas coal and natural gas, which are rich in resources, and is free of sulfur, nitrogen, heavy metals, etc. It has the advantages of containing no impurities and requiring no desulfurization work, and is seen as a promising future city gas raw material. (Prior Art) Conventionally, as a method for producing high calorific value fuel gas using methanol as a raw material, the method described in Japanese Patent Publication No. 57-24835 has been known. In the above publication, a mixed raw material of methanol and water is catalytically cracked in the presence of a ruthenium (Ru) catalyst in a reactor to produce methane (CH 4 ), hydrogen (H 2 ), carbon monoxide (CO), Carbon dioxide ( CO2 )
The catalytic cracking method generates a reaction gas containing a Because heat generation is significant, the line for taking out the reaction gas from the reactor is branched between the reactor and the methanator and connected to the raw material supply line via a compressor, and most of the reaction gas taken out from the reactor is sent to the reactor by the compressor. The methanol concentration can be diluted by recycling (several times more than the product gas) and the temperature rise of the gas in the reactor can be suppressed (gas recycling method), or the catalytic cracking reactor can be divided into two vessels. In order to remove the generated heat and prevent the reaction temperature from rising too high, liquid methanol, the raw material, is fed between the first and second stage reactors for cooling (multi-stage adiabatic reaction). method). (Problems to be Solved by the Invention) The conventional method described above uses a multi-stage reaction method in which the gas produced by catalytic cracking is continuously subjected to a methanation operation, so the device structure becomes complicated and large, and the manufacturing cost increases. Control is also complicated. Furthermore, when using the gas recycling method, not only do special equipment such as a gas recycling line and compressor be required, but in order to remove the heat generated in the reactor, the amount of gas that is extracted from the produced gas as a product is approximately 10 times the amount. Gas must be recycled, which is inefficient and uneconomical. Furthermore, when considering industrialization, 10000Nm 3 /Day
(417Nm 3 /Hr), the amount of gas to be recycled would be 4300Nm 3 /Hr, and only the compressor power for recycling would be required.
It's about 50Kw, so it's not economical at all. Moreover, even if you try to raise the pressure for recycling using a commercially available compressor, you will not be able to raise the pressure at the high temperature (270°C) that comes out of the reactor unless you lower the temperature of the recycled gas to room temperature. , requiring the development of a special compressor. Furthermore, when a multi-stage adiabatic reaction system is adopted, the catalytic cracking reactor is made into two stages, so the apparatus becomes larger than that of a gas recycling system, and the amount of catalyst is also increased. Moreover, in this method, the catalytic cracking reactor is divided into two vessels to remove the generated heat, but even with this, the reaction temperature rises too much, so 20% of the raw methanol is transferred between the first and second stage catalytic cracking reactors. must be fed and cooled, which is extremely inefficient. In addition, in the above-mentioned conventional technology, the amount of heat required in the reaction system is provided by heat exchange with the generated reaction gas; The large amount of heat required to evaporate the prepared butane must be provided by an external heat source. In other words, as is well known, an absorption-diffusion system is required for decarbonation, but the 10000Nm 3 /
In the case of the Day plant, the amount of heat generated in the methanation reaction is 360,000 Kcol/Hr, and the amount of heat required for removing CO 2
144000Kcol/Hr, amount of heat required for butane evaporation
For example, in the case of a gas recycling system, the amount of heat required by the reaction system is insufficient for industrialization, considering the heat loss in each device and the recycled gas system. The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to reduce the temperature difference between the input and output of the reactor by using only one reaction step from a mixed raw material of methanol and water. Therefore, there is no need to recycle the reaction gas, and methane-rich gas with a high calorific value can be efficiently produced.Moreover, methanol, which is highly economical and highly productive, does not require external heating other than during start-up, as a raw material. An object of the present invention is to provide an apparatus for producing high calorific value rich methane gas. In addition, the present invention produces high-calorific city gas by purifying and heat-controlling the rich methane gas following the production of methane-rich gas in the methane-rich gas production apparatus, and at that time, the evaporation of decarbonation gas and butane for heat control is performed. Another object of the present invention is to provide an apparatus for producing high calorific city gas that does not require external heating and does not require external heat supply in all processes through the reaction system and purification system. (Means for Solving the Problems) In order to achieve the above object, the methanol raw material high calorific value rich methane gas manufacturing apparatus of the present invention uses an alumina-based carrier with a reduced content of sulfur compounds and a reduced specific surface area. There is a gasification means that produces a methane-rich reaction gas in a one-step reaction by bringing a mixed raw material of methanol and water into gas phase contact in the presence of a nickel-based catalyst; A raw material supply line to feed into the gasification means, a heat medium circulation line that circulates and flows the heat medium through the gasification means to absorb the reaction heat into the heat medium, and takes out the methane-rich reaction gas generated by the gasification means. A reaction gas extraction line, a preheating means provided in the middle of the raw material supply line and preheating the raw material by heat exchange with the methane-rich reaction gas taken out from the gasification means, and a heating medium provided in the raw material supply line downstream of the preheating means. a raw material heating means for further heating the preheated raw material by heat exchange; a reactive gas separation means provided in the reaction gas take-off line for separating water from the methane-rich reaction gas; a separated water separated by the reaction gas separation means; A water recycling means is provided for supplying water to the raw material supply line as water for the methanol/water mixed raw material. In addition to the above-mentioned means, in high-calorific city gas production equipment, a system is installed in the reaction gas extraction line downstream of the reaction gas separation means to absorb carbon dioxide in the methane-rich reaction gas into the absorption liquid (potassium carbonate aqueous solution). Through heat exchange with the carbon dioxide absorption tower that selectively absorbs carbon dioxide, the carbon dioxide diffusion tower attached to regenerate the absorption liquid that has absorbed carbon dioxide in the carbon dioxide absorption tower, and the methane-rich reaction gas taken out from the gasification means. a decarbonation gas means consisting of a reboiler that supplies heat to the stripping tower; a dehydration means provided in the reaction gas take-off line downstream of the decarbonation gas means to remove water from the methane-rich reaction gas; A calorific value adjusting means is connected to the reaction gas take-out line downstream and increases and adjusts the calorific value by adding butane to the purified gas purified through the decarbonation gas means and dehydrating means, and a decarboxylating means is attached to the calorific value adjusting means. It is equipped with a butane evaporator in which butane is evaporated by heat exchange with the purified gas after passing through the gas means. (Function) In the apparatus for producing high calorific value rich methane gas using methanol as a raw material configured as above, the mixed raw material of methanol and water is heated to the reaction start temperature through the raw material preheating means and the raw material heating means. The above-mentioned raw material is brought into contact with a catalyst and reacted under low temperature reaction conditions of about 300°C to directly generate a methane-rich reaction gas in a one-step reaction. The water mixed in this methane-rich reaction gas is separated from the same gas by the reaction gas separation means, and an appropriate amount is supplied to the raw material (mixture) supply line by the reuse water supply means for recycling. At this time, by stopping the water supply connected to the raw material (mixture) supply line, this reused water can be used as mixed water with methanol. In the gasification means, heat of methanation reaction is generated by the gas phase contact reaction, and the obtained methane-rich reaction gas also has heat. The heat of the methane-rich reaction gas flows through the reaction gas take-off line and is recovered by the raw material preheating means into the methanol/water mixed raw material. On the other hand, the methanation reaction heat is further recovered by the methanol/water mixed raw material passing through the raw material heating means by heating the heating medium circulating through the raw material heating means, and the methanol/water mixed raw material is brought to the methanation reaction starting temperature. Heat and vaporize. As a result, the heat of the methanation reaction and the heat of the methane-rich reaction gas generated by the reaction cover all of the amount of heat required to generate the gas. In the gasification means, the amount of heat generated by the reaction is rapidly absorbed by the heating medium, and as shown in FIG. 8, the temperature in a part of the gasification means (reactor) becomes high, but is quickly cooled down. Furthermore, in the case of a high calorific value city gas production apparatus, in addition to the above-mentioned effects, carbon dioxide gas and water are removed from the methane-rich reaction gas, and the heat is further adjusted by adding butane to produce high calorific value city gas. Then, the heat of the methane-rich gas produced by the gasification means is used to remove carbon dioxide and evaporate the heat-adjusting butane. That is, in this high calorific value city gas production apparatus, there is no need to supply heat from the outside through the reaction system and purification system during steady state. (Effects of the Invention) Since the present invention is constructed as described above, it has the following advantages. Γ Regarding the production equipment for high calorific value rich methane gas (1) A mixed raw material of methanol and water is produced in the presence of a nickel-based catalyst supported on an alumina-based carrier with a reduced content of sulfur compounds and a reduced specific surface area. Since we use a gasification method that generates methane-rich reaction gas in a one-step reaction by contacting the gas phase,
Combination of catalytic cracking reactor and methanator, 2
Compared to the method of converting methanol to methanation using a combination of a stage catalytic cracking reactor and a methanator, the amount of equipment required is reduced, and the equipment can be made smaller and simpler, and equipment costs can be reduced. (2) Furthermore, we have provided a heat medium circulation system that circulates and flows the heat medium through the gasification means and absorbs the heat of reaction into the heat medium, so the heat of reaction can be quickly absorbed and removed. Since there is no temperature difference between the inflow and outflow of methane and the outlet temperature is low, heat loss is also reduced, which is advantageous in terms of methane yield and economic efficiency. In addition, in order to suppress the rise in gas temperature in the reactor, a gas recycling line is installed to recycle a considerable proportion of the gas produced, diluting the methanol concentration, and There is no need to feed and cool raw material methanol between reactors, and therefore it is not only efficient and economical, but also does not require special equipment such as a recycle line or compressor. (3) The temperature of the heating medium can be controlled separately from the process gas side, and due to the retained heat of the heating medium, it is less affected by changes in the process gas side and has excellent stability. (4) If the temperature of the heat medium circulation path is maintained, it is easy to restart the operation after stopping the operation, and gas production can be started immediately. (5) Preheating means installed in the raw material supply line to preheat the raw material by heat exchange with the methane-rich reaction gas taken out from the gasification means, and heat exchange with a heating medium provided in the raw material supply line downstream of the preheating means. A raw material heating means for further heating the raw material after preheating is provided, and the heat of the methanation reaction and the latent heat of the methane-rich reaction gas are used as energy to directly raise the temperature of the raw material to the methanation reaction starting temperature. There is no need to obtain the amount of heat required to produce high calorific value-rich methane gas from the methanol raw material from an external source, resulting in a significant reduction in fuel costs. Γ Regarding the production of high calorific value city gas (1) In the carbon dioxide removal means, in a carbon dioxide absorption tower,
In order to regenerate the absorption liquid that has absorbed carbon dioxide gas,
A reboiler that supplies heat to the stripping tower through heat exchange with the methane-rich gas extracted from the gasification means, and a butane evaporator that evaporates butane through heat exchange with the reaction gas that has passed through the decarbonation gas means attached to the heat adjustment means. The heat of the methane-rich gas exiting the reaction system is used as heating energy for decarbonation gas and evaporation of butane for heat control. This has the advantage that the entire system does not require any external heat supply. (Example) Next, an example of the present invention will be described based on the drawings. As shown in FIG. 1, this embodiment includes a reaction section A for producing methane-rich reaction gas, a recycled water supply section B,
It consists of a decarbonation gas means C for refining the methane-rich reaction gas into a high calorific fuel gas, a dehydration means D, a calorific value adjusting means E, and a start-up mechanism F for creating an active temperature atmosphere in the reactor a1 of the reaction section A. Reaction part A generates methane-rich reaction gas (CH 4 72%, CO 2 25%, H 2 3%) using methanol (CH 3 OH) mixed with water H 2 O as a raw material. , a raw material supply line 100 connected to the reactor a1 , a raw material preheating means a2 and a raw material heating means a3 disposed in the supply line 100, a heat medium circulation system serving as a heat source for the raw material heating means a3 . Road A consists of 4 . The supply line 100 adjusts the supply ratio of methanol and water using the methanol supply pump 1 and the water supply pump 2, thereby supplying raw materials in an appropriate molar ratio via the raw material preheating means a 2 and the raw material heating means a 3 . Feed to reactor a1 . The raw material preheating means a2 is the equipment to which the mixed raw material of methanol and water is first sent, and is used as a reactor to be described later.
A reaction gas take-off line 200 connected to the reactor a 1 to take out the methane-rich reaction gas generated from the reactor a 1
and the raw material supply line 100 intersect with each other to form a heat exchange structure that heats the raw material using the latent heat of the methanol-rich reaction gas. The raw material heating means a3 consists of an evaporator 3 and a superheater 4 , and the evaporator 3 is a device that further heats and vaporizes the mixed raw material of methanol and water that has been preheated by the raw material preheating means a2. The superheater 4 is equipped with a heat exchange structure that heats with heat supplied from the heat medium flowing through the circulation path A4 , and the superheater 4 further heats the mixed raw material of methanol and water heated and vaporized in the evaporator 3 to produce methane. This equipment raises the temperature to the starting temperature of the chemical reaction, and like the evaporator 3, it constitutes a heat exchange structure that heats with heat supplied from a heat medium in a heat medium circulation path a4 , which will be described later. The reactor A1 is used to generate a methane-containing mixed gas by carrying out a vapor phase catalytic reaction of the raw material mixture of methanol and water superheated and vaporized by the raw material preheating means A2 , the evaporator 3, and the superheater 4 in the presence of a catalyst. , for example, has a shell-and-tube type structure. The catalyst contained in this reactor a1 is made of a nickel-based carrier supported on an alumina-based carrier with a reduced sulfur compound content or specific surface area.For example, the sulfur compound content (SO 4 2- ) 1.2% by weight or less of fine powder γ
- A carrier made of alumina or fine powdered alumina hydrate supporting nickel (Ni) and/or an oxide of nickel or its reduced product, or a silica-alumina carrier with a specific surface area of 350 m 2 /g or less It is made by supporting a reduced product of nickel. This catalyst has the characteristics of exhibiting high activity at low temperatures and a high methanation rate, and can produce a methane-containing mixed gas with a calorific value of about 6900 Kcal/Nm 3 under reaction conditions of about 300° C. or lower. The heat medium circulation path a4 is attached to the reactor a1 , and collects the heat of the methanation reaction in the reactor a1 , and
In order to recover heat from the mixed raw material of methanol and water passing through the evaporator 3 and superheater 4, the reactor a1 is connected to a heating medium heating furnace 5, the superheater 4, the evaporator 3, the heating medium storage tank 6, and the heating medium pump. 7. The heating medium is configured to flow to the heating medium temperature regulator 8 and return to the reactor a1 again.
The heating medium heating furnace 5 heats the heating medium with an appropriate fuel only at the time of startup of the device, and ensures the function of heating the mixed raw material of methanol and water in the evaporator 3 and the superheater 4 at the time of startup. If the methanation reaction heat is generated in step 1 , there is no need to operate the heat medium heating furnace 5. The methanation reaction in reactor A1 is 300℃
This heating medium circulation system path A 4
The function of the reactor a1 is not inhibited by the heat recovery, and the mixed raw materials of methanol and water are sufficiently heated in the evaporator 3 and the superheater 4. Note that a molten salt that melts at 142° C. is used as a heating medium. The reused water supply section B is disposed in the reaction gas extraction line 200 connected to the reactor a 1 , and includes a means b 1 for separating water from the methane-rich reaction gas and the water separated from the means b 1 as a raw material. The supply line 100 has a recycled water supply means b 2 for recycling. The reaction gas separation means b 1 is a conventional method using a reaction gas separation tank 9, and in the process of the methane-rich reaction gas leaving the reactor a 1 and being sent to the reaction gas separation tank 9, the raw material preheating means a 2 The heat is recovered to the methanol/water mixed raw material, and the heat is recovered to the potassium carbonate aqueous solution in the reboiler 10 in the decarbonation gas absorption/diffusion mechanism C 2 (described later), and further cooled in the cooler 11 before being separated from the reaction gas. It is designed to be fed into tank 9. The reused water supply means b 2 includes a circulation pump 12 attached to the reaction gas separation tank 9 and a raw material supply line 10.
0, and the water separated from the separation tank 9 (recycled water) is controlled to have a predetermined molar ratio with the methanol supplied from the methanol supply source using the circulation pump 12. The mixture is operated through the raw material preheating means a 2 , the evaporator 3 and the superheater 4 as the reactor generates a methane-rich reaction gas. In other words, the water supply pump 2 performs the function of supplying water at the initial stage of operation of the device, but when sufficient methane-rich reaction gas is generated from the reactor a1 , the water supply pump 2 is stopped and the water supply pump 2 is stopped. Instead, the circulation pump 12 performs the water supply function. By the way, it is optimal to adjust the water/methanol molar ratio to 0.5. That is, water is used to prevent carbon precipitation due to gas phase contact reaction in reactor A1 , and when the water/methanol molar ratio is set to 0.7 or more,
The amount of heat required to heat the methanol/water mixed raw material to the required temperature increases, and in order to cover all of that amount of heat with the heat of the methane-rich reaction gas coming out of reactor A1 and the reaction heat from the methanation reaction, a device is required. It is difficult to insulate and retain heat without sufficient insulation and heat retention, and it also increases the burden on the circulation system, which is disadvantageous in terms of manufacturing costs.If the water/methanol molar ratio is lower than 0.3, carbon precipitation may occur during long-term steady operation. There is a concern that problems may arise. The reaction gas separation tank 9 separates and stores water and discharges excess water in excess of that required for recycling. The decarbonation gas means C is disposed subsequent to the reaction gas separation means b 1 and removes carbon dioxide (carbon dioxide) from the methane-rich reaction gas from which water has been separated. Carbon dioxide gas diffusion tower c 1 ′,
It consists of a reboiler 10 and a carbon dioxide absorption/diffusion mechanism c2 . The carbon dioxide absorption tower c1 absorbs carbon dioxide using an aqueous potassium carbonate solution, and can increase the calorific value of the gas from which carbon dioxide has been removed to about 9200 Kcol/Nm 3 . The carbon dioxide absorption/diffusion mechanism c 2 includes the carbon dioxide absorption tower c 1 and a carbon dioxide diffusion tower c 1 ′ paired therewith,
a potassium carbonate storage tank 13 that circulates a potassium carbonate aqueous solution between the carbon dioxide absorption tower c 1 and the carbon dioxide diffusion tower c 1 ′;
Potassium carbonate supply pump 14, potassium carbonate circulation pump 1
5, an antifoaming agent storage tank 16 for defoaming during circulation of potassium carbonate, an antifoaming agent pump 17, a condenser 18 attached to the carbon dioxide gas stripping tower c1 ' for separating and discharging carbon dioxide gas;
It consists of a carbon dioxide gas separation tank 19, a reflux pump 20, and a reboiler 10 attached to the carbon dioxide gas stripping tower c 1 ' and provided between the reaction gas separation means b 1 and the reaction section A. The dehydration means D is disposed following the decarbonation gas means C and purifies the produced gas by removing moisture from the methane-containing mixed gas, and includes three coolers 21,
22, 23, purified gas water separation tank 24, cooling mechanism 2
Consists of 5. The second cooler 22 among the coolers 21, 22, and 23 is equipped with a heat exchange structure that is cooled by the produced gas from which moisture has been removed, and the third cooler 23 is equipped with a cooling mechanism 25 (refrigerator unit). 25A, a brine pump 25B, a brine storage tank 25C, and a brine pump 25D.The purified gas water separation tank 24 separates and stores moisture and discharges it as necessary.Calorific value adjustment means E is installed following the dehydration means, and mixes butane LPG with the production gas.
It adjusts the heat amount to about 11000Kcol/ Nm3 .
It consists of a butane supply pump 26, a butane evaporator 27, and a mixer 28. The butane supply pump 26 supplies butane to the mixer 28 via the butane evaporator 27, and by adjusting the amount of butane supplied, the calorific value of the production gas can be adjusted. The butane evaporator 27 vaporizes butane by exchanging heat with the reaction gas before entering the dehydrating means D, and functions as a cooler for the dehydrating means D. The mixer 28 mixes the production gas and butane. According to such an embodiment, methanol mixed with water is methanated in one step by gas phase catalytic reaction in the presence of said catalyst in reactor a1 . In addition, the mixture of water and methanol can be used to convert water obtained from the reaction and separated from the methane-rich reaction gas (reused water).
In addition, the water-mixed methanol can be heated using the latent heat of the reaction gas and the reaction heat in reactor A1 , which can be used in the heat medium circulation system path A. 4 can be recovered and used, which means that heating energy will also be reduced. In addition to the illustrated embodiments described above, embodiments may also be adopted in which the decarbonation gas means C is of a dry type (PSA method) or other structure. Furthermore, it is also possible to adopt other structures for the dehydration means D and the heat amount adjustment means E in view of the manufacturing scale and the like. Next, a description will be given of the startup mechanism F that creates an active temperature atmosphere in the reactor a1 when the device is started. During steady operation, the start-up mechanism F causes the heat medium to flow from the reactor a 1 to the heat medium heating furnace 5, superheater 4, evaporator 3, heat medium storage tank 6, heat medium pump 7, and heat medium temperature regulator 8. Heat medium circulation path A 4 that circulates and returns to reactor A 1 again
(4th circulation path A4-4 ) is provided with an appropriate bypass pipe,
A first circulation path a 4 -1 that returns directly from the outlet of the heat medium storage tank 6 containing the heater 6' to the inlet of the heat medium storage tank 6 to melt the solidified molten salt, and from the heat medium storage tank 6 via the heat medium heating furnace 5. and a second circulation path a4-2 which returns to the heat medium storage tank 6 again, a third circulation path which returns to the heat medium storage tank 6 again via the heat medium storage tank 6, the heat medium heating furnace 5 , and the raw material heating means a1. a4-3 as a switchable circulation path, a part of the raw material supply line 100 and the reaction gas extraction line 200 can be switched to a circulation system 400, and air supply means blows heated gas into the circulation system 400. (Start-up blower) Constructed by connecting G. To explain the simple operation of this start-up mechanism F, first, the heater 6' heats the heat medium in the heat medium storage tank 6, and the pump 7 is operated to circulate and flow the heat medium into the first circulation path a4-1 . to increase the heating medium temperature.
Raise the temperature to about 170℃ (Figure 4). Subsequently, the flow of the heating medium is switched to the second circulation path A4-2 , and fuel is supplied to the heating medium heating furnace 5, where it is combusted and heated, and the temperature of the heating medium is raised to about 250°C (Fig. 5). . Next, the flow of the heat medium is switched to the third circulation path a4-3 (FIG. 6). Thereafter, a heating gas such as Chitsuso N 2 is fed into the circulation system 400 formed by a part of the raw material supply line 100 and a part of the reaction gas extraction line 200 by the start-up blower G and circulated. Then, the heating gas flowing through this circulation system 400, for example Chitsuso N 2 , recovers the heat of the heating medium in the evaporator 3 and superheater 4 and raises the temperature to the heating medium temperature of about 250°C.
Heating reactor a 1 to create activation temperature (first
figure). When the above reaction conditions are established, the flow of the heating medium is transferred to the regular heating medium circulation path A 4 , that is, the fourth circulation path A 4
-4, and feed the raw material with water added to methanol into reactor A1 . As a result, reaction heat is generated and water is separated from the reaction gas. From then on, this reaction heat, the latent heat of the reaction gas, and the separated water are used to stop the supply of water and fuel to the heating furnace 5. Steady operation is performed. An example in which city gas was actually produced based on the city gas production apparatus according to the present invention will be shown below. Experimental Example 1 The molar ratio of water and methanol as raw materials was 0.5, and the reaction temperature was 305°C and the reaction pressure was 9.0Kg/cm 2 in the reactor A1 .
When operated under the conditions of G, a manufactured gas having the following properties was obtained. Calorific value 11000Kcol/Nm 3 Specific gravity 0.68 WI (Wotsube index) 13340 CP (combustion velocity) 41.9cm/s Table 1 shows various numerical values for each stream number in the flowchart shown in Figure 2 for this experimental example. . Experimental Example 2 The molar ratio of water and methanol as raw materials was 0.5, and the reaction temperature was 299°C and the reaction pressure was 8.9Kg/cm 2 in the reactor A1 .
When operated under the conditions of G, a manufactured gas having the following properties was obtained. Calorific value 11000Kcol/Nm 3 Specific gravity 0.68 WI (Wotsube index) 13340 CP (combustion velocity) 41.6cm/s Table 2 shows various numerical values for each stream number in the flowchart shown in Figure 2 for this experimental example. .

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明メタノールを原料とする高熱量富
メタンガスの製造装置及び高熱量都市ガスの製造
装置の実施例を示し、第1図は本発明の全体構成
の概略を示す概略構成図、第2図は第1図の装置
による製造工程のフローチヤート図であり、第2
図の番号1〜8は第1表、第2表に示す諸元の測
定位置を示す、第3図乃至第7図はスタートアツ
プの過程を説明する説明図、第8図は反応器内の
温度分布を説明する説明図である。 尚図中、A…反応部、B…再利用水供給部、a3
…原料加熱手段、a2…原料予熱手段、a1…反応器
(ガス化手段)、100…原料供給ライン、200
…反応ガス取出ライン、b1…反応ガス分離手段、
b2…再利用水供給手段、a4…熱媒循環系路、C…
脱炭酸ガス手段、c1…炭酸ガス吸収塔、c1′…炭
酸ガス放散塔、D…脱水手段、E…熱量調整手
段、10…再沸器、27…ブタン蒸発器。
The drawings show an embodiment of the high calorific value rich methane gas production apparatus and the high calorific value city gas production apparatus using methanol as a raw material according to the present invention. 1 is a flowchart of the manufacturing process using the apparatus shown in FIG.
Numbers 1 to 8 in the figures indicate the measurement positions of the specifications shown in Tables 1 and 2, Figures 3 to 7 are explanatory diagrams explaining the start-up process, and Figure 8 is the inside of the reactor. It is an explanatory diagram explaining temperature distribution. In the figure, A...reaction section, B...recycled water supply section, a3
...Raw material heating means, a 2 ...Raw material preheating means, a 1 ...Reactor (gasification means), 100 ...Raw material supply line, 200
... Reactive gas take-off line, b 1 ... Reactive gas separation means,
b 2 ... Reused water supply means, a 4 ... Heat medium circulation system path, C...
Decarbonation gas means, c1 ...carbon dioxide absorption tower, c1 ' ...carbon dioxide gas stripping tower, D...dehydration means, E...heat amount adjustment means, 10...reboiler, 27...butane evaporator.

Claims (1)

【特許請求の範囲】 1 イオウ化合物の含有量を低下させ、また比表
面積を低減させたアルミナ系担体にニツケル系を
担持させた触媒の存在下でメタノールと水の混合
原料を気相接触させて一段反応で富メタン反応ガ
スを生成するガス化手段と、 メタノールと水を一定割合で混合してガス化手段
に送り込む原料供給ラインと、 ガス化手段を経由して熱媒を循環流動させて反応
熱を熱媒に吸熱させる熱媒循環系路と、 ガス化手段で生成した富メタン反応ガスを取り
出す反応ガス取出ラインと、 原料供給ライン途中に設けられガス化手段から
取出した富メタン反応ガスとの熱交換により原料
を予熱する予熱手段と、 予熱手段より下流において原料供給ラインに設
けられ熱媒との熱交換により予熱後の原料を更に
加熱する原料加熱手段と、 反応ガス取出ラインに設けられ、富メタン反応
ガスから水を分離する反応ガス分離手段、 上記反応ガス分離手段で分離した分離水をメタ
ノール・水混合原料用水として上記原料供給ライ
ンに供給する水リサイクル手段と を備えることを特徴とするメタノールを原料とす
る高熱量富メタン混合ガスの製造装置。 2 イオウ化合物の含有量を低下させ、また比表
面積を低減させたアルミナ系担体にニツケル系を
担持させた触媒の存在下でメタノールと水の混合
原料を気相接触させて一段反応で富メタン反応ガ
スを生成するガス化手段と、 メタノールと水を一定割合で混合してガス化手
段に送り込む原料供給ラインと、 ガス化手段を経由して熱媒を循環流動させて反応
熱を熱媒に吸熱させる熱媒循環系路と、 ガス化手段で生成した富メタン反応ガスを取り
出す反応ガス取出ラインと、 原料供給ライン途中に設けられガス化手段から
取出した富メタン反応ガスとの熱交換により原料
を予熱する予熱手段と、 予熱手段より下流において原料供給ラインに設
けられ熱媒との熱交換により予熱後の原料を更に
加熱する原料加熱手段と、 反応ガス取出ラインに設けられ、富メタン反応
ガスから水を分離する反応ガス分離手段、 上記反応ガス分離手段で分離した分離水をメタ
ノール・水混合原料用水として上記原料供給ライ
ンに供給する水リサイクル手段と、 反応ガス分離手段の下流において反応ガス取出
ラインに設けられて、吸収液に富メタン反応ガス
中の炭酸ガスを選択的に吸収する炭酸ガス吸収
塔、炭酸ガス吸収塔で炭酸ガスを吸収した吸収液
を再生するために付設された炭酸ガス放散塔及び
ガス化手段から取出した富メタン反応ガスとの熱
交換により放散塔に熱を供給する再沸器から構成
される脱炭酸ガス手段と、 脱炭酸ガス手段の下流において反応ガス取出ラ
インに設けられ富メタン反応ガスを脱水する脱水
手段と、 脱水手段の下流において反応ガス取出ラインに
接続され上記脱炭酸ガス手段及び脱水手段を経て
精製された精製ガスにブタンを添加して熱量を増
熱調整する熱量調整手段と、 熱量調整手段に付設され脱炭酸ガス手段通過後
の反応ガスとの熱交換によりブタンを蒸発させる
ブタン蒸発器と、 を備えることを特徴とするメタノールを原料とす
る高熱量都市ガスの製造装置。
[Claims] 1. A mixed raw material of methanol and water is brought into gas phase contact in the presence of a nickel-based catalyst supported on an alumina-based carrier with a reduced content of sulfur compounds and a reduced specific surface area. A gasification means that generates methane-rich reaction gas in a one-stage reaction, a raw material supply line that mixes methanol and water at a fixed ratio and sends it to the gasification means, and a heating medium that circulates and flows through the gasification means to react. A heat medium circulation system path for absorbing heat into the heat medium, a reaction gas extraction line for taking out the methane-rich reaction gas generated by the gasification means, and a reaction gas extraction line for taking out the methane-rich reaction gas from the gasification means, which is provided in the middle of the raw material supply line. a preheating means for preheating the raw material by heat exchange with the preheating means; a raw material heating means provided in the raw material supply line downstream of the preheating means and further heating the preheated raw material by heat exchange with a heating medium; and a raw material heating means provided in the reaction gas extraction line. , a reaction gas separation means for separating water from the methane-rich reaction gas, and a water recycling means for supplying the separated water separated by the reaction gas separation means to the raw material supply line as methanol/water mixed raw material water. A device for producing high calorific value rich methane mixed gas using methanol as raw material. 2. A one-stage enriched methane reaction is achieved by bringing a mixed raw material of methanol and water into gas phase contact in the presence of a nickel-based catalyst supported on an alumina-based carrier with a reduced content of sulfur compounds and a reduced specific surface area. A gasification means that generates gas, a raw material supply line that mixes methanol and water at a fixed ratio and sends it to the gasification means, and a heat medium that circulates through the gasification means to absorb the reaction heat into the heat medium. The raw material is processed through heat exchange between the heating medium circulation system, which takes out the methane-rich reaction gas produced by the gasification means, and the methane-rich reaction gas, which is provided in the middle of the raw material supply line and is taken out from the gasification means. A preheating means for preheating; a raw material heating means for further heating the preheated raw material by heat exchange with a heating medium, which is provided in the raw material supply line downstream of the preheating means; A reactive gas separation means for separating water, a water recycling means for supplying the separated water separated by the reactive gas separation means to the raw material supply line as methanol/water mixed raw material water, and a reactive gas extraction line downstream of the reactive gas separation means. A carbon dioxide absorption tower is installed to selectively absorb carbon dioxide in the methane-rich reaction gas into the absorption liquid, and a carbon dioxide dissipation tower is installed to regenerate the absorption liquid that has absorbed carbon dioxide in the carbon dioxide absorption tower. a decarbonation gas means consisting of a reboiler that supplies heat to the stripping tower through heat exchange with the methane-rich reaction gas taken out from the tower and the gasification means; and a decarbonation gas means provided in the reaction gas extraction line downstream of the decarbonation gas means. a dehydration means for dehydrating the methane-rich reaction gas; and a dehydration means connected to a reaction gas take-out line downstream of the dehydration means and adding butane to the purified gas purified through the decarbonation means and dehydration means to increase and adjust the amount of heat. A high calorific value city using methanol as a raw material, comprising: a calorific value adjusting means for adjusting the calorific value; and a butane evaporator that is attached to the calorific value adjusting means and evaporates butane by heat exchange with the reaction gas after passing through the decarbonation gas means. Gas production equipment.
JP22959388A 1988-09-12 1988-09-12 Producer of methane-rich gas for city gas, producer of city gas, and start-up mechanism therefor Granted JPH01138295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22959388A JPH01138295A (en) 1988-09-12 1988-09-12 Producer of methane-rich gas for city gas, producer of city gas, and start-up mechanism therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22959388A JPH01138295A (en) 1988-09-12 1988-09-12 Producer of methane-rich gas for city gas, producer of city gas, and start-up mechanism therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62153030A Division JPS63317595A (en) 1987-06-19 1987-06-19 Production of high-btu town gas from methanol

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3021018A Division JPH04211496A (en) 1991-02-14 1991-02-14 Method for starting up gas production device

Publications (2)

Publication Number Publication Date
JPH01138295A JPH01138295A (en) 1989-05-31
JPH0364558B2 true JPH0364558B2 (en) 1991-10-07

Family

ID=16894616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22959388A Granted JPH01138295A (en) 1988-09-12 1988-09-12 Producer of methane-rich gas for city gas, producer of city gas, and start-up mechanism therefor

Country Status (1)

Country Link
JP (1) JPH01138295A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169502A (en) * 1974-11-18 1976-06-16 Osaka Gas Co Ltd KYOKYUHOATSUYOKI NKYUSHA
JPS51122102A (en) * 1975-04-17 1976-10-26 Hiroshima Gas Kk Process for producing fuel gas using methanol as the starting raw mate rial
JPS5244802A (en) * 1975-10-06 1977-04-08 Osaka Gas Co Ltd Preparation of high calorific value fuel gas
JPS5251406A (en) * 1975-10-23 1977-04-25 Osaka Gas Co Ltd Manuacturing of fuel gas
JPS56120796A (en) * 1980-01-31 1981-09-22 British Gas Corp Gas manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169502A (en) * 1974-11-18 1976-06-16 Osaka Gas Co Ltd KYOKYUHOATSUYOKI NKYUSHA
JPS51122102A (en) * 1975-04-17 1976-10-26 Hiroshima Gas Kk Process for producing fuel gas using methanol as the starting raw mate rial
JPS5244802A (en) * 1975-10-06 1977-04-08 Osaka Gas Co Ltd Preparation of high calorific value fuel gas
JPS5251406A (en) * 1975-10-23 1977-04-25 Osaka Gas Co Ltd Manuacturing of fuel gas
JPS56120796A (en) * 1980-01-31 1981-09-22 British Gas Corp Gas manufacture

Also Published As

Publication number Publication date
JPH01138295A (en) 1989-05-31

Similar Documents

Publication Publication Date Title
US4296085A (en) Process for the production of ammonia and the corresponding synthesis gas
US5512599A (en) Process for the production of methanol
US4298588A (en) Ammonia production process
EP0194765B1 (en) Synthesis gas
NO165911B (en) PROCEDURE FOR THE PREPARATION OF SYNTHESIC GAS.
RU2415904C2 (en) System of liquid fuel synthesis
CN102431971A (en) Method and apparatus for adjustably treating a sour gas
NO312026B1 (en) Integrated process and integrated plant for the production of methanol and ammonia
JPH0597732A (en) Preparation of methanol and reactor unit therefor
US20230264955A1 (en) Process for producing a gas stream comprising carbon monoxide
KR20240017359A (en) Method and plant for producing pure hydrogen by steam reforming while lowering carbon dioxide emissions
JP5138586B2 (en) Liquid fuel synthesis system
JP4601742B2 (en) Method for producing city gas
JPH0364558B2 (en)
JPWO2007114276A1 (en) Method for starting liquid fuel synthesis system and liquid fuel synthesis system
KR910005726B1 (en) Production of high-btu town gas from methanol
US3970744A (en) Process for the production of sulfur from sulfur dioxide extracted from gas streams
JP4135871B2 (en) Apparatus and method for reforming kerosene or light oil using exhaust heat as a heat source
US5008088A (en) Methanol-gas saturator for catalytic conversion system
JPH04366200A (en) Preparation of high-btu town gas
US4636377A (en) Integrated scrubbing of SO2 and production of sulfur
JPS58190821A (en) Ammonia production
JPS60258294A (en) Desulfurization refining of natural gas
WO2023136065A1 (en) Carbon dioxide recovery system
WO2023195266A1 (en) Reaction system