JPH0364443B2 - - Google Patents

Info

Publication number
JPH0364443B2
JPH0364443B2 JP57219455A JP21945582A JPH0364443B2 JP H0364443 B2 JPH0364443 B2 JP H0364443B2 JP 57219455 A JP57219455 A JP 57219455A JP 21945582 A JP21945582 A JP 21945582A JP H0364443 B2 JPH0364443 B2 JP H0364443B2
Authority
JP
Japan
Prior art keywords
electrode
high voltage
corona discharge
corona
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57219455A
Other languages
Japanese (ja)
Other versions
JPS59111902A (en
Inventor
Senichi Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21945582A priority Critical patent/JPS59111902A/en
Publication of JPS59111902A publication Critical patent/JPS59111902A/en
Publication of JPH0364443B2 publication Critical patent/JPH0364443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 本発明は、オゾン発生装置(以下オゾナイザと
称する)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ozone generator (hereinafter referred to as an ozonizer).

従来のオゾナイザは平行板ないし、平行円筒電
極間にガラス板を介在せしめて交流高電圧を印加
し、電極間隙に無声放電を発生せしめつつ、この
間に乾燥せる空気又は酸素を流通せしめ、該無声
放電に固有の放電化学的作用で酸素をオゾンに転
化せしめてオゾンを発生する方式のものであつ
た。しかし、この方式のオゾン発生の電力効率は
極めて低く、理論値の数%以下に止るものであつ
た。これに対して本願発明者は別発明「オゾン発
生装置」(昭和55年2月23日出願;特願昭55−
21878号、特開昭56−120507号公報参照)におい
てパルス巾の著るしく短かい極短のパルス高電圧
の生ずる沿面コロナ放電の有効なオゾン生成作用
を利用して電力効率を向上する方法を提案した
が、この方法には沿面放電による誘電体の加熱と
いう欠点があつた。
In conventional ozonizers, a glass plate is interposed between parallel plate or parallel cylindrical electrodes, and AC high voltage is applied to generate a silent discharge in the gap between the electrodes, while drying air or oxygen is passed through the gap between the electrodes to generate the silent discharge. It was a system in which ozone was generated by converting oxygen into ozone using the chemical action of electric discharge, which was unique to the system. However, the power efficiency of ozone generation using this method was extremely low, remaining at a few percent of the theoretical value. In contrast, the inventor of the present application has another invention "Ozone generator" (filed on February 23, 1980; patent application filed in 1982-
No. 21878 and Japanese Patent Application Laid-open No. 120507/1983), a method of improving power efficiency by utilizing the effective ozone generation effect of creeping corona discharge, which generates extremely short pulsed high voltage with extremely short pulse width, was proposed. However, this method had the drawback of heating the dielectric material due to creeping discharge.

本発明はこれらの欠点を、同じくパルス巾の著
るしく短い極短パルス高電圧を使用するものの、
これによつて強力なストリーマーコロナ放電をガ
ス空間に生ぜしめ、その放電化学作用を利用する
ことにより克服し、電力効率の大巾な向上を達成
せるオゾナイザーを提供するものである。
The present invention solves these drawbacks, although it also uses extremely short pulsed high voltage with a significantly short pulse width.
This provides an ozonizer that generates a strong streamer corona discharge in the gas space, overcomes it by utilizing the discharge chemistry, and achieves a significant improvement in power efficiency.

ここに本発明において利用する極短パルス高電
圧のパルス巾は1nsから数十μsの間とし、特に、
1nsから100nsの間に選ぶのを好適とする。この様
な極短パルス高電圧を少くとも一方をコロナ放電
極とする相対向する電極間に印加する時は、該コ
ロナ放電極から極めて強力なストリーマーコロナ
放電を火花の発生なしに生ぜしめることが出来、
その有効なオゾン生成作用を安定に利用すること
が可能となる。この場合、相対向する電極は、一
方が線状、角線状、ストリツプ状、らせん状、針
状等のコロナ放電極、他方が板状、円筒状、角筒
状等の曲率半径の大きな非コロナ電極であつても
良く、また両方ともコロナ放電極であつてもよ
い。特に両電極を長形の平行線状電極、平行角線
状電極、平行ストリツプ状電極、平行二重らせん
状電極より成る長形のコロナ放電極対としたり、
あるいは長形の上記コロナ放電極と非コロナ電極
を平行に対置せる電極対とし、極短パルス高電圧
のパルス巾を著るしく小さくする時は、該パルス
高電圧は、これら長形電極対に沿つて進行波とし
て伝播し、その過程において該放電極に沿つて一
様に強力なストリーマーコロナ放電を発生、その
オゾン生成効率は更に大巾に向上する。この場
合、進行波の速度はυ0.3〔m/ns〕であり、そ
の幾何学的波長はパルス巾がτ〔ns〕のときl
0.3τ〔m〕となる。そして、上記長形電極対の全
長L〔m〕に対してlLとする時、換言すると
該極短パルス高電圧をほぼτL/(0.3)〔ns〕
に選ぶとき、この様に該パルス高電圧は進行波と
して振舞を呈する様になる。この様に長形の電極
対として印加パルス高電圧を進行波として振舞わ
せ、進行波電圧に固有の強力なストリーマーコロ
ナ放電を発生せしめうる所のの電極対を特にコロ
ナ伝送線路という。コロナ伝送線路たらしめるた
めの条件は、その長さL〔m〕を、パルス巾τ
〔ns〕に対してL0.3τ〔m〕にとることである
が、実際にはその1/3程度のL0.1τ〔m〕位にと
つても進行波の性質は残存し、発生ストリーマー
の放電化学作用は同程度の活性を保持する。この
場合、コロナ伝送線路を形成する長形電極対の両
方の電極ともコロナ放電極とする時は、パルス高
電圧の波高値Vpがある域値をこえると、負極性
のコロナ放電極のみから正極性のコロナ放電極に
向つて負のストリーマーコロナを発生するが、正
極性のコロナ放電極からは放電を生じない。Vp
を更に上げると、上記負のストリーマーコロナに
おくれて正極性コロナ放電極から、正のストリー
マーコロナが負極性コロナ放電極に向けて発生す
る。この場合、オゾン生成能力の点では正と負の
ストリーマーコロナに大差がないにも拘らず、エ
ネルギー消費では前者が後者に比べて著るしく大
きい。換言すれば、この場合には負コロナストリ
ーマーのもが発生する如きVpを印加するのが電
力効率の上で有利である。また、コロナ伝送線路
の一方をコロナ放電極、他方を非コロナ電極とす
るときは、前者の極性が負となる如き極性をもつ
て両電極にパルス高電圧を印加し、負のストリー
マーコロナを発生せしめるのがオゾン発生の電力
効率上最適である。また、この場合オゾン生成に
使用する空気や酸素は充分乾燥(例えば露点を−
40℃以下とする如く)していることが必要であ
る。
The pulse width of the ultrashort high voltage pulse used in the present invention is between 1 ns and several tens of μs, and in particular,
It is preferable to select between 1 ns and 100 ns. When such ultra-short pulsed high voltage is applied between opposing electrodes, at least one of which is a corona discharge electrode, an extremely powerful streamer corona discharge can be generated from the corona discharge electrode without generating sparks. Done,
It becomes possible to stably utilize its effective ozone generation effect. In this case, the opposing electrodes are one corona discharge electrode in the shape of a line, rectangular wire, strip, spiral, needle, etc., and the other electrode in the shape of a plate, cylinder, rectangular tube, etc. with a large radius of curvature. It may be a corona electrode, or both may be corona discharge electrodes. In particular, both electrodes may be an elongated corona discharge electrode pair consisting of elongated parallel linear electrodes, parallel angular linear electrodes, parallel strip electrodes, or parallel double helical electrodes,
Alternatively, when the elongated corona discharge electrode and the non-corona electrode are arranged as an electrode pair in parallel and the pulse width of the ultra-short pulsed high voltage is significantly reduced, the pulsed high voltage is applied to these elongated electrode pairs. In the process, a strong streamer corona discharge is generated uniformly along the discharge electrode, and the ozone generation efficiency is further improved greatly. In this case, the speed of the traveling wave is υ0.3 [m/ns], and its geometric wavelength is l when the pulse width is τ [ns].
It becomes 0.3τ [m]. When the total length L [m] of the long electrode pair is 1L, in other words, the ultra-short pulse high voltage is approximately τL/(0.3) [ns].
In this way, the pulsed high voltage behaves as a traveling wave. Such a long electrode pair that can cause the applied pulsed high voltage to behave as a traveling wave and generate a strong streamer corona discharge unique to the traveling wave voltage is particularly referred to as a corona transmission line. The conditions for making it a corona transmission line are that its length L [m] is equal to the pulse width τ
Although it is taken to be L0.3τ [m] for [ns], in reality, the properties of traveling waves remain even at about 1/3 of that, L0.1τ [m], and the generated streamer The discharge chemistry remains at the same level of activity. In this case, when both electrodes of the long electrode pair forming the corona transmission line are used as corona discharge electrodes, when the peak value Vp of the pulsed high voltage exceeds a certain threshold, only the negative polarity corona discharge electrode changes to the positive polarity. A negative streamer corona is generated toward the positive corona discharge electrode, but no discharge is generated from the positive corona discharge electrode. Vp
When is further increased, a positive streamer corona is generated from the positive corona discharge electrode behind the negative streamer corona toward the negative corona discharge electrode. In this case, although there is not much difference between the positive and negative streamer coronas in terms of ozone generation capacity, the former is significantly larger in energy consumption than the latter. In other words, in this case, it is advantageous in terms of power efficiency to apply Vp such that a negative corona streamer is generated. In addition, when one side of the corona transmission line is used as a corona discharge electrode and the other as a non-corona electrode, a pulsed high voltage is applied to both electrodes with the polarity of the former being negative to generate a negative streamer corona. This is optimal in terms of power efficiency for ozone generation. In this case, the air and oxygen used for ozone generation must be sufficiently dry (for example, the dew point must be -
(e.g. below 40℃).

すなわち、本発明による所の新規のオゾナイザ
はガスの入口と出口を有する函体と、該函体内に
相互に絶縁の上、相対向して配設せる所の少くと
も一方がストリーマーコロナ放電を行うためのコ
ロナ放電極である如き電極の対を少くともも一対
有し、該電極対の間にパルス巾が数十μs以下、特
に1000ns以下の極短パルス高電圧を印加するため
の極短パルス高圧電源を有し、これによつて該電
極対の間のガス空間内に、そのコロナ放電極より
強力なストリーマーコロナ放電を発生せしめ、そ
の放電域を通つて該ガス入口より導入せる乾燥せ
る空気又は酸素を流通せしめ、該ストリーマーコ
ロナの強力な放電化学的作用によつて酸素から有
効にオゾンを発生せしめた上、該オゾンを含有す
るガスを該ガス出口から外部に供給することを特
徴とする。
That is, the novel ozonizer according to the present invention includes a box having a gas inlet and an outlet, and at least one of the parts disposed facing each other and insulated from each other in the box performs streamer corona discharge. An ultra-short pulse for applying an ultra-short pulse high voltage having a pulse width of several tens of μs or less, especially 1000 ns or less between the pair of electrodes, such as a corona discharge electrode for a high-voltage power source, whereby a streamer corona discharge more powerful than the corona discharge electrode is generated in the gas space between the electrode pair, and drying air is introduced through the discharge region from the gas inlet; Or, it is characterized by allowing oxygen to flow, effectively generating ozone from the oxygen by the strong discharge chemical action of the streamer corona, and then supplying the ozone-containing gas to the outside from the gas outlet. .

この様に極短パルス高電圧により形成せる安
定、一様かつ強力なストリーマーコロナ放電の放
電化学的作用を利用することにより、本発明によ
る所の新規のオゾナイザは無声放電利用の従来型
オゾナイザに比べて著るしく高い電力効率で有効
にオゾンを発生せしめうるというすぐれた作用効
果を発揮し、オゾン生成の経済性を大巾に向上せ
しめる。
As described above, by utilizing the discharge chemistry of stable, uniform and strong streamer corona discharge formed by ultra-short pulsed high voltage, the novel ozonizer according to the present invention is superior to the conventional ozonizer using silent discharge. It exhibits an excellent effect of being able to effectively generate ozone with significantly high power efficiency, and greatly improves the economic efficiency of ozone generation.

この場合、必要に応じて該電極対の間にガラ
ス、セラミツク等の無機誘電体を介在せしめて、
火花の発生を完全に防止し、ストリーマーコロナ
放電の安定性を更に向上してもよく、また上記電
極対の各電極をガラス、セラミツク等の絶縁物に
配設固定してこれを担持せしめる構造としてもよ
い。また更に、必要に応じて函体壁や電極対自体
を水冷、油冷、空冷によつて冷却してもよいこと
も云るまでもない。また、本発明に使用すべき極
短パルス高圧電源としては、本発明者が別発明
「パルス電源」(特願昭51−4183、特公昭61−
11549号公報参照)、「パルス電源装置」(特願昭50
−109717、特公昭61−8676号公報参照)、「極短パ
ルス高電圧発生装置」(特願昭56−144399、特開
昭58−61843号公報参照)、「高電圧極短パルス電
源」(特願昭57−172797、特開昭59−63986号公報
参照)等を用いると有効であるが、本発明はこれ
に限定されることなく、適当な凡ゆる形式・構造
の極短パルス高圧電源を用いることができる。ま
た、該電極対の間に予め直流バイアス高電圧を印
加しておき、これに重ねて該パルス高電圧を印加
することにより、その波高値電圧Vpを低くして
も強力なストリーマーコロナ放電を発生せしめる
ことが出来て、該極短パルス高圧電源の容量を小
さくすることができる。この場合、直流バイアス
高電圧は上記パルス高電圧と同極性に相加わる如
き極性をもつて該電極対に印加する必要がある。
また、該電極対の他に、これらと平行に対向の
上、これらから絶縁せる第3電極を設け、該電極
対の両方又は少くとも一方と該第3電極の間に直
流バイアス高電圧を印加してもよく、この方法に
よつて、同じくより低いVp値により強力なスト
リーマーを発生せしめうる。但し、この場合の直
流バイアス高電圧の極性は、それが該電極対のコ
ロナ放電を行う電極において該極短パルス高電圧
による電界を強める如き極性に選ぶ必要があるこ
とは云うまでもない。
In this case, if necessary, an inorganic dielectric material such as glass or ceramic is interposed between the electrode pair.
It is possible to completely prevent the generation of sparks and further improve the stability of streamer corona discharge, and also to have a structure in which each electrode of the above electrode pair is arranged and fixed on an insulating material such as glass or ceramic to be supported. Good too. Furthermore, it goes without saying that the case wall or the electrode pair itself may be cooled by water cooling, oil cooling, or air cooling, if necessary. Furthermore, as the ultra-short pulse high voltage power supply to be used in the present invention, the present inventor has developed a separate invention "Pulse power supply" (Japanese Patent Application No. 51-4183, Patent Publication No. 61-61)
(Refer to Publication No. 11549), “Pulse Power Supply Device” (Patent Application No. 11549)
-109717, see Japanese Patent Publication No. 61-8676), "Ultra-short pulse high voltage generator" (see Japanese Patent Application No. 56-144399, Japanese Unexamined Patent Publication No. 58-61843), "High voltage ultra-short pulse power supply" ( (see Japanese Patent Application No. 57-172797, Japanese Unexamined Patent Publication No. 59-63986), etc.), but the present invention is not limited thereto, and can be applied to any suitable ultra-short pulse high voltage power source of any type and structure. can be used. In addition, by applying a DC bias high voltage between the electrode pair in advance and applying the pulse high voltage in addition to this, a strong streamer corona discharge can be generated even if the peak voltage Vp is lowered. Therefore, the capacity of the ultrashort pulse high voltage power supply can be reduced. In this case, the DC bias high voltage needs to be applied to the electrode pair with a polarity that is the same as and in addition to the above-mentioned pulse high voltage.
In addition to the electrode pair, a third electrode is provided parallel to and insulated from the electrode pair, and a DC bias high voltage is applied between both or at least one of the electrode pair and the third electrode. This method can also generate stronger streamers with lower Vp values. However, it goes without saying that the polarity of the DC bias high voltage in this case must be selected so as to strengthen the electric field due to the extremely short pulse high voltage at the electrode of the electrode pair where corona discharge is performed.

以下、実施例及び図面によつて本発明の特徴を
更に詳細に説明する。
Hereinafter, the features of the present invention will be explained in more detail with reference to examples and drawings.

第1図は本発明の一実施例の縦断面図、第2図
はそのY−Y断面上の横断面図である。図におい
て、該対向電極対1の一方を円筒電極2、他方を
コロナ放電極3として、2の中心軸に3を絶縁張
架し、2を接地し、この様にして構成せる複数個
の電極対1,1′,…を函体4の内部に平行に配
置の上、該線状コロナ放電極3,3′…を図の如
く次々と直列に接続して長大コロナ伝送線路5を
形成、極短パルス高圧電源6より導線7,7′お
よび碍管8を介して該コロナ伝送線路5の入力端
9に該線状コロナ放電極3−3′−…を負とする
如き極性で極短パルス高電圧を印加する。その波
高値は電極間距離を20〔mm〕とするときVp=30〜
40〔KV〕程度とすれば充分である。また、その
パルス巾は該コロナ伝送線路5の全長がL=100
〔m〕のときτ=300〔ns〕程度として進行波形成
条件L0.3τを満す様にする(すでに述べた如く
L=30〔m〕としてL0.1τとしてもよい)。そこ
で、該パルス高電圧は進行波として電極対2−3
→2′−3′→2″−3″に沿つて伝播し、この間に
線状コロナ放電極2,2′,2″上に強力な負のス
トリーマーコロナ放電を発生せしめ、遂に開放終
端10に至つて、ここで同極性で反射されて逆方
向に進行、かくして該長大コロナ伝送線路5の上
を多重反射して遂にそのエネルギーを消耗し、波
高値Vpが下つてコロナが消失する。次に、ある
周期ののち再び6よりパルス高電圧を印加して同
じ過程をくり返し、その周波数は50〔Hz〕〜数十
〔KHz〕の間で任意に選定することができる。図
において11,11′は線状コロナ放電極3,
3′,3″,…をその両端で張架固定するための格
子状導体で、円筒電極群2,2′,2″,…をその
両端において函体4の内部でガスが円筒外の部分
を通してバイパスするのを防止するための接地さ
れた導体隔壁12,12′に支持碍子13,1
3′によつて絶縁支持されている。14,14′は
線状コロナ放電極2,2′,2″,…が格子状導体
11,11′を貫通の上、これに支持固定される
ための支持用碍管で、15,16…は線状コロナ
放電極2と2′、2′と2″とを直列に接続するた
めの導線である。いまガス入口17より函体4内
に乾燥空気ないし酸素を導入し、該円筒電極2,
2′,2″,…を通つて流通せしめ、該負ストリー
マーコロナ放電の作用下におくと、その強力な放
電化学的効果で極めて高い電力効率をもつてオゾ
ンを発生し、生成オゾンを含むガスはガス出口1
8より外部に供給される。
FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the Y--Y cross section. In the figure, one of the pair of opposing electrodes 1 is a cylindrical electrode 2, the other is a corona discharge electrode 3, 3 is insulated and stretched around the central axis of 2, and 2 is grounded. The pairs 1, 1',... are arranged in parallel inside the box 4, and the linear corona discharge electrodes 3, 3'... are connected in series one after another as shown in the figure to form a long corona transmission line 5. An ultrashort pulse is applied from the ultrashort pulse high-voltage power source 6 to the input end 9 of the corona transmission line 5 via the conductors 7, 7' and the insulator tube 8 with a polarity such that the linear corona discharge electrodes 3-3'-... are negative. Apply high voltage. The peak value is Vp = 30 ~ when the distance between the electrodes is 20 [mm]
Approximately 40 [KV] is sufficient. In addition, the pulse width is such that the total length of the corona transmission line 5 is L=100.
When [m], τ=300 [ns] is set to satisfy the traveling wave formation condition L0.3τ (as already mentioned, L0.1τ may be set with L=30 [m]). Therefore, the pulsed high voltage is transmitted to the electrode pair 2-3 as a traveling wave.
→2′-3′→2″-3″, during which a strong negative streamer corona discharge is generated on the linear corona discharge electrodes 2, 2′, 2″, and finally reaches the open end 10. At this point, it is reflected with the same polarity and travels in the opposite direction, and thus undergoes multiple reflections on the long corona transmission line 5, finally consuming its energy, causing the peak value Vp to drop and the corona to disappear.Next. , After a certain period, the same process is repeated by applying a high pulse voltage again from 6, and the frequency can be arbitrarily selected between 50 [Hz] and several tens [KHz]. In the figure, 11 and 11' is a linear corona discharge electrode 3,
3', 3'', ... are strung and fixed at both ends of the cylindrical electrode group 2, 2', 2'', ... at both ends of the cylindrical electrode group 2, 2', 2'', .... Support insulators 13, 1 are attached to the grounded conductor bulkheads 12, 12' to prevent bypassing through the
It is insulated and supported by 3'. 14, 14' are support insulators for the linear corona discharge electrodes 2, 2', 2'', ... to pass through the grid conductors 11, 11' and to be supported and fixed thereto; 15, 16... are This is a conducting wire for connecting the linear corona discharge electrodes 2 and 2', and 2' and 2'' in series. Dry air or oxygen is now introduced into the box 4 from the gas inlet 17, and the cylindrical electrode 2,
2', 2'', ... and under the action of the negative streamer corona discharge, ozone is generated with extremely high power efficiency due to its strong discharge chemical effect, and the gas containing the generated ozone is is gas outlet 1
8 to the outside.

第3図は、第1図及び第2図の円筒電極2,
2′,2″,…の代りに、接地せる平行平板電極群
19,19′,19″,…を用いてコストの低下を
はかつた所の本発明の実施例の縦断面図、第4図
はその横断面図である。但し、19と19′′′′′は
函体側壁をかねている。相隣る平行平板電極で形
成されるダクト19−19′,19′−19″,…
の間にジグザグ状に線状コロナ放電極3,3′,
3″,…が直列接続されて絶縁配設され、これに
よつて各ダクトの両平板電極とその中間のジグザ
グ状の線状コロナ放電極で一つのコロナ伝送線路
のユニツト20,20′,…が形成され、更に相
隣るダクトのジグザグ状線状コロナ放電極を次々
に直列接続することによつて、一本の著るしく長
大なコロナ伝送線路5を形成する。本例では、函
体4は矩形状断面を有し、絶縁支持する碍子1
3,13′は平板電極19′,…の両端に固定され
ている。その他のすべての番号の要素の名称と機
能は第1図、第2図と同様であり、その動作もま
つたく同じであるから、説明を省略する。
FIG. 3 shows the cylindrical electrode 2 of FIGS. 1 and 2,
Fig. 4 is a vertical sectional view of an embodiment of the present invention in which a grounded parallel plate electrode group 19, 19', 19'', ... is used instead of electrodes 2', 2'', ... to reduce costs. The figure is a cross-sectional view thereof. However, 19 and 19'''''' also serve as side walls of the box. Ducts 19-19', 19'-19'',... formed by adjacent parallel plate electrodes
Linear corona discharge electrodes 3, 3',
3'', ... are connected in series and arranged insulated, so that one corona transmission line unit 20, 20', ... is formed by both flat plate electrodes of each duct and a zigzag linear corona discharge electrode between them. is formed, and by connecting the zigzag linear corona discharge electrodes of adjacent ducts one after another in series, one extremely long corona transmission line 5 is formed.In this example, a box 4 has a rectangular cross section and supports insulator 1
3 and 13' are fixed to both ends of the flat plate electrodes 19', . The names and functions of all other numbered elements are the same as in FIGS. 1 and 2, and their operations are also exactly the same, so their explanations will be omitted.

更に第3図、第4図の例の変形として第5図に
横断面図を示す如く板状電極19,19′,…の
代りに、接地せるパイプ状電極群21,21′,
…を用い、これらの中間に線状コロナ放電極群
3,3′,…を絶縁張架の上、これを直列に接続
して長大コロナ伝送線路を形成の上、オゾナイザ
を構成してもよい。
Furthermore, as a modification of the example shown in FIGS. 3 and 4, as shown in the cross-sectional view in FIG. 5, instead of the plate electrodes 19, 19', . . .
An ozonizer may be constructed by connecting linear corona discharge electrode groups 3, 3', ... in series on an insulating frame between them to form a long corona transmission line. .

第6図は第5図のものを変形せる実施例の縦断
面図で、両端で固定せる接地導体パイプ電極22
があり、各パイプの両側に支持用絶縁碍管23を
有する支持腕24が突出し、これに絶縁支持され
て各パイプ宛左右1対の線状コロナ放電極3,
3′が右端で接続導線25、碍管26を介して直
列に接続されて、一つのコロナ伝送線路のユニツ
ト27を構成、これらが複数個函体内に配設さ
れ、左端において各ユニツト27,27′,…の
放電極が次々と直列に接続されて、長大コロナ伝
送線路5を構成する。その働作も自明であるので
省略する。
FIG. 6 is a longitudinal cross-sectional view of an embodiment modified from the one shown in FIG. 5, in which a ground conductor pipe electrode 22 fixed at both ends
A support arm 24 having a supporting insulating tube 23 protrudes from both sides of each pipe, and a pair of linear corona discharge electrodes 3 on the left and right for each pipe are insulated and supported by the support arm 24.
3' are connected in series at the right end via a connecting conductor 25 and an insulator tube 26 to form one corona transmission line unit 27. A plurality of these are arranged in the box, and each unit 27, 27' ,... are connected in series one after another to form a long corona transmission line 5. Its operation is also self-explanatory, so it will be omitted.

第7図は第3図、第4図の例において線状コロ
ナ放電極3,3′,…をガラス板ないしセラミツ
ク板等の無機誘電体28,28′,28″,…上
に、第8図の斜視図に示す如く巻きつけて配設固
定の上、これを相隣る平板電極で構成されるダク
ト19−19′,19′−19″,…の間に配設し
て一つのコロナ伝送線路のユニツトを構成し、更
に各ユニツトのコロナ放電極を次々に直列接続の
上、長大コロナ伝送線路5を構成せるものの横断
面図であつて、その働作の説明も自明なるが故に
省略する。この実施例において、コロナ放電極
3,3′,…は線状電極であつても良いが、薄い
長形箔状のストリツプ電極であつてもよく、更に
該誘電体表面に導電性塗料を印刷したり、厚膜技
術で形成したり、あるいは蒸着により形成した長
形薄形電極であつてもよい。
FIG. 7 shows the linear corona discharge electrodes 3, 3', . . . on the inorganic dielectric materials 28, 28', 28'', . . . As shown in the perspective view of the figure, after wrapping and fixing the arrangement, it is arranged between the ducts 19-19', 19'-19'', etc., which are composed of adjacent flat plate electrodes, to form one corona. This is a cross-sectional view of a transmission line unit that constitutes a long corona transmission line 5 by connecting the corona discharge electrodes of each unit in series, and the explanation of its operation is omitted as it is self-explanatory. do. In this embodiment, the corona discharge electrodes 3, 3', . It may be an elongated thin electrode formed by thick film technology, or by vapor deposition.

第9図は、2本の互に絶縁せる平行な線状のコ
ロナ放電極29,30をもつて電極対を形成の
上、これを複数個直列に接続して長大コロナ伝送
線路を構成せる、本発明の実施例の縦断面図で、
この場合にはVpの値を適当に選ぶことにより、
負のストリーマーコロナのみを発生せしめ、これ
により有効にオゾンを発生する。
FIG. 9 shows that two parallel linear corona discharge electrodes 29 and 30 are insulated from each other to form an electrode pair, and a plurality of these are connected in series to form a long corona transmission line. A vertical cross-sectional view of an embodiment of the present invention,
In this case, by appropriately selecting the value of Vp,
Only negative streamer corona is generated, thereby effectively generating ozone.

第10図は第9図の実施例の変形で、真直な二
本の平行な線状コロナ放電極を用いる代りに、二
重らせん電極31,31′,…を用いる。各二重
らせん電極は両端で相互に支持用二重らせん溝付
碍子32,32′により絶縁張架された2個のら
せん電極33,34より成り、33,34は互に
平行で、一つのコロナ伝送線路のユニツト35を
構成する。これらを左右の端で次々と直列に接続
して、一つの長大コロナ伝送線路5を構成する。
したがつて、極短パルス高圧電源6より入力端9
に供給された極短パルス高電圧は、先づ二重らせ
ん電極31の二つのらせん電極33,34の間を
旋回しつつ右方に進行波として伝播、この間に負
極性のらせん電極から正極性のらせん電極に向け
て、強力かつ一様な負のストリーマーコロナ放電
を発生せしめる。次に進行波高電圧は、二重らせ
ん電極31′に右方より進入し、以下次々と伝播
しつつ負ストリーマーコロナを発生して、有効に
オゾンを生成するのである。
FIG. 10 is a modification of the embodiment of FIG. 9, in which double helical electrodes 31, 31', . . . are used instead of two straight parallel linear corona discharge electrodes. Each double helix electrode consists of two helical electrodes 33, 34 which are insulated and stretched at both ends by mutually supporting double helix grooved insulators 32, 32', 33, 34 are parallel to each other, and one This constitutes a unit 35 of the corona transmission line. These are connected in series at the left and right ends one after another to form one long corona transmission line 5.
Therefore, the input terminal 9 from the ultra-short pulse high voltage power supply 6
The extremely short pulse high voltage supplied to the double helix electrode 31 first rotates between the two helical electrodes 33 and 34 and propagates to the right as a traveling wave, and during this time, the ultrashort pulse high voltage is transferred from the negative helical electrode to the positive polarity. A strong and uniform negative streamer corona discharge is generated towards the helical electrode. Next, the traveling wave high voltage enters the double helix electrode 31' from the right and propagates one after another, generating a negative streamer corona and effectively producing ozone.

本発明の上記実施例においては、すべて極短パ
ルス高電圧を進行波として伝播せしめ、これによ
る負のストリーマーコロナ放電をオゾン生成に利
用する例のみを示したが、勿論、場合によつては
正のストリーマーコロナ放電を用いてもよく、ま
た、もつとパルス巾の長いパルスを用い、進行波
でないパルス電圧として利用し、これによるスト
リーマーコロナ放電を用いてもよいことも云うま
でもない。
In the above embodiments of the present invention, only examples were shown in which ultra-short pulse high voltage is propagated as a traveling wave and the resulting negative streamer corona discharge is used for ozone generation. It goes without saying that a streamer corona discharge may be used, or a pulse with a longer pulse width may be used as a pulse voltage other than a traveling wave, and a streamer corona discharge using this may also be used.

また、本発明の特徴は要するに極短パルス高電
圧によるストリーマーコロナ放電をガス空間に形
成せしめてオゾンを生成することにあるので、こ
れを達成するための電極構造は上記の実施例に限
定されることなく、適当な凡ゆるものを用いうる
ことも云うまでもない。
Furthermore, since the feature of the present invention is to generate ozone by forming a streamer corona discharge in a gas space using ultra-short pulsed high voltage, the electrode structure for achieving this is limited to the above-mentioned embodiments. Needless to say, any suitable material can be used.

尚、本発明のオゾン発生装置の使用例を挙げる
と、オゾン発生量が一時間当り約1Kg〜5Kgの中
型装置の場合、乾燥空気を原料ガスとして用いる
時は1kWh当たり95g〜125gのオゾン発生量、
原料ガスに酸素を用いる時は1kWh当たり190g
〜250gのオゾン発生量が得られた。従来広く使
用されている平行板ないし平行円筒電極間にガラ
ス板を介在せしめて交流高電圧を印加する形式の
オゾン発生装置におけるオゾン発生量は一般に乾
燥空気を原料ガスとして用いる時は1kWh当たり
60g、原料ガスに酸素を用いる時は1kWh当たり
120gである。したがつて本発明のオゾン発生装
置では上記従来形成のオゾン発生装置に較べて約
1.5倍〜2倍もの著しい電力効率の向上が達成さ
れた事になり、本発明の大きな効果が確認され
た。
In addition, to give an example of the use of the ozone generator of the present invention, in the case of a medium-sized device that generates approximately 1 kg to 5 kg of ozone per hour, when dry air is used as the raw material gas, the amount of ozone generated is 95 g to 125 g per 1 kWh. ,
When using oxygen as raw material gas, 190g per 1kWh
~250g of ozone generation was obtained. In general, the amount of ozone generated by ozone generators of the conventionally widely used type in which a glass plate is interposed between parallel plate or parallel cylindrical electrodes and AC high voltage is applied is per 1 kWh when dry air is used as the raw material gas.
60g, per 1kWh when using oxygen as raw material gas
It is 120g. Therefore, in the ozone generator of the present invention, compared to the conventional ozone generator described above,
A remarkable improvement in power efficiency of 1.5 to 2 times was achieved, confirming the great effect of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面図、第2図
はその横断面図、第3図は本発明の別の実施例の
縦断面図、第4図はその横断面図、第5図は本発
明の更に別の実施例の横断面図、第6図は本発明
のいま一つ別の実施例の縦断面図、第7図は本発
明の更に別の実施例の横断面図、第8図はその無
機誘電体板上へのコロナ放電極の配設方法を示す
斜視図、第9図は本発明のいま一つ別の実施例の
縦断面図、第10図は本発明の更に別の実施例の
縦断面図を示す。図における主な要素の名称は次
の通りである。 1,1′,1″… ……対向電極対、2,2′,
2″… ……円筒電極、3,3′,3″… ……線
状コロナ放電極、4……函体、5……長大コロナ
伝送線路、6……極短パルス高圧電源、7,7′
……導線、8……碍管、9……長大コロナ伝送線
路の入力端、10……仝上開放終端、11,1
1′……格子状導体、12,12′……隔壁、1
3,13′……支持碍子、14,14′……支持用
碍管、15,16,… ……接続導線、17……
ガス入口、18……ガス出口、19,19′,1
9″… ……平行平板電極群、20……コロナ伝
送線路ユニツト、21,21′,21″… ……パ
イプ状電極群、22,22′… ……パイプ状電
極、23,26……支持用絶縁碍管、24……支
持腕、25……接続導線、27,27′,… …
…コロナ伝送線路ユニツト、28,28′,…
……無機誘電体板、29,30,29′,30′,
……平行線状コロナ放電極対、31,31′,3
1″……二重らせん電極、32,32′……支持用
二重らせん溝付碍子、33,34……らせん電
極、35……コロナ伝送線路ユニツト。
FIG. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, FIG. 2 is a cross-sectional view thereof, FIG. 3 is a longitudinal cross-sectional view of another embodiment of the present invention, and FIG. 4 is a cross-sectional view thereof. 5 is a cross-sectional view of yet another embodiment of the present invention, FIG. 6 is a longitudinal cross-section of yet another embodiment of the present invention, and FIG. 7 is a cross-sectional view of yet another embodiment of the present invention. 8 is a perspective view showing a method of arranging a corona discharge electrode on the inorganic dielectric plate, FIG. 9 is a longitudinal sectional view of another embodiment of the present invention, and FIG. FIG. 6 shows a longitudinal cross-sectional view of yet another embodiment of the invention. The names of the main elements in the diagram are as follows. 1, 1', 1''... ...Counter electrode pair, 2, 2',
2''......Cylindrical electrode, 3,3',3''......Linear corona discharge electrode, 4...Box, 5...Long corona transmission line, 6...Extremely short pulse high voltage power supply, 7,7 ′
... Conductor, 8 ... Insulator tube, 9 ... Input end of long corona transmission line, 10 ... Open termination, 11, 1
1'... Grid conductor, 12, 12'... Partition wall, 1
3, 13'... Support insulator, 14, 14'... Support insulator, 15, 16,... Connection conductor, 17...
Gas inlet, 18... Gas outlet, 19, 19', 1
9''... Parallel plate electrode group, 20... Corona transmission line unit, 21, 21', 21''...... Pipe-shaped electrode group, 22, 22'...... Pipe-shaped electrode, 23, 26... Support Insulating pipe for use, 24...Support arm, 25...Connection conductor, 27, 27',...
...Corona transmission line unit, 28, 28',...
...Inorganic dielectric plate, 29, 30, 29', 30',
...Parallel linear corona discharge electrode pair, 31, 31', 3
1''...Double helix electrode, 32, 32'...Double helix grooved insulator for support, 33, 34...Spiral electrode, 35...Corona transmission line unit.

Claims (1)

【特許請求の範囲】 1 乾燥せる空気又は酸素を導入するためのガス
入口と生成オゾンを含むガスを外部に供給するた
めの出力を備えた函体を有し、該函体内のガス通
路に、相互に絶縁の上、相対向して配設せる所の
少なくとも一方がコロナ放電極である如き電極の
対を少なくとも一対設け、該函体の外部にパルス
巾が数十μs以下の極短パルス高電圧を発生する極
短パルス高圧電源を設け、該極短パルス高圧電源
の出力端子を該電極対に接続したことを特徴とす
る所のオゾン発生装置。 2 該極短パルス高圧電源がパルス巾1000ns以下
の極短パルス高電圧を発生する極短パルス高圧電
源であることを特徴とする所の請求項1に記載の
オゾン発生装置。 3 該極対の一方をコロナ放電極とし、他方を曲
率半径が大きくコロナ放電を生じない非コロナ電
極としたことを特徴とする所の請求項1または2
のいずれか1項に記載のオゾン発生装置。 4 該電極対の双方共コロナ放電極としたことを
特徴とする所の請求項1または2のいずれか1項
に記載のオゾン発生装置。 5 該電極対の有効長さL〔m〕を該極短パルス
高電圧のパルス巾τ〔ns〕に対して、少なくとも
L0.1τ〔m〕としたことを特徴とする所の請求
項1より4までのいずれか1項に記載のオゾン発
生装置。 6 該極短パルス高圧電源の負側の出力端子を該
電極対のコロナ放電極に、正側の出力端子を非コ
ロナ電極に接続したことを特徴とする所の請求項
3に記載のオゾン発生装置。 7 該極短パルス高圧電源の正側の出力端子を該
電極対のコロナ放電極に、負側の出力端子を非コ
ロナ電極に接続したことを特徴とする所の請求項
3に記載のオゾン発生装置。 8 直流高圧電源を該函体の外部に設け、その出
力端子をその出力電圧が該極短パルス高圧電源に
出力電圧と相加わる如き極性をもつて該電極対に
接続したことを特徴とする所の請求項1より7項
までのいずれか1項に記載のオゾン発生装置。 9 該電極対と別に両者より絶縁の上にこれらと
相対向して第3電極を設け、かつ直流高圧電源を
設けてその出力端子を該電極対の少なくとも一方
側と該第3電極に接続し、かつその該一方側電極
の極性を、この電極に印加される該極短パルス高
電圧の極性と一致せしめたことを特徴とする所の
請求項1より8までのいずれか1項に記載のオゾ
ン発生装置。 10 該電極対の間に誘電体を介在せしめたこと
を特徴とする所の請求項1より9までのいずれか
1項に記載のオゾン発生装置。
[Claims] 1. A box having a gas inlet for introducing air or oxygen to be dried and an output for supplying gas containing generated ozone to the outside, and a gas passage inside the box, At least one pair of electrodes, at least one of which is a corona discharge electrode, are provided so as to be mutually insulated and facing each other, and an extremely short pulse with a pulse width of several tens of microseconds or less is provided outside the box. An ozone generator characterized in that an ultra-short pulse high-voltage power source that generates voltage is provided, and an output terminal of the ultra-short pulse high-voltage power source is connected to the electrode pair. 2. The ozone generator according to claim 1, wherein the ultrashort pulse high voltage power source is an ultrashort pulse high voltage power source that generates an ultrashort pulse high voltage with a pulse width of 1000 ns or less. 3. Claim 1 or 2, characterized in that one of the pole pairs is a corona discharge electrode and the other is a non-corona electrode that has a large radius of curvature and does not cause corona discharge.
The ozone generator according to any one of the above. 4. The ozone generator according to claim 1, wherein both of the electrode pairs are corona discharge electrodes. 5 From claim 1, characterized in that the effective length L [m] of the electrode pair is at least L0.1τ [m] with respect to the pulse width τ [ns] of the ultrashort pulse high voltage. 4. The ozone generator according to any one of items 4 to 4. 6. Ozone generation according to claim 3, characterized in that the negative output terminal of the ultrashort pulse high voltage power source is connected to the corona discharge electrode of the electrode pair, and the positive output terminal is connected to the non-corona electrode. Device. 7. Ozone generation according to claim 3, characterized in that the positive output terminal of the ultrashort pulse high voltage power source is connected to the corona discharge electrode of the electrode pair, and the negative output terminal is connected to the non-corona electrode. Device. 8. A DC high-voltage power source is provided outside the box, and its output terminal is connected to the electrode pair with a polarity such that its output voltage is added to the output voltage of the ultra-short pulse high-voltage power source. The ozone generator according to any one of claims 1 to 7. 9 Separately from the electrode pair, a third electrode is provided opposite to these on an insulated basis from both, and a DC high voltage power source is provided and its output terminal is connected to at least one side of the electrode pair and the third electrode. , and the polarity of the one side electrode is made to match the polarity of the ultrashort pulse high voltage applied to this electrode, according to any one of claims 1 to 8. Ozone generator. 10. The ozone generator according to any one of claims 1 to 9, characterized in that a dielectric material is interposed between the pair of electrodes.
JP21945582A 1982-12-15 1982-12-15 Ozone generator Granted JPS59111902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21945582A JPS59111902A (en) 1982-12-15 1982-12-15 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21945582A JPS59111902A (en) 1982-12-15 1982-12-15 Ozone generator

Publications (2)

Publication Number Publication Date
JPS59111902A JPS59111902A (en) 1984-06-28
JPH0364443B2 true JPH0364443B2 (en) 1991-10-07

Family

ID=16735688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21945582A Granted JPS59111902A (en) 1982-12-15 1982-12-15 Ozone generator

Country Status (1)

Country Link
JP (1) JPS59111902A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259504A (en) * 1985-09-11 1987-03-16 Shinryo Air Conditioning Co Ltd Ozonizer by corona discharge
JP2649340B2 (en) * 1986-06-10 1997-09-03 増田 佳子 Ultra-short pulse high-voltage charged gas purifier
JPS63190702A (en) * 1987-02-04 1988-08-08 Koji Takamura Process and apparatus for generating ozone
US5705131A (en) * 1996-12-05 1998-01-06 Rutland; Earl E. Coil spring ozone generator and duct cleaning method
JP4658298B2 (en) * 2000-09-11 2011-03-23 中部電力株式会社 Ozone generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771805A (en) * 1980-03-06 1982-05-04 Toreriga Co Jieneraaru Dou Roz Method and apparatus for supplying power to ozone generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771805A (en) * 1980-03-06 1982-05-04 Toreriga Co Jieneraaru Dou Roz Method and apparatus for supplying power to ozone generator

Also Published As

Publication number Publication date
JPS59111902A (en) 1984-06-28

Similar Documents

Publication Publication Date Title
AU581554B2 (en) Method of removing so2, nox and particles from gas mixtures using streamer corona
Samaranayake et al. Ozone production using pulsed dielectric barrier discharge in oxygen
US4886645A (en) Ozone generator
WO2018205758A1 (en) Apparatus for producing oxygen active substance by means of mesh-shaped creeping discharge plasma
CA1090293A (en) Device for the production of ozone
US5413769A (en) Clad fine wire electrode-type activated species-generating apparatus
RU98115977A (en) METHOD AND DEVICE FOR INTENSIFICATION OF CONDENSATION OF STEAM FLOW INSIDE EXHAUST STEAM TURBINE TUBE AND STEAM TURBINE CONDENSER
JPH0364443B2 (en)
Masuda et al. High Efficiency Ozonizer using Travelling Wave Pulse Voltage
Tamaribuchi et al. Effect of pulse width on generation of ozone by pulsed streamer discharge
JPH052603B2 (en)
SU1754648A1 (en) Method and device for producing ozone
CN1075676C (en) HF-assisted LF medium blocking-discharge method and equipment
RU1770269C (en) Ozonator
JPH0822726B2 (en) Method of generating corona discharge reaction
JPS6046517B2 (en) particle charging device
CN111010791A (en) Plasma generating device based on porous medium discharge
US2384982A (en) Heat treatment of the insulating coverings of electric wires and cables
Moon et al. High efficiency ozone generation using a helical strip-line electrode and a fast rising pulse voltage
RU2176366C1 (en) Apparatus for ozonizing air
SU133560A1 (en) Ozonator with flow-through cooling of both electrodes
RU208008U1 (en) Device for generating ozone in an electric discharge
RU2555659C2 (en) Air ozoniser
RU1770270C (en) Ozonator
JPH08183604A (en) Ozonizer