JPH0364406A - Molten metal nozzle - Google Patents

Molten metal nozzle

Info

Publication number
JPH0364406A
JPH0364406A JP19978589A JP19978589A JPH0364406A JP H0364406 A JPH0364406 A JP H0364406A JP 19978589 A JP19978589 A JP 19978589A JP 19978589 A JP19978589 A JP 19978589A JP H0364406 A JPH0364406 A JP H0364406A
Authority
JP
Japan
Prior art keywords
molten metal
nozzle
downstream side
flow
upstream side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19978589A
Other languages
Japanese (ja)
Inventor
Jinsuke Takada
高田 仁輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19978589A priority Critical patent/JPH0364406A/en
Publication of JPH0364406A publication Critical patent/JPH0364406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To efficiently manufacture fine metal powder having uniform particle diameter by making molten metal flowing passage cross sectional area in a molten metal nozzle for atomizing method larger at downstream side than that of upstream side and bending the molten metal flowing passage toward outlet at the downstream. CONSTITUTION:In the molten metal nozzle formed at bottom wall 5 in a tundish, the inner diameter D2 at the downstream side 8b of the molten metal flowing passage is formed larger than the inner diameter D1 at the upstream side 8a and shifting part from the upstream side 8a to the downstream side 8b is formed with the reverse tapered part 8c. Further, core line CL1 in the upstream side 8a is bent at angle alpha to the core line CL2 in the downstream side 8b and alphais made about 10 - 80 deg.. Therefore, the molten metal is caused to flow as dividing into the arrow mark F1 direction and the arrow mark F2 direction in the nozzle and discharged in the outlet 4 at the downstream side under the hollow cylindrical state 1b. To the molten metal in hollow cylindrical flow 1b, by injecting medium from the nozzle for atomizing arranged so as to surround this flow 1b, the fine metal powder having uniform particle diameter is efficiently formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アトマイズ法によって金属粉末を製造するに
当たり、溶融金属の落下流を形成する為に用いられる金
属溶湯ノズルに関し、詳細には均な粒径からなる微細金
属粉末を製造するため、且つ薄膜筒状の溶融金属流を定
常的に安定して形成できる金属m t%ノズルに関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molten metal nozzle used to form a falling flow of molten metal when producing metal powder by an atomization method, and in particular, it relates to a molten metal nozzle that is used to form a falling flow of molten metal when producing metal powder by an atomization method. The present invention relates to a metal m t % nozzle that is capable of producing fine metal powder having a particle size and capable of constantly and stably forming a thin cylindrical molten metal flow.

[従来の技術] 金属粉末を製造する方法の1つとしてアトマイズ法が実
用化されている。第5図はアトマイズ法の一例を示す説
明図である。図示しないタンデイツシュ内に貯留された
溶融金属を柱状に流下させて溶融金属流1を形成し、該
溶融金属流1を取り囲む様に配設されたアトマイズ用ノ
ズル2から気体や液体等のアトマイズ媒体3を前記溶融
金属流1へ向けて噴射し、上記溶融金属流1を粉砕する
と共に冷却し、微細化された金属粉末IAを製造する。
[Prior Art] An atomization method has been put into practical use as one of the methods for manufacturing metal powder. FIG. 5 is an explanatory diagram showing an example of the atomization method. Molten metal stored in a tundish (not shown) flows down in a columnar manner to form a molten metal flow 1, and an atomizing medium 3 such as gas or liquid is passed through an atomizing nozzle 2 arranged to surround the molten metal flow 1. is injected toward the molten metal flow 1 to crush and cool the molten metal flow 1 to produce fine metal powder IA.

[発明が解決しようとする課題] ところで金属粉末の利用分野は急速に拡大しつつあり、
製造される金属粉末は均一な粒径に揃えられたものであ
ると共に、より小さい粒径に微細化されたものとするこ
とが望まれている。
[Problem to be solved by the invention] By the way, the field of use of metal powder is rapidly expanding.
It is desired that the metal powder produced has a uniform particle size and is also refined to a smaller particle size.

上記の様な均一小粒径の金属粉末を得るためには、溶融
金属とアトマイズ媒体の接触g3会を増加させれば良い
のではないかとの観点から、アトマイズ媒体の噴射量や
噴射速度を高めることか試みられている。しかしながら
、アトマイズ用ノズル2や加圧ポンプ等においては機構
的な限界があり、前記目的を達成するまてには至ってい
ない。
In order to obtain metal powder with a uniform small particle size as described above, it would be better to increase the contact G3 between the molten metal and the atomizing medium, so the injection amount and injection speed of the atomizing medium were increased. That is being attempted. However, there are mechanical limitations in the atomizing nozzle 2, pressure pump, etc., and the above objective has not yet been achieved.

そこて溶融金属流1とアトマイズ媒体の接触機会を増や
すための別の手段として、溶融金属流1の直径を細径化
することが考えられ、金属溶湯ノズルを小径化すること
が試みられている。しかしながら前記金属溶湯ノズル径
を小さくすると、溶融金属中の不純物や溶融金属の僅か
な凝固によって、ノズルの目詰りを引き起こし、連続操
業の実施が妨げられるたけてなく接触機会が必ずしも増
加するものではない為、粒径のばらつきが大きいという
問題があった。
Therefore, as another means to increase the chances of contact between the molten metal flow 1 and the atomizing medium, it has been considered to reduce the diameter of the molten metal flow 1, and attempts have been made to reduce the diameter of the molten metal nozzle. . However, if the diameter of the molten metal nozzle is made smaller, impurities in the molten metal or slight solidification of the molten metal will cause the nozzle to become clogged, hindering continuous operation, and contact opportunities will not necessarily increase. Therefore, there was a problem of large variations in particle size.

そこで更に別の手段か開発されなければならず、本発明
者等は溶融金属流の形態制御という観点から研究を行な
った。第6図(八)は断面が中実円形の溶融金属流1a
を示す説明図、第6図(B)は断面が中空筒状の溶融金
属流1bを示す説明図である。今単位時間当たりに同量
の溶融金属を流下させる場合を考えると、第6図CB)
の如く溶融金属流1bを中空筒状に形成したものでは筒
状流の壁厚が、中実円柱状の溶融金属流1aの直径(太
さ)より薄くなり、更に筒状体の外周径を中実体の外径
より大きくすることがてき、アトマイズ媒体3との接触
機会は増えることになる。従って第6図(B)に示す様
な溶融金属流1bを形成して製造した金属粉末はより微
細化でき、ざらに粒径のばらつきも少なくなって均一な
ものとなることが期待される。
Therefore, another means had to be developed, and the inventors conducted research from the viewpoint of controlling the shape of the molten metal flow. Figure 6 (8) shows a molten metal flow 1a with a solid circular cross section.
FIG. 6(B) is an explanatory diagram showing a molten metal flow 1b having a hollow cylindrical cross section. Now considering the case where the same amount of molten metal flows down per unit time, Fig. 6 CB)
In the case where the molten metal flow 1b is formed into a hollow cylindrical shape as shown in FIG. It can be made larger than the outer diameter of the solid body, increasing the chances of contact with the atomizing medium 3. Therefore, it is expected that the metal powder produced by forming the molten metal flow 1b as shown in FIG. 6(B) will be finer and more uniform with less variation in particle size.

ところて上記の様に中空筒状の溶融金属流1bを形成す
るためには、まず第1に金属?8湯ノズルを第7図(A
)、(B)  (断面図)に示す様な構造とすることが
考えられる。しかしながら第7図(八)(B) に示す
様にノズル溶湯流路8内にコア6a6bを配設する構造
ては、ノズル溶湯流路8の内壁面とコア6a、6b外周
面の間に形成される間隙Gは極めて狭くしておかなけれ
ばならず、中実円柱状の溶融金属流1aを細径化すると
きと同様に目詰りを起こす可能性か非常に高い。なお第
7図(C)の様に単にノズル下流側8bを上流側8aよ
り広げたものを検討したか、ノズル出口4より流出され
る溶融金属は破線に示す様に円柱状1aとなってしまい
、中空筒状の溶融金属流11〕を形成することはできな
かった。
However, in order to form the hollow cylindrical molten metal flow 1b as described above, first of all, metal? Figure 7 (A) shows the 8 hot water nozzle.
), (B) A structure as shown in (cross-sectional view) is conceivable. However, as shown in FIG. 7(8)(B), in the structure in which the core 6a6b is disposed within the nozzle molten metal flow path 8, the core 6a6b is formed between the inner wall surface of the nozzle molten metal flow path 8 and the outer peripheral surface of the cores 6a and 6b. The gap G must be kept extremely narrow, and there is a very high possibility that clogging will occur as in the case of reducing the diameter of the solid cylindrical molten metal flow 1a. It should be noted that if we consider simply expanding the nozzle downstream side 8b from the upstream side 8a as shown in Fig. 7(C), the molten metal flowing out from the nozzle outlet 4 becomes cylindrical 1a as shown by the broken line. , a hollow cylindrical molten metal flow 11] could not be formed.

そこで木発明者は、中空筒状の溶融金属流を、ノズル閉
塞を生じることなく連続して形成することのてきる金属
溶湯ノズルを提供する目的で研究を重ね、本発明を完成
した。
Therefore, the inventor of the present invention completed the present invention after conducting repeated research for the purpose of providing a molten metal nozzle that can continuously form a hollow cylindrical molten metal flow without causing nozzle blockage.

[課題を解決するための手段] 上記目的を達成し得た本発明は、金属溶湯ノズルの溶湯
流路断面積を下流側が上流側より大きく12る様に形成
すると共に、該溶湯流路は下流側出口に向かって屈曲又
は湾曲されてなることを要旨とするものである。
[Means for Solving the Problems] The present invention has achieved the above object by forming the molten metal flow path of the molten metal nozzle so that the cross-sectional area of the molten metal flow path is larger on the downstream side than on the upstream side, and that the molten metal flow path is The gist is that it is bent or curved toward the side outlet.

[作用及び実施例コ 第1図(A)は本発明に係る金属溶湯ノズルNの代表的
な実施例を示す断面説明図、第1図(B)は第1図(A
)に示すノズルの内部形状を示す説明図である。タンデ
イツシュの底壁5に形成される金属溶湯ノズルNは、溶
湯流路内を上流側8aと下流側8bに分け、下流側8b
の内径D2は上流側8aの内径Dlより大きく形成し、
上流側88カ)ら下流側8bへの移行部分は、第1図(
b)に示す様なテーバ部8cによって形成する。また上
流側8aと下流側8bはその軸芯を相互に屈曲しており
、国側においては上流側8aの軸芯CL、と下流側8b
の軸芯CL、は角度αで屈曲形成される。該角度αは0
度より大きく、90度未満の範囲内とし、好ましくは1
0〜80度とする。なお金属溶湯ノズルNの上流側8a
と下流側8bは第2図に示す如くなだらかに湾曲して形
成され、その内径を上流側から下流側へ向かって漸次拡
大する様に形成されたものてあっても良い。尚上流側軸
芯CL、は斜め下方に向けて形成することがもつとも有
効であり、下流側軸芯CL2は第12図の様に鉛直下向
けに形成する形成する場合の他、CL、とCL2を屈曲
させるという条件の下で斜め左下方に向ける場合も本発
明に含まれる。
[Function and Examples] FIG. 1(A) is a cross-sectional explanatory diagram showing a typical example of the molten metal nozzle N according to the present invention, and FIG.
) is an explanatory diagram showing the internal shape of the nozzle shown in FIG. The molten metal nozzle N formed on the bottom wall 5 of the tundish divides the inside of the molten metal flow path into an upstream side 8a and a downstream side 8b.
The inner diameter D2 is formed larger than the inner diameter Dl of the upstream side 8a,
The transition part from the upstream side 88) to the downstream side 8b is shown in Figure 1 (
It is formed by a tapered portion 8c as shown in b). In addition, the upstream side 8a and the downstream side 8b have their axes bent to each other, and on the country side, the axis CL of the upstream side 8a and the axis CL of the downstream side 8b
The axis CL is bent at an angle α. The angle α is 0
The range is greater than 90 degrees, preferably 1
0 to 80 degrees. Note that the upstream side 8a of the molten metal nozzle N
The downstream side 8b may be formed to be gently curved as shown in FIG. 2, and the inner diameter thereof may be formed to gradually increase from the upstream side to the downstream side. It is also effective to form the upstream axis CL, diagonally downward, and the downstream axis CL2 may be formed vertically downward as shown in FIG. The present invention also includes a case in which the object is directed diagonally downward to the left under the condition that the object is bent.

尚第1.2図において下流側軸芯CL2を若干右下向き
に屈曲させた場合も、後述の機構によって中空流か形成
される限り本発明より排除されるものてはない。
Note that even if the downstream axis CL2 is bent slightly downward to the right in FIG. 1.2, this is not excluded from the present invention as long as a hollow flow is formed by the mechanism described later.

上記の様な金属溶湯ノズルNを使って溶融金属流を形成
させると、該ノズルN内の屈曲又は湾曲内側における溶
融金属はその粘性によって矢印F+ に示す様にノズル
内壁面(図の右側内壁)と密着する様に流れ、一方屈曲
又は湾曲の外側における溶融金属は上流側8aによる流
れ慣性力によって矢印F2に示す如く下流側8bの内壁
面(図の左側内壁)に沿う様に流れる。この様にノズル
Nの下流側を流れる金属溶湯流は図面上左右に分割され
ることとなり、更に図面の表側と裏側方向にも分割され
ることとなり、結果的には下流側出口4における溶融金
属流は中央部に中空部分を形成した中空筒状流1bとな
って放出される。
When a molten metal flow is formed using the above-mentioned molten metal nozzle N, the molten metal on the inside of the bend or curve in the nozzle N will flow on the inner wall surface of the nozzle (inner wall on the right side of the figure) due to its viscosity as shown by the arrow F+. On the other hand, the molten metal on the outside of the bend or curve flows along the inner wall surface of the downstream side 8b (the left inner wall in the figure) as shown by arrow F2 due to the flow inertia of the upstream side 8a. In this way, the molten metal flow flowing downstream of the nozzle N is divided into left and right sides in the drawing, and is further divided into the front and back sides of the drawing, and as a result, the molten metal flows at the downstream outlet 4. The flow is discharged as a hollow cylindrical flow 1b with a hollow portion formed in the center.

この様な金属溶湯ノズルNにおいては、下流側出口4に
広い開口面積を確保しておくことができるので、ノズル
詰り等の不具合を引き起こす恐れは全くなくなった。
In such a molten metal nozzle N, since a wide opening area can be secured at the downstream outlet 4, there is no possibility of problems such as nozzle clogging.

上記実施例においては、タンデイツシュの底壁5に金属
溶浸ノズルNを一体的に形成したものについて説明した
か、その他上記構造の金属溶湯ノズルを別部材として形
成し、これをタンデイツシュ底壁5の下方に配設したも
のであっても良い。
In the above embodiments, the metal infiltration nozzle N is integrally formed on the bottom wall 5 of the tundish dish, or the molten metal nozzle having the above structure is formed as a separate member, and this is attached to the bottom wall 5 of the tundish dish. It may be arranged below.

(実験例) 金属溶湯ノズルNの形状及び寸法(単位はmm)か第3
図(概略図)に示す様に形成された実験モデルを使用し
、流下される1550℃の溶融Niに対し、第5図に示
すアトマイズ用ノズル2を使用して300 Il/mi
nで700気圧の水を噴射し、アトマイズNi粉を製造
する実験を行なった。尚比較例1.2として直径3mm
及び5mmのストレート状の金属溶湯ノズルを用いて同
条件でアトマイズ粉の製造を行ない、各々についてアト
マイズ法の粒径分布を調へた。第4図はこの結果を示す
グラフであり、比較例1.2においてもノズル径を小さ
くすることによってアトマイズ粉の平均粒径は細粒化さ
れることか分かったが、いずれの場合にも噴aJ水のエ
ネルギーは溶融金属に苅して均等に作用されず、粒径分
布はどうしても広い範囲となっていた。また目詰りを生
じる恐れかあるため(特に合金においてこの傾向は顕著
となる)、温度制御や不純物制御について万全の管理体
制を敷くことが要求された。
(Experiment example) The shape and dimensions (unit: mm) of the molten metal nozzle N
Using the experimental model formed as shown in the figure (schematic diagram), the atomizing nozzle 2 shown in Fig. 5 was used to collect molten Ni at 1550°C flowing down at 300 Il/mi.
An experiment was conducted to produce atomized Ni powder by injecting water at 700 atm. In addition, as comparative example 1.2, the diameter was 3 mm.
Atomized powder was produced under the same conditions using a 5 mm straight molten metal nozzle, and the particle size distribution of each atomization method was investigated. Figure 4 is a graph showing this result, and it was found that the average particle size of the atomized powder was made finer by reducing the nozzle diameter in Comparative Example 1.2, but in both cases, the The energy of the aJ water was not evenly applied to the molten metal, and the particle size distribution inevitably fell within a wide range. Furthermore, since there is a risk of clogging (this tendency is particularly noticeable in alloys), it was necessary to establish a thorough management system for temperature control and impurity control.

一方本発明実施例においては噴射水のエネルギーが溶融
金属流に対して均一に作用される様になり、微細なアト
マイズ粉が製造でき、しかも接触機会の増大は確実なも
のとなり、粒度分布のばらつきを狭い範囲のものとする
ことがてきる様になった。また金属溶湯ノズルの下流側
出口を広く形成しているので、金属凝固等によるノズル
詰りを一切引き起こすことはなく、安定してアトマイズ
粉の連続製造ができた。
On the other hand, in the embodiment of the present invention, the energy of the jetted water is uniformly applied to the molten metal flow, making it possible to produce fine atomized powder, and also ensuring an increase in contact opportunities, resulting in variations in particle size distribution. Now it is possible to narrow the scope of the term. In addition, since the outlet on the downstream side of the molten metal nozzle was formed wide, there was no clogging of the nozzle due to metal solidification, etc., and atomized powder could be continuously produced in a stable manner.

[発明の効果] 本発明は以上の様に構成されているので、不純物等によ
ってノズルが閉塞されてしまう恐れがなく、しかも薄膜
に形成された中空筒状の溶融金属流を連続的に形成でき
る様になり、粒径の均一な微細金属粉を効率的に製造で
きる様になった。
[Effects of the Invention] Since the present invention is configured as described above, there is no fear that the nozzle will be blocked by impurities, etc., and a hollow cylindrical molten metal flow formed in a thin film can be continuously formed. This has made it possible to efficiently produce fine metal powder with uniform particle size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明金属溶湯ノズルの代表的な実施例
を示す断面図、第1図(B)は第1図(A)の一部斜視
説明図、第2図は本発明の他の金属溶湯ノズルの実施例
を示す断面図、第3図は実験に用いたノズルモデルの寸
法及び形状を示す概略説明図、第4図は実験結果を示す
グラフ、第5図はアトマイズ法の一例を示す説明図、第
6図(八)は従来の溶融金属流を示す説明図、第6図(
B)は他の溶融金属流の一例を示す説明図、第7図(A
)〜(C)は金属溶湯ノズルの従来例を示す断面図であ
る。 1・・・溶融金属    2・・・アトマイズ用ノズル
3・・・アトマイズ媒体 4・・・ノズル下流側出口5
・・・タンデイツシュ底壁
FIG. 1(A) is a sectional view showing a typical embodiment of the molten metal nozzle of the present invention, FIG. 1(B) is a partially perspective explanatory view of FIG. 1(A), and FIG. 2 is a cross-sectional view showing a typical embodiment of the molten metal nozzle of the present invention. A cross-sectional view showing an example of another molten metal nozzle, Fig. 3 is a schematic explanatory drawing showing the dimensions and shape of the nozzle model used in the experiment, Fig. 4 is a graph showing the experimental results, and Fig. 5 is an atomization method. An explanatory diagram showing an example, FIG. 6 (8) is an explanatory diagram showing a conventional molten metal flow, FIG.
B) is an explanatory diagram showing another example of molten metal flow, and Fig. 7 (A
) to (C) are cross-sectional views showing conventional examples of molten metal nozzles. 1... Molten metal 2... Atomizing nozzle 3... Atomizing medium 4... Nozzle downstream outlet 5
・・・Bottom wall of Tanditshu

Claims (1)

【特許請求の範囲】[Claims] (1)アトマイズ法実施用の金属溶湯ノズルであって、
該金属溶湯ノズルの溶湯流路断面積は下流側を上流側よ
り大きく形成すると共に、該溶湯流路は下流側出口に向
かつて屈曲又は湾曲されてなることを特徴とする金属溶
湯ノズル。
(1) A molten metal nozzle for implementing the atomization method,
A molten metal nozzle, characterized in that the cross-sectional area of the molten metal flow path is larger on the downstream side than on the upstream side, and the molten metal flow path is bent or curved toward the downstream outlet.
JP19978589A 1989-07-31 1989-07-31 Molten metal nozzle Pending JPH0364406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19978589A JPH0364406A (en) 1989-07-31 1989-07-31 Molten metal nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19978589A JPH0364406A (en) 1989-07-31 1989-07-31 Molten metal nozzle

Publications (1)

Publication Number Publication Date
JPH0364406A true JPH0364406A (en) 1991-03-19

Family

ID=16413569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19978589A Pending JPH0364406A (en) 1989-07-31 1989-07-31 Molten metal nozzle

Country Status (1)

Country Link
JP (1) JPH0364406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169997B2 (en) 2010-09-10 2015-10-27 Koninklijke Philips N.V. Arrangement for spot illumination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169997B2 (en) 2010-09-10 2015-10-27 Koninklijke Philips N.V. Arrangement for spot illumination

Similar Documents

Publication Publication Date Title
US4272463A (en) Process for producing metal powder
US10835959B2 (en) Atomizer for improved ultra-fine powder production
US10328492B2 (en) Metal powder production apparatus
WO1989012519A1 (en) Refractory feed tube
AU2018379291B2 (en) Metal powder manufacturing device, gas injector for same, and crucible
CN102581291B (en) Circumferential seam type supersonic nozzle for metal gas atomization
JP2017075386A (en) Manufacturing apparatus of metal powder and manufacturing method thereof
US4485834A (en) Atomization die and method for atomizing molten material
CN100500337C (en) Quadratic accelerating ultrasonic nebulization jet nozzle system for preparing copper powder
CN115255375A (en) Nozzle for preparing metal powder by vacuum gas atomization
JPH01123012A (en) Nozzle for manufacturing fine powder
JP2703818B2 (en) Method for spraying a melt and apparatus using the method
JPH0364406A (en) Molten metal nozzle
JPS6015049A (en) Continuous casting device
JPS60232263A (en) Flat jet type spray nozzle for particularly atomizing plant protective agent
US4890662A (en) Mixing and cooling techniques
JPS6141707A (en) Apparatus for producing powder metal
JP2017145495A (en) Metal powder production apparatus
CN208495809U (en) A kind of high pressure ultrasound close-coupled nozzle
JPS6350404A (en) Spray nozzle for producing metallic powder
JP2012000592A (en) Gas atomizer of high-temperature molten metal
JP2927876B2 (en) Nozzle for manufacturing quenched metal continuous ribbon
JPS63149053A (en) Production of metal or alloy strip having deformed sectional face
JP2651308B2 (en) Liquid injection nozzle
CN117086316B (en) Rotary wheel centrifugal atomization equipment and use method