JPH0363439B2 - - Google Patents

Info

Publication number
JPH0363439B2
JPH0363439B2 JP58057978A JP5797883A JPH0363439B2 JP H0363439 B2 JPH0363439 B2 JP H0363439B2 JP 58057978 A JP58057978 A JP 58057978A JP 5797883 A JP5797883 A JP 5797883A JP H0363439 B2 JPH0363439 B2 JP H0363439B2
Authority
JP
Japan
Prior art keywords
exchange resin
resin layer
condensate
water
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58057978A
Other languages
Japanese (ja)
Other versions
JPS59183398A (en
Inventor
Fumio Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP58057978A priority Critical patent/JPS59183398A/en
Publication of JPS59183398A publication Critical patent/JPS59183398A/en
Publication of JPH0363439B2 publication Critical patent/JPH0363439B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、火力発電所あるいは原子力発電所で
復水の処理に使用する復水脱塩塔の保管方法に関
するものである。 火力発電所あるいは原子力発電所では発電ター
ビンを駆動させた後の蒸気を冷却して復水とな
し、当該復水を加熱して蒸気を得て、この蒸気で
再び発電タービンを駆動させるというサイクルを
繰り返しているが、当該系内を循環する復水は各
種の不純物イオンやクラツドで汚染されるので、
これらを除去するために復水脱塩装置で処理する
のが普通である。 当該復水脱塩装置は複数の復水脱塩塔からなる
通水系統と復水脱塩塔内のイオン交換樹脂を再生
するための再生系統からなり、当該復水脱塩塔内
にH形あるいはNH4形のカチオン交換樹脂とOH
形のアニオン交換樹脂の混合イオン交換樹脂層を
充填してなるものである。復水脱塩塔は復水中を
不純物イオンをイオン交換作用により、復水中の
クラツドを過作用あるいは吸着作用により除去
するものであるが、クラツドの蓄積により圧力損
失が増加したり、あるいは定体積処理量に達した
場合あるいは不純物イオンで飽和した場合、復水
脱塩塔内の混合イオン交換樹脂を前記再生系統に
送り、再生を行なう。 すなわち混合イオン交換樹脂層を充分にバブリ
ングしてクラツドを水洗により除去した後、逆洗
沈整してカチオン交換樹脂層とアニオン交換樹脂
層に分離し、カチオン交換樹脂層には酸再生剤
を、アニオン交換樹脂層にはアルカリ再生剤を通
薬してそれぞれ不純物イオンを脱着するのであ
る。なおこの場合、再生系統の種類によつては両
イオン交換樹脂を分離して下層にカチオン交換樹
脂層、上層にアニオン交換樹脂層を形成して当該
分離層を保つたままカチオン交換樹脂層には酸再
生剤をアニオン交換樹脂層にはアルカリ再生剤を
通薬する一塔再生方式と、両イオン交換樹脂を分
離した後、両イオン交換樹脂を別々の再生塔に分
離してそれぞれの再生塔で再生する別塔再生方式
とがある。 混合イオン交換樹脂を再生するにあたり、水流
により逆洗して両イオン交換樹脂の比重差によ
り、カチオン交換樹脂層とアニオン交換樹脂層と
して分離するが、両イオン交換樹脂の比重が比較
的接近しているためその分離境界面は両イオン交
換樹脂の混合層が生じやすく、したがつて前記一
塔再生方式あるいは前記別塔再生方式とも、酸再
生剤がアニオン交換樹脂に、またアルカリ再生剤
がカチオン交換樹脂に接触しやすく、そのため再
生後において、C1形あるいはSO4形のアニオン交
換樹脂およびNa形のカチオン交換樹脂などの小
量の不純物イオン形のイオン交換樹脂が混入しや
すい。 このような不純物イオン形のイオン交換樹脂が
混入するとその混入量に比例して処理水の純度が
低下するので、この混入を防止するため種々の改
良が行なわれているが、ひとつの方法にイオン交
換的に不活性な、カチオン交換樹脂とアニオン交
換樹脂の中間比重樹脂を用いる方法がある。 すなわち両イオン交換樹脂にあらかじめ当該中
間比重樹脂を混合することで、逆洗分離において
カチオン交換樹脂層とアニオン交換樹脂層の中間
に当該中間比重樹脂層を形成し、前記一塔再生方
式においては当該中間比重樹脂層を緩衝ゾーンと
して作用させることにより前記他方の再生剤によ
る相互汚染を防止し前記別塔再生方式において
は、同じように当該中間比重樹脂層を緩衝ゾーン
として作用させることにより、別塔に分離する際
に異種類のイオン交換樹脂の混入を防止するもの
である。 なお前記不純物イオン形のイオン交換樹脂の混
入を防止する方法としては、中間比重樹脂を用い
る方法とは別に、特殊な構造の再生塔を用いる方
法とか、あるいは分離境界面の両イオン交換樹脂
の混合層を別塔に取り出して当該混合層を通水に
供しない方法など種々の方法が採用されている。 このように復水脱塩装置においては高純度の処
理水を得るために、特に再生系統を中心に従来か
ら種々の改良がなされているが、通水系統すなわ
ち復水脱塩塔に関してはあまり改良がなされてい
ない。 本発明者は定期検査や負荷調整あるいは事故等
の理由により復水の通水を比較的長時間休止し、
再び通水を復帰する場合の復水脱塩塔の保管につ
いて種々検討したところ、通水を終了したそのま
まの状態、すなわちカチオン交換樹脂とアニオン
交換樹脂、あるいはカチオン交換樹脂とアニオン
交換樹脂と中間比重樹脂の混合イオン交換樹脂層
を復水脱塩塔内に充填したまま保管すると、通水
の復帰後においてその定常的な処理水の純度がか
なり低下することを知見した。 本発明は前記欠点を解決することを目的とする
もので、復水脱塩塔を比較的長時間休止して保管
する場合において、その保管の復帰後においても
処理水の純度が低下しないような復水脱塩塔の保
管方法を提供するものである。すなわち本発明は
火力発電所あるいは原子力発電所で復水を処理に
使用するカチオン交換樹脂とアニオン交換樹脂、
あるいはカチオン交換樹脂とアニオン交換樹脂と
中間比重樹脂の混合イオン交換樹脂が充填されて
いる復水脱塩塔を、定期検査、負荷調整、事故等
の理由により比較的長時間復水の通水を休止して
保管するにあたり、当該復水脱塩塔内の混合イオ
ン交換樹脂層を逆洗沈整して各樹脂の分離層を形
成し、当該分離層を形成した状態で保管すること
を特徴とする復水脱塩塔の保管方法である。 以下に本発明を詳細に説明する。 従来から火力発電所あるいは原子力発電所にお
いては定期検査のために1ケ月ないし3ケ月間程
定期的に発電操業を休止している。また火力発電
所においては原子力発電所のベースロード化に伴
ない、負荷調整のため、定期的あるいは不定期的
に10日以上から3ケ月間ぐらい発電操業を休止す
ることがある。また両火力発電所共に何らかの事
故が発生した場合、その原因を追求して修理する
間に比較的長期間発電操業を休止することがあ
る。 このように比較的長時間、たとえば10日間ない
し1ケ月間以上発電操業を休止する場合、復水の
循環も停止し、復水脱塩塔の運転も休止し、復水
脱塩塔は保管されることとなる。このような場合
における従来の復水脱塩塔の保管方法は以下のよ
うになされていた。すなわち休止直前の復水脱塩
塔にそれ程クラツドが蓄積しておらず、圧力損失
がそれ程大きくない場合、あるいはまだ定体積処
理量に達してない場合、あるいは充填されている
イオン交換樹脂に不純物イオンを除去する能力が
充分に残留している場合等のように、まだ充分に
その処理能力を有している場合は、復水脱塩塔に
おける復水の流入配管および流出配管に設けた入
口弁および出口弁を閉鎖し、復水脱塩塔内の混合
イオン交換樹脂層はそのまま混合状態を維持した
まま、単に復水脱塩塔内を満水状態にするだけで
あつた。また休止状態が解除されて復水の処理を
再開する場合は入口弁および出口弁を開口し、復
水脱塩塔に復水を流入し、処理水純度が比較的上
昇するまでブローを行ない、次いで処理を続行し
ていた。 ところでこのように復水脱塩塔を比較的長時間
保管した後、通水を再開すると、前述したように
ブロー後の定常的処理水のナトリウムあるいは塩
素イオンなどの不純物イオンのリーク量が増加
し、純度がかなり低下することを知見した。 何故このように保管した後の処理水の純度が低
下するのか、いまのところ充分に解明されていな
いが、本発明者はこの純度低下を防止すべく種々
検討を行なつた結果、保管の際に復水脱塩塔内の
混合イオン交換樹脂層を水流により逆洗沈整し、
カチオン交換樹脂層とアニオン交換樹脂層、ある
いは中間比重樹脂を用いている場合はカチオン交
換樹脂層とアニオン交換樹脂層と中間比重樹脂層
に分離して保管すると前述の処理水の純度低下が
効果的に防止できることを知見した。また保管中
に当該分離層に下降流の水を連続的あるいは間歇
的に通水したり、あるいはカチオン交換樹脂層と
アニオン交換樹脂層の分離面付近に設けたデイス
トリビユータから、あるいは中間比重樹脂層部に
設けたデイストビユータから、アニオン交換樹脂
層には上昇流方向の、カチオン交換樹脂層には下
降流方向の水を連続的あるいは間歇的に通水する
と、さらに効果的に前述の処理水の純度低下を防
止できる。 なおこの保管中における通水に用いる水は導電
率1μs/cm以下の比較的純度の高い純水を用い、
その下降流あるいは上昇流の流速は、復水脱塩塔
内に僅かな水の移動が生じる程度の流速、たとえ
ば空間速度(SV)で0.1〜0.5の流速で充分にその
目的を達することができる。 以下に本発明の実施態様を図面を用いて説明す
る。 第1図は3塔の復水脱塩塔からなる復水脱塩装
置の通水系統のフローを示す説明図であり、復水
の通水にあたつては各復水脱塩塔1の入口弁2と
出口弁3を開口し、復水を復水流入管4を介して
各復水脱塩塔1に流入し、各復水脱塩塔内の混合
イオン交換樹脂層5で処理し、その処理水を復水
流出管6から流出させる。 このような復水の通水が前述したごとく比較的
長時間休止され、復水脱塩塔を保管する場合、本
発明においては以下のようにする。 まず各復水脱塩塔1の各入口弁2と出口弁3を
閉じた後、各復水脱塩塔1の逆洗水入口弁7と逆
洗水流出弁8と開口し、逆洗水流入管9より逆洗
水を流入して常法により混合イオン交換樹脂層5
を逆洗してカチオン交換樹脂層とアニオン交換樹
脂層に分離した後、逆洗水入口弁7および逆洗水
流出弁8を閉じ、沈整し保管中はこのままの状態
を維持する。 本発明はこのようにカチオン交換樹脂層とアニ
オン交換樹脂層の分離層を形成し、当該分離層を
形成した状態で保管するが、本発明により従来の
ようにカチオン交換樹脂とアニオン交換樹脂の混
合層のままで保管する方法で生じていたその復帰
後の処理水の純度低下を効果的に防止することが
できる。 なお本発明における保管後、復水の通水を再開
する場合は常法により復水脱塩塔の下部から圧縮
空気を流入して両イオン交換樹脂層を充分に混合
することは云うまでもない。 また本発明においては第2図に示したように、
逆洗分離して下層にカチオン交換樹脂層10,上
層にアニオン交換樹脂層11を形成した後、保管
水流入弁12および保管水流出弁13を開口して
復水脱塩塔1の休止保管中に空間速度(SV)0.1
〜0.5の極少量の純水を下降流で連続的あるいは
間歇的に通水すると純度低下に対してさらに効果
的である。 あるいは第3図に示したように、保管水流入弁
12′および逆洗水流出弁8、保管水流出弁13
を開口し、カチオン交換樹脂層10とアニオン交
換樹脂層11の分離面付近の復水脱塩塔1に設け
たデイストリビユータ14から、休止保管中に前
述と同様な極少量の純水を,カチオン交換樹脂層
10には下降流で、アニオン交換樹脂層11には
上昇流で連続的あるいは間歇的に通水しても純度
低下に対してさらに効果的である。 なお第1図ないし第3図に示した復水脱塩塔は
中間比重樹脂を用いていない場合の例であるが、
中間比重樹脂を用いる場合は、逆洗分離すると、
カチオン交換樹脂層とアニオン交換樹脂層の間に
中間比重樹脂層が形成されるだけで基本的には第
1図ないし第3図の場合とほぼ同じであり、第3
図における復水脱塩塔1のデイストリビユータ1
4の設置位置が中間比重樹脂層部となるだけであ
る。 以上説明したごとく、本発明は復水脱塩塔を保
管するにあたり、混合イオン交換樹脂層を逆洗し
て、カチオン交換樹脂層とアニオン交換樹脂層、
あるいはカチオン交換樹脂層とアニオン交換樹脂
層と中間比重樹脂層に分離し、当該分離層を形成
した状態で保管するという簡単な操作で保管復帰
後における処理水の純度低下を効果的に防止し得
るので、水質管理上極めて有利である。 以下本発明の実施例を説明する。 実施例 H形およびNH4形およびNa形に完全再生した
3種類のイオン形の強酸性カチオン交換樹脂アン
バーライト(登録商標)200CとOH形およびCl形
に完全再生した2種類のイオン形の強塩基性アニ
オン交換樹脂アンバーライトIRA−900と、イオ
ン交換的に不活性の中間比重樹脂アンバーセツプ
(登録商標)359を用意し、これらの樹脂を以下の
組成になるように混合して、当該混合イオン交換
樹脂をカラムに充填した。 カラムA−1〜A−5 H形樹脂90%とNH4形樹脂9%とNa形樹脂1
%を混合したアンバーライト200C、20とOH形
樹脂95%とC1形樹脂5%を混合したアンバーラ
イトIRA−900、10を混合したもの。 カラムB−1〜B−5 H形樹脂90%とNH4形樹脂9%とNa形樹脂1
%を混合したアンバーライト200C、20と、OH
形樹脂95%とCl形樹脂5%を混合したアンバーラ
イトIRA−900,10とアンバーセツプ359を6
混合したもの。 以上の10本のカラムぞれぞれについて、Na量
0.03〜0.08μg/およびCl量0.1〜0.5μg/の
純水にNH4OHを添加してPHを9.2に調整した原
水をLV100m/Hで通水して定常状態に達した時
(通水から約30分後)の処理水のNaおよびClを測
定しブランクテストとし、次いでA−2〜A−5
およびB−2〜B−5の8本のカラムについては
以下に示す本発明の保管方法で30日間保管し、比
較のためにA−1とB−2の2本のカラムは従来
の方法、すなわち各樹脂を混合状態のまま30日間
保管した。 保管後、ブランクテストと同じ原水を同じ条件
で通水し、定常状態に達した時(通水から約30分
後)の処理水のNaおよびClを測定した。ブラン
クテストおよび保管後の処理水の測定値を第1表
に示す。 A−2;逆洗沈整してカチオン交換樹脂層とアニ
オン交換樹脂層に分離して保管 A−3;逆洗沈整してカチオン交換樹脂層とアニ
オン交換樹脂層に分離し、保管中にSVO.1の純
水を下降流で連続的に通水 A−4;逆洗沈整してカチオン交換樹脂層とアニ
オン交換樹脂層に分離し、保管中にSVO.1の純
水を下降流で間歇的に通水 A−5;逆洗沈整してカチオン交換樹脂層とアニ
オン交換樹脂層に分離し、保管中に分離境界面
に設けたデイストリビユータより下降流および
上昇流の純水(両者ともSVO.1)を連続的に通
水 B−2;逆洗沈整してカチオン交換樹脂層とアニ
オン交換樹脂層と中間比重樹脂層に分離して保
管 B−3;逆洗沈整してカチオン交換樹脂層とアニ
オン交換樹脂層と中間比重樹脂層に分離し、保
管中にSVO.1の純水を下降流で連続的に通水 B−4;逆洗沈整してカチオン交換樹脂層とアニ
オン交換樹脂層と中間比重樹脂層に分離し、保
管中にSVO.1の純水を下降流で間歇的に通水 B−5;逆洗沈整してカチオン交換樹脂層とアニ
オン交換樹脂層と中間比重樹脂層に分離し、保
管中に中間比重樹脂層中に設けたデイストリビ
ユータより、下降流および上昇流の純水(両者
ともSVO.1)を連続的に通水
The present invention relates to a method for storing a condensate desalination tower used for treating condensate at a thermal power plant or a nuclear power plant. In thermal power plants or nuclear power plants, the steam that drives the power generation turbine is cooled to condensate, the condensate is heated to obtain steam, and this steam is used to drive the power generation turbine again. As I have said repeatedly, the condensate circulating within the system is contaminated with various impurity ions and cladding, so
In order to remove these substances, it is common to treat them with a condensate desalination device. The condensate desalination equipment consists of a water flow system consisting of a plurality of condensate desalination towers and a regeneration system for regenerating the ion exchange resin in the condensate demineralization towers. Or cation exchange resin in NH4 form and OH
It is made by filling a mixed ion exchange resin layer of a type of anion exchange resin. A condensate demineralization tower removes impurity ions from condensate water by ion exchange and crud in condensate by overaction or adsorption, but pressure loss increases due to accumulation of crud, or constant volume treatment When the amount reached or saturated with impurity ions, the mixed ion exchange resin in the condensate demineralization tower is sent to the regeneration system for regeneration. That is, after sufficiently bubbling the mixed ion exchange resin layer and removing the crud by water washing, the mixture is backwashed and settled to separate into a cation exchange resin layer and an anion exchange resin layer, and an acid regenerant is applied to the cation exchange resin layer. An alkali regenerant is passed through the anion exchange resin layer to desorb impurity ions. In this case, depending on the type of regeneration system, both ion exchange resins may be separated to form a cation exchange resin layer in the lower layer and an anion exchange resin layer in the upper layer, and the cation exchange resin layer may be replaced while maintaining the separated layer. There is a one-tower regeneration method in which an acid regenerant is passed through the anion exchange resin layer and an alkali regenerant, and the other is a one-tower regeneration method in which both ion exchange resins are separated, and then both ion exchange resins are separated into separate regeneration towers. There is a separate tower regeneration method. When regenerating a mixed ion exchange resin, it is backwashed with water and separated into a cation exchange resin layer and an anion exchange resin layer due to the difference in specific gravity of both ion exchange resins. Therefore, a mixed layer of both ion-exchange resins tends to form at the separation boundary. Therefore, in both the one-tower regeneration method and the separate-tower regeneration method, the acid regenerant is used as the anion exchange resin, and the alkali regenerant is used as the cation exchanger. It easily comes into contact with the resin, and therefore, after regeneration, small amounts of impurity ion-type ion-exchange resins, such as C1-type or SO 4 -type anion exchange resins and Na-type cation exchange resins, are likely to be mixed in. When ion exchange resin in the form of impurities ions is mixed in, the purity of the treated water decreases in proportion to the amount of ion exchange resin mixed in. Various improvements have been made to prevent this contamination. There is a method using a resin having a specific gravity intermediate between a cation exchange resin and an anion exchange resin, which is exchangeably inert. That is, by mixing the intermediate specific gravity resin with both ion exchange resins in advance, the intermediate specific gravity resin layer is formed between the cation exchange resin layer and the anion exchange resin layer in backwash separation, and in the one-tower regeneration method, By making the intermediate specific gravity resin layer act as a buffer zone, mutual contamination by the other regenerating agent is prevented. In the separate column regeneration method, by making the intermediate specific gravity resin layer act as a buffer zone, This prevents contamination of different types of ion exchange resins during separation. In addition to the method of using an intermediate specific gravity resin, methods for preventing the contamination of the impurity ion type ion exchange resin include a method of using a regeneration tower with a special structure, or a method of mixing both ion exchange resins at the separation interface. Various methods have been adopted, such as a method in which the layer is taken out to a separate column and the mixed layer is not subjected to water passage. In order to obtain high-purity treated water in condensate desalination equipment, various improvements have been made in the past, especially in the regeneration system, but not much has been improved in the water flow system, that is, the condensate desalination tower. has not been done. The inventor suspends the flow of condensate for a relatively long period of time due to periodic inspections, load adjustments, accidents, etc.
After various studies on storage of the condensate demineralization tower when water flow is resumed, we found that the condensate demineralization tower should be stored in the same state after water flow has finished, that is, cation exchange resin and anion exchange resin, or cation exchange resin and anion exchange resin and intermediate specific gravity. It has been found that if a mixed ion exchange resin layer of resin is stored in a condensate demineralization tower, the purity of the regularly treated water drops considerably after the water flow is restored. The purpose of the present invention is to solve the above-mentioned drawbacks, and the purpose of the present invention is to prevent the purity of treated water from decreasing even after the condensate demineralization tower is stopped for a relatively long time and stored. A method for storing a condensate desalination tower is provided. That is, the present invention provides cation exchange resins and anion exchange resins used for treating condensate at thermal power plants or nuclear power plants,
Alternatively, a condensate demineralization tower filled with a mixed ion exchange resin consisting of a cation exchange resin, an anion exchange resin, and an intermediate specific gravity resin may not be allowed to pass condensate for a relatively long period of time due to periodic inspections, load adjustments, accidents, etc. When it is stopped and stored, the mixed ion exchange resin layer in the condensate demineralization tower is backwashed and settled to form a separated layer of each resin, and the separated layer is stored in the state in which it is formed. This is a storage method for a condensate desalination tower. The present invention will be explained in detail below. BACKGROUND ART Conventionally, thermal power plants or nuclear power plants have periodically suspended power generation operations for one to three months for periodic inspections. Furthermore, as nuclear power plants shift to base load, power generation operations at thermal power plants may be suspended periodically or irregularly for 10 days or more to three months in order to adjust the load. Additionally, if an accident occurs at either thermal power plant, power generation operations may be suspended for a relatively long period of time while the cause is investigated and repairs are made. When power generation operations are suspended for a relatively long period of time, for example 10 days to one month or more, the circulation of condensate is also stopped, the operation of the condensate desalination tower is also suspended, and the condensate desalination tower is stored. The Rukoto. The conventional method for storing condensate demineralization towers in such cases is as follows. In other words, if the crud has not accumulated in the condensate demineralization tower just before it is shut down, and the pressure loss is not that large, or if the constant volume throughput has not yet been reached, or if there are impurity ions in the ion exchange resin packed in the tower, If the treatment capacity is still sufficient, such as when sufficient capacity remains to remove condensate, the inlet valves installed on the inlet and outlet piping of the condensate Then, the outlet valve was closed, and the inside of the condensate demineralization tower was simply filled with water while the mixed ion exchange resin layer in the condensate demineralization tower remained in a mixed state. When the pause state is canceled and the condensate treatment is resumed, the inlet and outlet valves are opened, the condensate flows into the condensate demineralization tower, and blowing is performed until the purity of the treated water is relatively high. Then processing continued. By the way, when the water flow is restarted after storing the condensate demineralization tower for a relatively long period of time, as mentioned above, the amount of impurity ions such as sodium or chloride ions leaked from the regularly treated water after blowing increases. , the purity was found to be significantly reduced. Although it is not fully understood at present why the purity of treated water decreases after being stored in this way, the present inventor has conducted various studies to prevent this decrease in purity. The mixed ion exchange resin layer in the condensate demineralization tower is backwashed and settled with a water flow.
When using a cation exchange resin layer and an anion exchange resin layer, or if an intermediate specific gravity resin is used, storing the cation exchange resin layer, anion exchange resin layer, and intermediate specific gravity resin layer separately will effectively prevent the aforementioned decrease in the purity of the treated water. We found that this can be prevented. In addition, during storage, water may be passed continuously or intermittently downward through the separation layer, or from a distributor installed near the separation surface between the cation exchange resin layer and the anion exchange resin layer, or through intermediate specific gravity resin. If water is passed continuously or intermittently in an upward flow direction to the anion exchange resin layer and in a downward flow direction to the cation exchange resin layer from the distoviewer installed in the layer, the above-mentioned treated water can be more effectively treated. Purity reduction can be prevented. The water used for water flow during storage is relatively pure water with a conductivity of 1 μs/cm or less.
The flow rate of the downward flow or upward flow is such that a slight movement of water occurs in the condensate demineralization tower, for example, a flow rate of 0.1 to 0.5 in space velocity (SV) is sufficient to achieve the purpose. . Embodiments of the present invention will be described below with reference to the drawings. Figure 1 is an explanatory diagram showing the flow of the water flow system of the condensate desalination equipment consisting of three condensate desalination towers. The inlet valve 2 and the outlet valve 3 are opened, the condensate flows into each condensate demineralization tower 1 through the condensate inflow pipe 4, and is treated in the mixed ion exchange resin layer 5 in each condensate demineralization tower, The treated water is made to flow out from the condensate outflow pipe 6. When the flow of condensate is stopped for a relatively long period of time as described above and the condensate desalination tower is stored, the present invention is carried out as follows. First, after closing each inlet valve 2 and outlet valve 3 of each condensate demineralization tower 1, the backwash water inlet valve 7 and backwash water outflow valve 8 of each condensate demineralization tower 1 are opened, and the backwash water flows. Backwash water is introduced from the inlet pipe 9 and mixed ion exchange resin layer 5 is prepared by a conventional method.
After the water is backwashed and separated into a cation exchange resin layer and an anion exchange resin layer, the backwash water inlet valve 7 and the backwash water outflow valve 8 are closed, the water settles, and this state is maintained during storage. In the present invention, a separation layer of a cation exchange resin layer and an anion exchange resin layer is formed in this way, and the separation layer is stored in a state where it is formed. It is possible to effectively prevent a decrease in the purity of the treated water after its return, which occurs in the method of storing the treated water as a layer. In addition, in the case of restarting the flow of condensate after storage in the present invention, it goes without saying that compressed air should be introduced from the lower part of the condensate demineralization tower to thoroughly mix both ion exchange resin layers using a conventional method. . Furthermore, in the present invention, as shown in FIG.
After backwashing and separating to form the cation exchange resin layer 10 in the lower layer and the anion exchange resin layer 11 in the upper layer, the stored water inflow valve 12 and the stored water outflow valve 13 are opened to stop the condensate demineralization tower 1 from being stored. space velocity (SV) 0.1
Passing a very small amount of ~0.5 pure water in a downward flow either continuously or intermittently is more effective against a decrease in purity. Alternatively, as shown in FIG. 3, the stored water inflow valve 12', the backwash water outflow valve 8, the stored water outflow valve 13
is opened, and from the distributor 14 installed in the condensate demineralization tower 1 near the separation surface of the cation exchange resin layer 10 and the anion exchange resin layer 11, a very small amount of pure water similar to that described above is supplied during idle storage. Even if the water is passed continuously or intermittently in a downward flow through the cation exchange resin layer 10 and an upward flow through the anion exchange resin layer 11, it is more effective for reducing the purity. Note that the condensate demineralization towers shown in Figures 1 to 3 are examples in which intermediate specific gravity resin is not used.
When using intermediate specific gravity resin, backwash separation will result in
Basically, it is almost the same as in the case of FIGS. 1 to 3 except that an intermediate specific gravity resin layer is formed between the cation exchange resin layer and the anion exchange resin layer, and the third
Distributor 1 of condensate demineralization tower 1 in the figure
The installation position No. 4 is only the intermediate specific gravity resin layer portion. As explained above, when storing a condensate demineralization tower, the present invention backwashes the mixed ion exchange resin layer to form a cation exchange resin layer and an anion exchange resin layer.
Alternatively, a simple operation of separating into a cation exchange resin layer, an anion exchange resin layer, and an intermediate specific gravity resin layer and storing the separated layers can effectively prevent a decrease in the purity of the treated water after returning from storage. Therefore, it is extremely advantageous in terms of water quality management. Examples of the present invention will be described below. Example Strongly acidic cation exchange resin Amberlite (registered trademark) 200C in three ionic forms completely regenerated into H form, NH 4 form and Na form and two types of strongly acidic cation exchange resin Amberlite (registered trademark) completely regenerated into OH form and Cl form. Prepare the basic anion exchange resin Amberlite IRA-900 and the intermediate specific gravity resin Ambersep (registered trademark) 359, which is inactive in terms of ion exchange, and mix these resins to have the following composition to obtain the mixed ion. The exchange resin was packed into the column. Column A-1 to A-5 90% H type resin, 9% NH4 type resin, and Na type resin 1
% Amberlite 200C, 20 mixed with Amberlite IRA-900, 10, which is a mixture of 95% OH type resin and 5% C1 type resin. Columns B-1 to B-5 90% H type resin, 9% NH4 type resin, and Na type resin 1
Amberlite 200C mixed with 20% OH
Amberlite IRA-900, 10, which is a mixture of 95% type resin and 5% Cl type resin, and Ambersep 359 are 6
A mixture. For each of the above 10 columns, the amount of Na
When pure water with 0.03 to 0.08 μg/and Cl content of 0.1 to 0.5 μg/ and NH 4 OH was added to adjust the pH to 9.2 was passed at a LV of 100 m/H and a steady state was reached (from water flow to After about 30 minutes), Na and Cl in the treated water were measured as a blank test, and then A-2 to A-5
The eight columns B-2 to B-5 were stored for 30 days using the storage method of the present invention shown below, and for comparison, the two columns A-1 and B-2 were stored using the conventional method. That is, each resin was stored in a mixed state for 30 days. After storage, the same raw water as in the blank test was passed under the same conditions, and when a steady state was reached (approximately 30 minutes after water flow), Na and Cl in the treated water were measured. Table 1 shows the measured values of the treated water after the blank test and storage. A-2; Backwash and settle, separate into cation exchange resin layer and anion exchange resin layer, and store A-3; Backwash and settle, separate into cation exchange resin layer and anion exchange resin layer, and store Pure water of SVO.1 is passed continuously in a downward flow. Water is passed intermittently at A-5; Backwash and sedimentation is performed to separate the cation exchange resin layer and anion exchange resin layer, and during storage, pure water flows downward and upward from a distributor installed at the separation interface. (both SVO.1) are continuously passed through water B-2; backwashed and settled, separated into cation exchange resin layer, anion exchange resin layer and intermediate specific gravity resin layer and stored B-3; backwashed and settled It is separated into a cation exchange resin layer, an anion exchange resin layer, and an intermediate specific gravity resin layer, and during storage, pure water of SVO. It is separated into a resin layer, an anion exchange resin layer, and an intermediate specific gravity resin layer, and during storage, pure water of SVO. The exchange resin layer and the intermediate specific gravity resin layer are separated, and during storage, pure water (both SVO.1) is passed continuously through the downward flow and upward flow from the distributor installed in the intermediate specific gravity resin layer.

【表】 第1表に示したように本発明の保管方法は従来
の保管方法よりその保管後の処理水の純度が高
い。
[Table] As shown in Table 1, the storage method of the present invention has higher purity of treated water after storage than the conventional storage method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図はいづれも本発明の実施態
様を示すもので、第1図は復水脱塩装置の通水系
統のフローを示す説明図であり、第2図および第
3図は保管の状態を示すフローの説明図である。 1……復水脱塩塔、2……入口弁、3……出口
弁、4……復水流入管、5……混合イオン交換樹
脂層、6……復水流出管、7……逆洗水入口弁、
8……逆洗水流出弁、9……逆洗水流入管、10
……カチオン交換樹脂層、11……アニオン交換
樹脂層、12……保管水流入弁、13……保管水
流出弁、14……デイストリビユータ。
Figures 1 to 3 all show embodiments of the present invention, with Figure 1 being an explanatory diagram showing the flow of the water flow system of the condensate desalination equipment, and Figures 2 and 3 being It is an explanatory diagram of a flow showing a storage state. 1... Condensate demineralization tower, 2... Inlet valve, 3... Outlet valve, 4... Condensate inflow pipe, 5... Mixed ion exchange resin layer, 6... Condensate outflow pipe, 7... Backwashing water inlet valve,
8... Backwash water outflow valve, 9... Backwash water inflow pipe, 10
... Cation exchange resin layer, 11 ... Anion exchange resin layer, 12 ... Storage water inflow valve, 13 ... Storage water outflow valve, 14 ... Distributor.

Claims (1)

【特許請求の範囲】 1 火力発電所あるいは原子力発電所で復水の処
理に使用するカチオン交換樹脂とアニオン交換樹
脂、あるいはカチオン交換樹脂とアニオン交換樹
脂と中間比重樹脂の混合イオン交換樹脂層が充填
されている復水脱塩塔を、定期検査、負荷調整、
事故等の理由により比較的長時間復水の通水を休
止して保管するにあたり、当該復水脱塩塔内の混
合イオン交換樹脂層を逆洗沈整して各樹脂の分離
層を形成し、当該分離層を形成した状態で保管す
ることを特徴とする復水脱塩塔の保管方法。 2 保管中に当該分離層に下降流の水を連続的あ
るいは間歇的に通水する特許請求の範囲第1項記
載の復水脱塩塔の保管方法。 3 保管中にカチオン交換樹脂層とアニオン交換
樹脂層の分離面付近、あるいは中間比重樹脂層部
に設けたデイストリビユータから、アニオン交換
樹脂層には上昇流方向の、カチオン交換樹脂層に
は下降流方向の水を連続的あるいは間歇的に通水
する特許請求の範囲第1項記載の復水脱塩塔の保
管方法。
[Scope of Claims] 1 Filled with a mixed ion exchange resin layer of a cation exchange resin and an anion exchange resin, or a mixed ion exchange resin of a cation exchange resin, an anion exchange resin, and an intermediate specific gravity resin used for treating condensate at a thermal power plant or a nuclear power plant. The condensate desalination tower is regularly inspected, load adjusted,
When storing condensate with the flow of condensate stopped for a relatively long period of time due to an accident or other reason, the mixed ion exchange resin layer in the condensate demineralization tower is backwashed and settled to form a separate layer of each resin. A method for storing a condensate demineralization tower, which comprises storing the separated layer in a state in which it is formed. 2. A method for storing a condensate demineralization tower according to claim 1, wherein water is passed continuously or intermittently downward through the separation layer during storage. 3. During storage, from the distributor provided near the separation surface of the cation exchange resin layer and anion exchange resin layer or in the intermediate specific gravity resin layer, the anion exchange resin layer has an upward flow direction and the cation exchange resin layer has a downward flow direction. A storage method for a condensate demineralization tower according to claim 1, wherein water is passed continuously or intermittently in the flow direction.
JP58057978A 1983-04-04 1983-04-04 Maintenance system of condensate desalt tower Granted JPS59183398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057978A JPS59183398A (en) 1983-04-04 1983-04-04 Maintenance system of condensate desalt tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057978A JPS59183398A (en) 1983-04-04 1983-04-04 Maintenance system of condensate desalt tower

Publications (2)

Publication Number Publication Date
JPS59183398A JPS59183398A (en) 1984-10-18
JPH0363439B2 true JPH0363439B2 (en) 1991-10-01

Family

ID=13071088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057978A Granted JPS59183398A (en) 1983-04-04 1983-04-04 Maintenance system of condensate desalt tower

Country Status (1)

Country Link
JP (1) JPS59183398A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543767B2 (en) * 1989-06-29 1996-10-16 株式会社荏原製作所 Condensate desalination method
JPH047080A (en) * 1990-04-24 1992-01-10 Ebara Infilco Co Ltd Method for regenerating condensed water desalting apparatus
JP2007105558A (en) * 2005-10-11 2007-04-26 Ebara Corp Method and apparatus for demineralizing recovered water
JP2008178798A (en) * 2007-01-24 2008-08-07 Chugoku Electric Power Co Inc:The Ion exchange resin keeping method during stop of condensate demineralizer

Also Published As

Publication number Publication date
JPS59183398A (en) 1984-10-18

Similar Documents

Publication Publication Date Title
JPS60132693A (en) Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water
CN101460406A (en) Method and apparatus for condensate demineralization
JPH0363439B2 (en)
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
US4039443A (en) Condensate purification process
CA1105158A (en) Removal of silica from mixed bed demineralizer
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP2940651B2 (en) Pure water production equipment
JP3837762B2 (en) Ion exchange resin separation and regeneration method
JP2941121B2 (en) Ultrapure water production equipment
CA1053810A (en) Method of desalting treatment of condensate water
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
JPH02131188A (en) Removal process for suspended impurities by mixed bed type filter desalting device
JP2543767B2 (en) Condensate desalination method
JP2654053B2 (en) Condensate desalination equipment
JPH0569480B2 (en)
JPS6211916B2 (en)
JPS6259979B2 (en)
JPS6265785A (en) Treatment of condensate
RU2040475C1 (en) Method of water purification from metal oxides or suspended impurities
JPS6059013B2 (en) How to regenerate mixed ion exchange resin
JPS6036829B2 (en) Condensate treatment method
KR810000450B1 (en) Method for purifying water by continuous ion-exchanges
KR890004710B1 (en) Method and apparatus for regeneration of ion-exchange resin in mixed-bed ion-exchanger