JPH0362410A - Wire for thunder resisting cable - Google Patents

Wire for thunder resisting cable

Info

Publication number
JPH0362410A
JPH0362410A JP19746389A JP19746389A JPH0362410A JP H0362410 A JPH0362410 A JP H0362410A JP 19746389 A JP19746389 A JP 19746389A JP 19746389 A JP19746389 A JP 19746389A JP H0362410 A JPH0362410 A JP H0362410A
Authority
JP
Japan
Prior art keywords
alloy
iron
aluminum
nickel
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19746389A
Other languages
Japanese (ja)
Inventor
Masahiro Samejima
正洋 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP19746389A priority Critical patent/JPH0362410A/en
Publication of JPH0362410A publication Critical patent/JPH0362410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To enhance processability and toughness, and improve productivity and reliability by using aluminum, aluminum alloy, copper or a copper alloy as a core material, and sheathing the aforesaid core material all around with a covering material made of the predetermined iron-nickel alloy. CONSTITUTION:Aluminum, aluminum alloy, copper or copper alloy is used as a core material and a covering material comprising iron-nickel alloy is applied to the external surface of the core material. The aforesaid covering material contains 90wt.% or more of iron and nickel in total. Also, nickel is added by 2 to 65wt.%. Furthermore, the covering ratio of the iron-nickel alloy covering material is 5 to 50% of the total sectional area of the core material and covering material, when expressed in terms of a sectional area ratio. Furthermore, when an aluminum or aluminum alloy layer is formed on the surface of the covering material, the thickness of the layer is 1.0mm or less. On the other hand, when a zinc or a zinc alloy layer is formed on the aforesaid surface, the thickness of the layer is 0.5mm or less.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は架空地線等として架設される耐雷電線用の素線
に関し、特に、落雷時のアーク熱により表面が溶融する
ことを防止して、耐雷性を向上させた耐雷電線用素線に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to strands for lightning-proof electric wires installed as overhead ground wires, etc., and in particular, to wires for preventing the surface from melting due to arc heat during lightning strikes. , relates to a strand for a lightning-resistant electric wire with improved lightning resistance.

[従来の技術] 高圧、中圧又は低圧の架空送電系統には、その最上部に
接地電位に保持されたグランドワイヤ(架空地線)が架
線されている。このグランドワイヤは、従来、鋼線を芯
材としこの鋼線の周囲にアルミニウムを被覆したアルミ
ニウム被覆鋼線又はアルミニウム合金線を素線とし、こ
の素線を複数本撚り合わせた撚線が一般的に使用されて
いる。
[Prior Art] A high-voltage, medium-voltage, or low-voltage overhead power transmission system has a ground wire (overhead ground wire) held at a ground potential at the top thereof. Conventionally, this ground wire is a stranded wire made by twisting multiple strands of aluminum coated steel wire or aluminum alloy wire, which has a steel wire as a core material and coats aluminum around the steel wire. used in

しかしながら、従来の架空送電系統のグランドワイヤは
落雷による被害を受けやすいという問題点がある。つま
り、グランドワイヤには落雷が発生しやすく、落雷を受
けた場合は、アークの衝撃力により素線が断線し、又は
その熱により素線のアルミニウム被覆鋼線又はアルミニ
ウム合金線が溶断する溶断事故が発生する。そして、極
端な場合には、断線又は溶断した素線の本数が多数であ
るために、電線の張り替えを余儀なくされる場合がある
。このような、グランドワイヤの素線の溶断事故による
被害は山岳地域において甚大である。
However, the problem is that the ground wires of conventional overhead power transmission systems are susceptible to damage from lightning strikes. In other words, ground wires are susceptible to lightning strikes, and if they are struck by lightning, the impact force of the arc may cause the wires to break, or the heat may cause the aluminum-coated steel wire or aluminum alloy wire of the wire to melt. occurs. In extreme cases, the number of disconnected or fused wires is large, and the wires may have to be replaced. Damage caused by such melting accidents of ground wire strands is severe in mountainous regions.

ところで、素線の断線は前述のごとくアークの衝撃力及
びその電流による素線の溶断によって発生するので、こ
れらの要因による断線を解消するために、アルミニウム
又はアルミニウム合金等からなる芯線の表面に高融点及
び高強度の材料、例えば鉄系の材料を被覆した素線が提
案されている。
By the way, as mentioned above, wire breakage occurs due to the impact force of the arc and the melting of the wire due to the electric current, so in order to eliminate wire breakage caused by these factors, a high temperature coating is applied to the surface of the core wire made of aluminum or aluminum alloy. Wires coated with materials having a high melting point and high strength, such as iron-based materials, have been proposed.

なお、この鉄系材料としては、従来、常温でフェライト
系である鉄−炭素鋼又は常温でオーステナイト系である
5US304ステンレス鋼等の鋼材を使用している。ま
た、送電線に使用する場合には、他の構成素線との接触
腐食及び大気中における耐食性を考慮する必要があるた
め、前記鉄系被覆材の表面に更にアルミニウム又は亜鉛
等の層をめっき形成して、耐食性を高めている。
As the iron-based material, conventionally used steel materials are iron-carbon steel, which is ferritic at room temperature, or 5US304 stainless steel, which is austenitic at room temperature. In addition, when used in power transmission lines, it is necessary to consider contact corrosion with other component wires and corrosion resistance in the atmosphere, so the surface of the iron-based coating material is further plated with a layer of aluminum or zinc. formed to improve corrosion resistance.

この場合に、素線の製造時には、前述の鉄ニツケル系合
金被覆材を芯線に縦添えし、被覆材を芯線の周りに曲げ
加工してパイプ状に成形し、その端部を芯線の長手方向
に沿って溶接固定する。これにより、芯線は被覆材で被
覆される。次いで、縮径加工及び熱処理を行う工程と、
被覆材の表面にアルミニウム若しくはアルミニウム合金
層又は亜鉛若しくは亜鉛合金層を形成する工程とを経て
耐雷電線用素線が製造される。
In this case, when manufacturing the strands, the above-mentioned iron-nickel alloy sheathing material is applied vertically to the core wire, the sheathing material is bent around the core wire to form it into a pipe shape, and the ends are attached in the longitudinal direction of the core wire. Weld and fix along. Thereby, the core wire is covered with the covering material. Next, a step of performing diameter reduction processing and heat treatment,
A strand for a lightning-resistant electric wire is manufactured through a step of forming an aluminum or aluminum alloy layer or a zinc or zinc alloy layer on the surface of the coating material.

このため、耐雷性を向上させるために設けられる鉄系被
覆材には、以下に示す特性を具備することが要求される
。先ず、■被覆材は、その溶接部も含めて、冷間加工性
が優れていることが必要である。次に、■300乃至6
00℃の温度に加熱する熱処理を受けても、被覆材は冷
間加工性及び靭性が損なわれないことが必要である。
Therefore, the iron-based coating material provided to improve lightning resistance is required to have the following characteristics. First, (1) The coating material, including its welded parts, must have excellent cold workability. Next, ■300 to 6
It is necessary that the coating material does not lose its cold workability and toughness even when subjected to heat treatment at a temperature of 00°C.

[発明が解決しようとする課題] しかしながら、従来の耐雷性電線に使用される素線の被
覆材は、鉄−炭素鋼又はステンレス鋼により形成されて
いるため、前述の■及び■の特性が不十分である。この
ため、耐雷電線用素線を工業的に大量に製造すると、欠
陥が多く存在したり、断線が発生したりして、生産性が
低いという欠点がある。また、素線を撚り合わせて撚り
線を製造する場合に、この撚り線工程にて素線に割れ等
の不良が発生しやすく、この割れが発生すると使用不能
になるという問題点がある。
[Problems to be Solved by the Invention] However, since the wire sheathing material used in conventional lightning-resistant electric wires is made of iron-carbon steel or stainless steel, the above-mentioned characteristics (1) and (2) are not satisfied. It is enough. For this reason, when strands for lightning-resistant electric wires are industrially produced in large quantities, they have the disadvantage of low productivity due to the presence of many defects and the occurrence of wire breaks. Further, when manufacturing a stranded wire by twisting strands together, defects such as cracks are likely to occur in the strands during this stranding process, and when these cracks occur, the wire becomes unusable.

本発明はかかる問題点に鑑みてなされたものであって、
冷間加工性が優れていると共に、製造時に熱処理を受け
てもその冷間加工性及び靭性が損なわれることがなく、
生産性及び品質の安定性が優れた耐雷電線用素線を提供
することを目的とする。
The present invention has been made in view of such problems, and includes:
It has excellent cold workability, and its cold workability and toughness are not impaired even if it is heat treated during manufacturing.
The purpose of the present invention is to provide strands for lightning-resistant electric wires with excellent productivity and quality stability.

[課題を解決するための手段] 本発明に係る耐雷電線用素線は、アルミニウム、アルミ
ニウム合金、銅又は銅合金からなる芯材と、この芯材の
周囲に5乃至50%の断面面積比率で被覆形成された鉄
−ニッケル系合金からなる被覆材とを有し、前記鉄−ニ
ッケル系合金は、鉄及びニッケルの合計含有量が90重
量%以上であって、ニッケル含有量が2乃至65重量%
であることを特徴とする。
[Means for Solving the Problems] The strand for a lightning-proof electric wire according to the present invention includes a core material made of aluminum, aluminum alloy, copper, or copper alloy, and a core material having a cross-sectional area ratio of 5 to 50% around the core material. a coating material formed of an iron-nickel alloy, the iron-nickel alloy having a total content of iron and nickel of 90% by weight or more, and a nickel content of 2 to 65% by weight. %
It is characterized by

[作用コ 本発明においては、アルミニウム、アルミニウム合金、
銅又は銅合金を芯材とし、この芯材の周りに鉄−ニッケ
ル系合金からなる被覆材を被覆しである。この鉄−ニッ
ケル系合金被覆材は、耐雷性が優れている鉄系素材の中
で、前述の冷間加工性が優れていると共に、熱処理によ
り特性が劣化することもないという利点を有する。
[Function] In the present invention, aluminum, aluminum alloy,
The core material is copper or a copper alloy, and the core material is covered with a coating material made of an iron-nickel alloy. This iron-nickel alloy coating material has the advantage that it has excellent cold workability as described above among iron-based materials that have excellent lightning resistance, and its properties do not deteriorate due to heat treatment.

このような優れた特性を具備するためには、この被覆材
は鉄とニッケルとの合計含有量を80重量%以上にする
必要がある。この鉄−ニッケル系合金には、耐食性向上
の観点からクロムを添加し、強度向上の観点からマンガ
ン、コバルト又はモリブデンを添加することがある。し
かしながら、これらの添加元素は鉄−ニッケル系合金の
加工性を劣化させることがある。このため、十分な加工
性を確保する必要上、これらの元素の添加量を10重量
%未満にして、鉄とニッケルとの合計含有量を90重量
%以上にする必要がある。
In order to have such excellent properties, the total content of iron and nickel in this coating material must be 80% by weight or more. Chromium may be added to this iron-nickel alloy from the viewpoint of improving corrosion resistance, and manganese, cobalt, or molybdenum may be added from the viewpoint of improving strength. However, these additive elements may deteriorate the workability of the iron-nickel alloy. Therefore, in order to ensure sufficient workability, it is necessary to make the amount of these elements added less than 10% by weight and to make the total content of iron and nickel 90% by weight or more.

また、ニッケルの添加量は2乃至65重量%にする。被
覆材の加工性を高めるためには、ニッケルを2重量%以
上添加する必要がある。ニッケルの含有量が2重量%未
満であると、他の第3元素として同じくオーステナイト
化元素であるマンガン等を添加しても、靭性等について
十分な特性が得られない。
Further, the amount of nickel added is 2 to 65% by weight. In order to improve the workability of the coating material, it is necessary to add 2% by weight or more of nickel. If the nickel content is less than 2% by weight, sufficient characteristics such as toughness cannot be obtained even if manganese, which is also an austenitizing element, is added as another third element.

更に、ニッケルを65重量%を超えて添加しても、その
添加に見合う加工性の向上効果が得られないのに加え、
耐雷電線用素線として製造コストがいたずらに高くなり
、無駄である。このような理由で、ニッケルの含有量を
2乃至65重量%に設定する。
Furthermore, even if more than 65% by weight of nickel is added, the effect of improving workability commensurate with the addition cannot be obtained;
As a wire for lightning-resistant electric wires, the manufacturing cost becomes unnecessarily high and it is wasteful. For this reason, the nickel content is set at 2 to 65% by weight.

更にまた、鉄−ニッケル合金被覆材の被覆率は芯材と被
覆材とからなる全体の断面積に対する断面面積比率で、
5乃至50%にする。通常、この素線は芯材のアルミニ
ウム若しくはその合金又は銅若しくはその合金からなる
線材に、被覆材を構成する素材からなるテープを縦添え
し、前記テープを連続的にパイプ状に成形すると共に、
その接合端部を溶接固定することにより製造される。な
お、この複合線は、前述の溶接固定後、所定の径に縮径
加工して被覆材と芯材とを一体化すると共に、適切な条
件で熱処理する。このように、被覆材は通常パイプ状に
成形加工した後、溶接するので、鉄−ニッケル系合金被
覆材の断面面積比率が5%未満となるような厚さのテー
プを使用すると、このテープの厚さが薄すぎるので、溶
接が困難になる。また、鉄−ニッケル系合金被覆材の厚
さが薄すぎると、被覆材本来の耐雷効果を具備すること
ができない。一方、鉄−ニッケル系合金被覆材の厚さが
断面面積比率で50%を超えると、テープ厚さが厚くな
り過ぎてパイプ状への成形が困難になる。このため、被
覆材の断面面積比率は5乃至50%に設定する。
Furthermore, the coverage rate of the iron-nickel alloy coating material is the cross-sectional area ratio to the overall cross-sectional area consisting of the core material and the coating material,
Set it to 5 to 50%. Usually, this wire is made by longitudinally attaching a tape made of a material constituting the sheathing material to a wire rod made of aluminum or its alloy, copper or its alloy as a core material, and continuously forming the tape into a pipe shape.
It is manufactured by welding and fixing the joint ends. After the composite wire is fixed by welding as described above, it is reduced in diameter to a predetermined diameter to integrate the covering material and the core material, and is then heat treated under appropriate conditions. In this way, the sheathing material is usually formed into a pipe shape and then welded, so if a tape with a thickness such that the cross-sectional area ratio of the iron-nickel alloy sheathing material is less than 5% is used, the tape will The thickness is too thin, making welding difficult. Moreover, if the thickness of the iron-nickel alloy coating material is too thin, it will not be able to provide the lightning-proofing effect inherent to the coating material. On the other hand, if the thickness of the iron-nickel alloy coating exceeds 50% in terms of cross-sectional area ratio, the tape becomes too thick and difficult to form into a pipe shape. Therefore, the cross-sectional area ratio of the covering material is set to 5 to 50%.

更にまた、鉄−ニッケル系合金被覆材の他の構成素線と
の間の接触腐食及び大気中における腐食を回避するため
に、前記被覆材の表面にアルミニウム又はアルミニウム
合金の層を形成する場合は、その厚さを1.0mm以下
にする。一方、前記被覆材の表面に亜鉛又は亜鉛合金の
層を形成する場合は、その厚さを0.5mn+以下にす
る。これは、この素線最外層のアルミニウム若しくは亜
鉛又はその合金が本質的に素線の耐雷性を劣化させるも
のであるため、十分に薄く形成する必要があるからであ
る。
Furthermore, in order to avoid contact corrosion with other constituent wires of the iron-nickel alloy coating material and corrosion in the atmosphere, if a layer of aluminum or aluminum alloy is formed on the surface of the coating material, , its thickness should be 1.0 mm or less. On the other hand, when forming a layer of zinc or zinc alloy on the surface of the coating material, the thickness thereof should be 0.5 mm+ or less. This is because aluminum, zinc, or an alloy thereof in the outermost layer of the strand essentially deteriorates the lightning resistance of the strand, so it needs to be formed sufficiently thin.

このため、耐雷性を劣化させない範囲として、防食用最
外層の厚さをその材質に応じて上記範囲に設定する。
For this reason, the thickness of the outermost layer for corrosion protection is set within the above range depending on the material thereof, so as not to deteriorate the lightning resistance.

[実施例コ 次に、本発明の実施例について、その比較例と比較して
説明する。
[Examples] Next, examples of the present invention will be described in comparison with comparative examples thereof.

下記第1表に組成を示す各種のテープ(厚さ0.6mm
 ) ヲ、直径が9.5■のアルミニウム素線の上に被
覆した。次いで、この複合線を80%縮径加工した後に
、400℃に1時間熱処理し、その後頁に縮径加工して
ロッドからの加工度を計90%とした。
Various tapes whose compositions are shown in Table 1 below (thickness: 0.6 mm)
) It was coated on an aluminum wire having a diameter of 9.5 cm. Next, this composite wire was subjected to diameter reduction processing of 80%, and then heat treated at 400° C. for 1 hour, after which diameter reduction processing was performed to the page to give a total degree of processing from the rod to 90%.

そして、80%縮径加工後、熱処理後、及び90%縮径
加工後に、夫々線径の2倍の径に巻き付は加工し、所謂
2倍径巻き付は試験を実施して素線の破断の有無を調べ
ることにより、靭性を評価した。
After 80% diameter reduction processing, heat treatment, and 90% diameter reduction processing, winding is processed to twice the diameter of the wire, and tests are conducted to determine the so-called double diameter winding. Toughness was evaluated by examining the presence or absence of fracture.

その結果を下記第2表に示す。The results are shown in Table 2 below.

第1表 第2表 この第2表から明らかなように、実施例1乃至5の場合
には、いずれの段階においても破断が発生せず、極めて
優れた加工性及び靭性を示した。
As is clear from Table 1, Table 2, and Table 2, in Examples 1 to 5, no breakage occurred at any stage, and extremely excellent workability and toughness were exhibited.

これに対し、比較例1は80%加工後の巻き付は試験で
破断し、また熱処理後も靭性の回復は見られなかった。
On the other hand, in Comparative Example 1, the winding after 80% processing broke in the test, and no recovery of toughness was observed even after heat treatment.

更に、比較例2,3の場合は80%加工するまでに素線
が断線し、その後の加工が不能となった。
Furthermore, in the case of Comparative Examples 2 and 3, the strands were broken before 80% processing was completed, and subsequent processing became impossible.

一方、90%縮径加工が可能であった実施例1乃至5の
素線に対し、0.1mmの厚さに亜鉛めっきを施し、そ
の後、線径の2倍径に巻き付は加工して、靭性を評価し
た。その結果、割れ等の発生は認められなかった。
On the other hand, the wires of Examples 1 to 5, which could be reduced in diameter by 90%, were galvanized to a thickness of 0.1 mm, and then wound to a diameter twice the wire diameter. , the toughness was evaluated. As a result, no cracks or the like were observed.

[発明の効果コ 本発明によれば、所定組成の鉄−ニッケル系合金を被覆
材とし、この被覆材を所定の被覆率で芯材に被覆したか
ら、この素線は耐雷性が優れていると共に、加工性及び
靭性も優れており、生産性が向上すると共に、撚り線で
ある耐雷電線としての信頼性を向上させることができる
[Effects of the Invention] According to the present invention, an iron-nickel alloy of a predetermined composition is used as a coating material, and the core material is coated with this coating material at a predetermined coverage rate, so that this strand has excellent lightning resistance. In addition, it has excellent workability and toughness, improving productivity and improving reliability as a stranded lightning-resistant electric wire.

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウム、アルミニウム合金、銅又は銅合金
からなる芯材と、この芯材の周囲に5乃至50%の断面
面積比率で被覆形成された鉄−ニッケル系合金からなる
被覆材とを有し、前記鉄−ニッケル系合金は、鉄及びニ
ッケルの合計含有量が90重量%以上であって、ニッケ
ル含有量が2乃至65重量%であることを特徴とする耐
雷電線用素線。
(1) It has a core material made of aluminum, aluminum alloy, copper or copper alloy, and a covering material made of an iron-nickel alloy formed around the core material with a cross-sectional area ratio of 5 to 50%. , wherein the iron-nickel alloy has a total content of iron and nickel of 90% by weight or more, and a nickel content of 2 to 65% by weight.
(2)前記被覆材上に、厚さが0.5mm以下の亜鉛又
は亜鉛合金層を形成してあることを特徴とする請求項1
に記載の耐雷電線用素線。
(2) Claim 1 characterized in that a zinc or zinc alloy layer having a thickness of 0.5 mm or less is formed on the coating material.
Element wire for lightning-resistant electric wires described in .
(3)前記被覆材上に、厚さが1.0mm以下のアルミ
ニウム又はアルミニウム合金層を形成してあることを特
徴とする請求項1に記載の耐雷電線用素線。
(3) The strand for a lightning-resistant electric wire according to claim 1, wherein an aluminum or aluminum alloy layer having a thickness of 1.0 mm or less is formed on the coating material.
JP19746389A 1989-07-29 1989-07-29 Wire for thunder resisting cable Pending JPH0362410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19746389A JPH0362410A (en) 1989-07-29 1989-07-29 Wire for thunder resisting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19746389A JPH0362410A (en) 1989-07-29 1989-07-29 Wire for thunder resisting cable

Publications (1)

Publication Number Publication Date
JPH0362410A true JPH0362410A (en) 1991-03-18

Family

ID=16374919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19746389A Pending JPH0362410A (en) 1989-07-29 1989-07-29 Wire for thunder resisting cable

Country Status (1)

Country Link
JP (1) JPH0362410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198519A (en) * 2010-03-17 2011-10-06 Fuji Electric Co Ltd Conductor for high-frequency energization
WO2015046153A1 (en) * 2013-09-25 2015-04-02 株式会社フジクラ High-frequency wire and high-frequency coil
WO2016027867A1 (en) * 2014-08-22 2016-02-25 住友電気工業株式会社 Wire material for coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198519A (en) * 2010-03-17 2011-10-06 Fuji Electric Co Ltd Conductor for high-frequency energization
WO2015046153A1 (en) * 2013-09-25 2015-04-02 株式会社フジクラ High-frequency wire and high-frequency coil
JP2015065081A (en) * 2013-09-25 2015-04-09 株式会社フジクラ High frequency electric wire and high frequency coil
US10026526B2 (en) 2013-09-25 2018-07-17 Fujikura Ltd. High-frequency wire and high-frequency coil
WO2016027867A1 (en) * 2014-08-22 2016-02-25 住友電気工業株式会社 Wire material for coil

Similar Documents

Publication Publication Date Title
KR950005852B1 (en) Cable conductor for auto-mobil
US5106701A (en) Copper alloy wire, and insulated electric wires and multiple core parallel bonded wires made of the same
WO2010147018A1 (en) Electrical wire conductor and electrical wire for automobile
JP2008159403A (en) Wire conductor, and insulated wire
CA1045222A (en) Aluminum alloy composite electrical conductor
JP2009289746A (en) Metal compound wire with at least two metal layers
JPH0362410A (en) Wire for thunder resisting cable
KR102207956B1 (en) Manufacturing method of audio cable having magnetic high shield and high insulating property, and audio cable manufactured by the same
JPH0374008A (en) Aerial transmission line
JP2006079885A (en) Aluminum conductive wire
JP2001084838A (en) Transmission line
US1810499A (en) Transformer winding wire
US7604860B2 (en) High tensile nonmagnetic stainless steel wire for overhead electric conductor, low loss overhead electric conductor using the wire, and method of manufacturing the wire and overhead electric conductor
CN210606715U (en) Novel super corrosion-resistant overhead transmission conductor
JP2003031029A (en) Overhead electric wire
JPS6323015B2 (en)
JP2003123542A (en) Aerial insulated wire
JP2006210179A (en) Spiral wire, overhead wire with spiral wire, and manufacturing method of the overhead wire
JP2002275562A (en) Copper electric wire for aerial insulated distribution line
JPS6030043B2 (en) Automotive wire conductor
RU204344U1 (en) ONBOARD AIRCRAFT ELECTRIC WIRE
CN218918492U (en) Corrugated copper sheath mineral insulated cable
JPH03184210A (en) Cable conductor for automobile
JP3506267B2 (en) Steel core aluminum stranded wire
JP6424925B2 (en) Plating copper wire, plated stranded wire and insulated wire, and method of manufacturing plated copper wire