JPH036202B2 - - Google Patents

Info

Publication number
JPH036202B2
JPH036202B2 JP57214637A JP21463782A JPH036202B2 JP H036202 B2 JPH036202 B2 JP H036202B2 JP 57214637 A JP57214637 A JP 57214637A JP 21463782 A JP21463782 A JP 21463782A JP H036202 B2 JPH036202 B2 JP H036202B2
Authority
JP
Japan
Prior art keywords
semi
reduction furnace
reduced iron
smelting reduction
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57214637A
Other languages
Japanese (ja)
Other versions
JPS59107013A (en
Inventor
Teruo Tsutsumi
Tetsuo Horie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP21463782A priority Critical patent/JPS59107013A/en
Publication of JPS59107013A publication Critical patent/JPS59107013A/en
Publication of JPH036202B2 publication Critical patent/JPH036202B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は溶融還元を利用した溶鋼製造法に係
り、特に予備還元炉にて鉄鉱石を還元して得られ
た半還元鉄を、複数の溶融還元炉へ順次装入し、
各溶融還元炉ごとにバツチ方式で半還元鉄に溶融
還元および脱炭処理を行つて直接に溶鋼を製造し
得るようになした溶融還元を利用した溶鋼製造法
に関する。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing molten steel using smelting reduction, and in particular, semi-reduced iron obtained by reducing iron ore in a preliminary reduction furnace is sequentially charged into a plurality of smelting reduction furnaces. death,
The present invention relates to a molten steel production method using smelting reduction, in which molten steel is directly produced by subjecting semi-reduced iron to smelting reduction and decarburization in batches in each smelting reduction furnace.

溶融還元反応とは、溶融状態にて酸化鉄(鉄鉱
石)が鉄に還元される反応をいう。また溶融還元
法とは、安価で非常に広範囲に存在する一般炭と
酸化鉄鉱石とを直接利用して鉄鉱石から鉄をつく
る方法であり、高炉法における焼結ペレツト、コ
ークスのような原料への前処理を必要としない。
溶融還元法は、現在、製鉄法として主流を占めて
いる高炉を主体とした大規模一貫製鉄法に対し、
原料・燃料の融通性や生産性の良さや設備コスト
の低減が図れる等の理由から研究開発が活発に行
われつつあり、将来高炉法にとつて代る可能性を
有するものとして注目されてる。
The melt reduction reaction refers to a reaction in which iron oxide (iron ore) is reduced to iron in a molten state. In addition, the smelting reduction method is a method of producing iron from iron ore by directly using thermal coal and iron oxide ore, which are inexpensive and widely available. No pretreatment is required.
The smelting reduction method is different from the large-scale integrated steel manufacturing method using blast furnaces, which is currently the mainstream iron manufacturing method.
Research and development is being actively conducted on this method due to its flexibility in raw materials and fuel, good productivity, and ability to reduce equipment costs, and it is attracting attention as a method that has the potential to replace the blast furnace method in the future.

第1図乃至第2図は、現在、研究開発されてい
る溶融還元法のプロセスフローを示すものであ
る。図示する如く、特に予備処理をしない状態の
粉状又は粒状の鉄鉱石と石炭とは、そのまま予備
還元炉Aに投入される(第2図の場合には、直接
に溶融還元炉B上部の高温還元雰囲気下の予備還
元部Cに投入される。)。鉄鉱石は予備還元炉A
(あるいは予備還元部C)にて溶融還元炉Bから
のCO、H2等の溶融還元炉発生ガスDにより予備
還元されて半還元鉄となり、半還元鉄Eはチヤー
とともに溶融還元炉Bに送られる。そして、酸素
と炭素との燃焼により生じた高温還元雰囲気の溶
融還元炉Bで半還元鉄Eは溶解され最終還元を受
けて銑鉄となる。溶融還元炉Bで得られた銑鉄
は、後続の転炉Fにて供給酸素により脱炭処理さ
れて溶鋼となり、更に連続鋳造機等で鋼片とされ
る。
FIGS. 1 and 2 show the process flow of the smelting reduction method currently being researched and developed. As shown in the figure, powdered or granular iron ore and coal that have not been particularly pretreated are directly charged into the pre-reduction furnace A (in the case of Fig. 2, they are directly placed in the high temperature upper part of the smelting reduction furnace (The product is put into the preliminary reduction section C under a reducing atmosphere.) Iron ore is in preliminary reduction furnace A
(or in the preliminary reduction section C), the semi-reduced iron is pre-reduced by the smelting-reduction furnace generated gas D such as CO and H 2 from the smelting-reduction furnace B, and the semi-reduced iron E is sent to the smelting-reduction furnace B along with the char. It will be done. Then, the semi-reduced iron E is melted in a melting reduction furnace B in a high-temperature reducing atmosphere generated by combustion of oxygen and carbon, and undergoes final reduction to become pig iron. The pig iron obtained in the smelting reduction furnace B is decarburized by supplied oxygen in the subsequent converter F to become molten steel, and is further made into steel slabs in a continuous casting machine or the like.

ところで、転炉Fは、その操業技術が非常に難
かきく、また転炉設備は大量生産(50万トン/年
以上)しないと採算が合わず、更に溶融還元炉B
から転炉Fへの銑鉄移送時の熱ロスが大きい。そ
こで溶融還元炉Bで直接鋼が得られれば、転炉F
を省略でき、設備コスト、省エネルギ、操業性な
どの点で有利となる。しかしながら、予備還元炉
Aからは次々に半還元鉄Eが切り出されて溶融還
元炉Bに送られるので、一貫したプロセスの流れ
を阻害しないように溶融還元炉Bでは半還元鉄の
溶融還元が終了した後は、脱炭処理することなく
銑鉄の状態で排出しなくてはならない。また、予
備還元炉Aから半還元鉄が次々に切り出されてく
るため、溶融還元炉B内は還元雰囲気を維持する
必要から炭素リツチな状態にあるので還元された
鉄中に炭素が溶け込み易く、溶融還元炉Bの操業
条件を適当に変えても現状では鋼を生産すること
はできない。
By the way, the operating technology for converter F is extremely difficult, and the converter equipment is not profitable unless it is mass produced (more than 500,000 tons/year).
The heat loss during transfer of pig iron from the converter to the converter F is large. Therefore, if steel can be obtained directly in smelting reduction furnace B, converter F
can be omitted, which is advantageous in terms of equipment costs, energy savings, operability, etc. However, since the semi-reduced iron E is cut out one after another from the preliminary reduction furnace A and sent to the smelting reduction furnace B, the smelting reduction of the semi-reduced iron is finished in the smelting reduction furnace B so as not to disturb the consistent flow of the process. After that, it must be discharged in the form of pig iron without decarburization. In addition, since the semi-reduced iron is cut out one after another from the preliminary reduction furnace A, the inside of the smelting reduction furnace B is in a carbon-rich state due to the need to maintain a reducing atmosphere, so carbon easily dissolves into the reduced iron. Even if the operating conditions of smelting reduction furnace B are changed appropriately, steel cannot be produced at present.

本発明は以上の従来の問題点を有効に解決すべ
く創案されたものであり、本発明の目的は溶融還
元炉から直接に溶鋼を生産することができると共
に転炉を不要とし得、運転コスト、設備コストを
低減でき且つ操業性を向上し得る溶融還元を利用
した溶鋼製造法を提供することにある。
The present invention was devised to effectively solve the above-mentioned conventional problems, and the purpose of the present invention is to be able to produce molten steel directly from a smelting reduction furnace, eliminate the need for a converter, and reduce operating costs. Another object of the present invention is to provide a method for producing molten steel using smelting reduction, which can reduce equipment costs and improve operability.

以下に本発明方法を添付図面に従つて詳述す
る。
The method of the present invention will be explained in detail below with reference to the accompanying drawings.

第3図は本発明を実施するための装置の概略系
統図であり、本装置は予備還元炉3と第1及び第
2の溶融還元炉1,2とから主に構成されてい
る。
FIG. 3 is a schematic system diagram of an apparatus for carrying out the present invention, and this apparatus is mainly composed of a preliminary reduction furnace 3 and first and second melting reduction furnaces 1 and 2.

予備還元炉3は流動層形式のものであり、予備
還元炉3上方には、その頂部に粉状の鉄鉱石と石
炭を装入するための鉄鉱石供給ホツパ4と石炭供
給ホツパ5とがそれぞれ設けられ、また予備還元
炉3下部には、炉内に還元ガスを吹き込むための
還元ガス供給ライン21が接続されている。ま
た、予備還元炉3上部には、還元処理後のガスを
排出するための排ガスライン7が接続されてお
り、排ガスライン7には排ガスを冷却する冷却器
8が設けられている(排ガス中には、可燃分がま
だかなり含まれているため、排ガスは発電やペト
ロケミカル用として使われる。)。
The preliminary reduction furnace 3 is of a fluidized bed type, and above the preliminary reduction furnace 3, an iron ore supply hopper 4 and a coal supply hopper 5 for charging powdered iron ore and coal are provided at the top of the furnace, respectively. Further, a reducing gas supply line 21 for blowing reducing gas into the furnace is connected to the lower part of the preliminary reduction furnace 3. Further, an exhaust gas line 7 for discharging the gas after reduction treatment is connected to the upper part of the preliminary reduction furnace 3, and a cooler 8 for cooling the exhaust gas is provided in the exhaust gas line 7 (in the exhaust gas (The exhaust gas is used for power generation and petrochemical purposes, as it still contains considerable combustible content.)

予備還元炉3にて鉄鉱石は予備還元され半還元
鉄が生成されるが、この半還元鉄をチヤーととも
に第1および第2の溶融還元炉1,2に導入する
ために、予備還元炉3底部と第1および第2溶融
還元炉1,2頂部との間には半還元鉄導入ライン
9,10がそれぞれ介設されている。半還元鉄導
入ライン9,10には、予備還元炉3で得られた
半還元鉄およびチヤーを第1と第2の溶融還元炉
1,2に交互に装入できる切換手段が設けられて
いる。第1および第2の溶融還元炉1,2には、
酸素吹込ランス11と、石炭供給シユート12
と、スチーム供給管13とがそれぞれ設けられて
いる。酸素吹込ランス11は炉内上方より酸素を
吹き込むためのもので、昇降自在に構成されてい
る。更に、溶融還元炉1,2底部には、スラグ排
出口14と溶鋼排出口15とがそれぞれ形成され
ている。
The iron ore is pre-reduced in the pre-reduction furnace 3 to produce semi-reduced iron. Semi-reduced iron introduction lines 9 and 10 are interposed between the bottom and the tops of the first and second smelting reduction furnaces 1 and 2, respectively. The semi-reduced iron introduction lines 9 and 10 are provided with switching means that can alternately charge the semi-reduced iron and char obtained in the preliminary reduction furnace 3 into the first and second smelting reduction furnaces 1 and 2. . The first and second melting reduction furnaces 1 and 2 include
Oxygen injection lance 11 and coal supply chute 12
and a steam supply pipe 13 are provided, respectively. The oxygen blowing lance 11 is for blowing oxygen into the furnace from above, and is configured to be able to move up and down. Furthermore, a slag discharge port 14 and a molten steel discharge port 15 are formed at the bottoms of the smelting reduction furnaces 1 and 2, respectively.

溶融還元炉1,2では酸素とチヤーおよび石炭
との燃焼により高温の還元ガスが生成され半還元
鉄は溶融還元されるが、溶融還元炉1,2で発生
したCO、H2等の還元ガス炉外に取り出すため
に、溶融還元炉1,2上部には、発生ガス導出ラ
イン16,17がそれぞれ取り付けられている。
発生ガス導出ライン16,17は発生ガス供給ラ
イン6に接続され、また発生ガス導出ライン1
6,17にはラインを開閉するための開閉弁等が
設けられている。発生ガス供給ライン6には、発
生ガス中のダスト取り除くための除塵器18が設
けられている。また発生ガス供給ライン6は還元
ガス供給ライン21の冷却ガスライン19に別れ
る。冷却ガスライン19は還元ガスの一部をバイ
パスさせて冷却し予備還元炉3に供給される還元
ガスの温度をコントロールするための温度コント
ロール用ラインである。冷却ガスライン19には
冷却器20が設けられている。
In the smelting reduction furnaces 1 and 2, high-temperature reducing gas is generated by combustion of oxygen, chir, and coal, and the semi-reduced iron is smelted and reduced. Generated gas derivation lines 16 and 17 are attached to the upper portions of the melting and reduction furnaces 1 and 2, respectively, in order to take the gas out of the furnace.
The generated gas derivation lines 16 and 17 are connected to the generated gas supply line 6, and the generated gas derivation line 1
6 and 17 are provided with on-off valves and the like for opening and closing the lines. The generated gas supply line 6 is provided with a dust remover 18 for removing dust from the generated gas. Further, the generated gas supply line 6 is separated into a cooling gas line 19 of a reducing gas supply line 21. The cooling gas line 19 is a temperature control line that bypasses and cools a part of the reducing gas and controls the temperature of the reducing gas supplied to the preliminary reduction furnace 3. A cooler 20 is provided in the cooling gas line 19.

鉄鉱石は予備還元炉3で予熱および固体状態で
の予備還元を受けて半還元鉄となり、半還元鉄は
溶融還元炉1,2で溶融還元されて銑鉄となり、
更に、脱炭処理により溶鋼が製造されるが、次に
この製造工程を説明する。
Iron ore is preheated and pre-reduced in a solid state in a pre-reduction furnace 3 to become semi-reduced iron, and the semi-reduced iron is melted and reduced in smelting reduction furnaces 1 and 2 to become pig iron.
Furthermore, molten steel is manufactured by decarburization treatment, and this manufacturing process will be explained next.

まず、予備還元炉3においては、鉄鉱石供給ホ
ツパ4と石炭供給ホツパ5とから予備還元炉3頂
部に粉状の鉄鉱石と石炭とがそれぞれ装入され、
一方、還元ガス供給ライン21より予備還元炉3
下部から高温の還元ガスが吹きこまれて予備還元
炉3には流動層が形成される。鉄鉱石は流動状態
にて高温の還元ガスにより加熱されると共に予備
還元されて、その金属化率が50〜90%の高温の半
還元鉄が生成される。予備還元炉3は流動層式な
ので、鉄鉱石の焼結防止のために、石炭供給ホツ
パ5から石炭を供給している。また、石炭は鉄鉱
石の還元促進材ともなつている。しかし、予備還
元炉としてシヤフト炉を用いる場合には石炭は必
要ない。この予備還元炉3では、予備還元されて
得られる半還元鉄の金属化率の制御は、還元ガス
の成分と温度、更には投入石炭量によつてコント
ロールされる。
First, in the preliminary reduction furnace 3, powdered iron ore and coal are charged to the top of the preliminary reduction furnace 3 from the iron ore supply hopper 4 and the coal supply hopper 5, respectively.
On the other hand, the preliminary reduction furnace 3 is connected to the reducing gas supply line 21.
A fluidized bed is formed in the preliminary reduction furnace 3 by blowing high-temperature reducing gas from the lower part. Iron ore is heated in a fluidized state with a high-temperature reducing gas and is pre-reduced to produce high-temperature semi-reduced iron with a metallization rate of 50 to 90%. Since the preliminary reduction furnace 3 is of a fluidized bed type, coal is supplied from a coal supply hopper 5 to prevent sintering of the iron ore. Coal also serves as a reduction accelerator for iron ore. However, if a shaft furnace is used as the preliminary reduction furnace, coal is not required. In this preliminary reduction furnace 3, the metallization rate of semi-reduced iron obtained by preliminary reduction is controlled by the components and temperature of the reducing gas, and further by the amount of coal input.

次いで、予備還元炉3で得られた半還元鉄をチ
ヤーとともに第1および第2の溶融還元炉1,2
のいずれか一方に装入する。第3図は、第1の溶
融還元炉1には半還元鉄が既に装入されており、
半還元鉄導入ライン10を通つて予備還元炉3か
ら第2の溶融還元炉2に半還元鉄が装入されてい
る状況を示す(第3図中、半還元鉄導入ライン
9,10と発生ガス導出ライン16,17の実線
と破線との区別は、バツチ操業におけるON、
OFFの状態をそれぞれ示すものである。)。
Next, the semi-reduced iron obtained in the preliminary reduction furnace 3 is transferred to the first and second smelting reduction furnaces 1 and 2 together with the char.
Charge either one of the two. FIG. 3 shows that semi-reduced iron has already been charged into the first smelting reduction furnace 1.
This shows a situation in which semi-reduced iron is charged from the preliminary reduction furnace 3 to the second smelting reduction furnace 2 through the semi-reduced iron introduction line 10 (in Fig. 3, the semi-reduced iron introduction lines 9, 10 and The distinction between the solid line and the broken line of the gas derivation lines 16 and 17 is the ON,
Each indicates the OFF state. ).

第1の溶融還元炉1に装入された高温の半還元
鉄は、酸素吹込ランス11からの酸素と石炭供給
シユート12から投入された石炭および半還元鉄
とともに装入されたチヤーとの燃焼により溶解さ
れ、半還元鉄は溶融状態にて高温の還元性の強い
燃焼ガスにもり溶融還元される。酸化鉄の溶融状
態での還元反応速度は固体状態での還元反応速度
に比較して著しく速く(約10倍〜約100倍といわ
れている)、半還元鉄は急速に還元され銑鉄が生
成される。スチーム供給管13からのスチーム供
給は、燃焼による炉内温度上昇を抑えこれを調整
するためである。銑鉄生成後、一時、酸素と石炭
の供給を停止し、溶融還元工程で生成されたスラ
グをスラグ排出口14から炉外に排出する。そし
てスラグ排出後、速やかに酸素吹込ランス11よ
り酸素を噴射して銑鉄の脱炭を行う。銑鉄中の炭
素が除去され、規定の炭素含有量にまで下がつた
時点で鋼としての溶鋼排出口15から出鋼する。
The high-temperature semi-reduced iron charged into the first smelting reduction furnace 1 is caused by combustion of oxygen from the oxygen injection lance 11 and the coal charged from the coal supply chute 12 and the coal charged together with the semi-reduced iron. The semi-reduced iron is melted and reduced in a molten state by high-temperature highly reducing combustion gas. The reduction reaction rate of iron oxide in the molten state is significantly faster (approximately 10 to 100 times faster) than the reduction reaction rate in the solid state, and semi-reduced iron is rapidly reduced to produce pig iron. Ru. The purpose of supplying steam from the steam supply pipe 13 is to suppress and adjust the temperature rise in the furnace due to combustion. After producing pig iron, the supply of oxygen and coal is temporarily stopped, and the slag produced in the melting and reduction process is discharged from the furnace through the slag discharge port 14. After the slag is discharged, oxygen is immediately injected from the oxygen injection lance 11 to decarburize the pig iron. When the carbon in the pig iron is removed and the carbon content has decreased to a specified level, the molten steel is tapped from the outlet 15 as steel.

一方、第2の溶融還元炉2では、第1の溶融還
元炉1の上記溶融還元およびスラグ排出工程中、
予備還元炉3からの半還元鉄の装入を行つてい
る。そして、第1の溶融還元炉1で脱炭処理のた
め吹錬を行う時点で第2の溶融還元炉2の溶融還
元を開始する。これは、還元ガス供給ライン21
から予備還元炉3に供給される還元ガスの成分、
温度、量等の変動を極力少なくするためである。
従つて、また、第2の溶融還元炉2が脱炭工程に
入つた時点で第1の溶融還元炉1の溶融還元処理
を始める。
On the other hand, in the second melting reduction furnace 2, during the melting reduction and slag discharge process of the first melting reduction furnace 1,
Semi-reduced iron from the preliminary reduction furnace 3 is being charged. Then, at the time when blowing is performed for decarburization in the first smelting reduction furnace 1, smelting reduction in the second smelting reduction furnace 2 is started. This is the reducing gas supply line 21
Components of the reducing gas supplied to the preliminary reduction furnace 3 from
This is to minimize fluctuations in temperature, amount, etc.
Therefore, when the second melting reduction furnace 2 enters the decarburization process, the melting reduction process in the first melting reduction furnace 1 is started.

このように、予備還元炉3から次々に切り出さ
れる半還元鉄を交互に溶融還元炉1,2に装入す
るようにしたため、従来の一基のみの溶融還元炉
のように炉内を常時、還元性の強い炭素リツチな
状態に維持する必要がなくなり、各溶融還元炉
1,2ごとに、溶融還元後の銑鉄に更に脱炭処理
を施すことができ溶融還元炉1,2から直接鋼を
製造することができる。また、直接に溶鋼が製造
できるため、転炉設備が不要となる。転炉設備は
現在約50万トン/年以上の生産を行わないと採算
が合わず、大規模製鉄所にしか適さないが、転炉
を省略できる本発明は、小規模な製鉄生産にも適
用できる。更に従来のような溶融還元炉から転炉
への銑鉄移送の問題でなくなるので、それら設備
や移送時の熱損失がなくなる。また、操業技術が
非常に難かしい転炉が不要となるので、その分操
業が容易となる。
In this way, the semi-reduced iron cut out one after another from the pre-reduction furnace 3 is alternately charged into the smelting reduction furnaces 1 and 2, so that the interior of the furnace is constantly operated, unlike a conventional smelting reduction furnace with only one unit. It is no longer necessary to maintain a highly reducing carbon-rich state, and the pig iron after smelting and reduction can be further decarburized in each smelting reduction furnace 1 and 2. can be manufactured. Additionally, since molten steel can be produced directly, converter equipment is not required. Currently, converter equipment is unprofitable unless the production capacity is approximately 500,000 tons/year or more, and is suitable only for large-scale steel plants. However, the present invention, which can omit the converter, can also be applied to small-scale steel production. can. Furthermore, since there is no longer a problem of transferring pig iron from a smelting reduction furnace to a converter as in the past, there is no heat loss during the equipment or transfer. In addition, since a converter, which is extremely difficult to operate, is not required, operation becomes easier.

更に、溶融還元炉に順次、適宜インターバルに
て半還元鉄を装入するようにしたため、溶融還元
炉間にガス発生に時間差が生ずるが、溶融還元炉
への半還元鉄装入から溶鋼の出鋼までの1サイク
ルの周期を一定にコントロールすることにより予
備還元炉への還元ガスの成分、温度、供給量等が
一定した安定な還元ガスを供給することができ
る。この点従来方式では、溶融還元初期と末期で
は発生ガスの成分等が異なるため、予備還元炉で
の鉄鉱石の還元にバラツキが生じてしまう。
Furthermore, since semi-reduced iron is charged sequentially into the smelting reduction furnace at appropriate intervals, there is a time difference in gas generation between the smelting reduction furnaces, but there is a difference in time between charging semi-reduced iron into the smelting reduction furnace and discharging molten steel. By controlling the period of one cycle until steel is constant, it is possible to supply stable reducing gas to the preliminary reduction furnace with constant components, temperature, supply amount, etc. of the reducing gas. In this regard, in the conventional method, since the components of the generated gas differ between the initial stage and the final stage of smelting reduction, variations occur in the reduction of iron ore in the preliminary reduction furnace.

また、溶融還元炉ごとに半還元鉄以外にクロム
鋼等の合金材料などを加えれば、各溶融還元炉で
種々の異なつた鋼種の生産が可能となる。なお、
上記実施例は、溶融還元炉が二期の場合であつた
が、三基以上設けても勿論よい。また、鉱石、石
炭にも特に制限はなく、従来操業可能なものであ
ればいずれのものを使用してもよい。
Furthermore, if an alloy material such as chromium steel is added to each smelting reduction furnace in addition to semi-reduced iron, each smelting reduction furnace can produce various types of steel. In addition,
In the above embodiment, there are two melting reduction furnaces, but it is of course possible to provide three or more melting reduction furnaces. Moreover, there is no particular restriction on ore or coal, and any one that can be conventionally operated may be used.

以上の説明より明らかな如く、本発明によれば
次のような優れた効果を発揮することができる。
As is clear from the above description, the present invention can exhibit the following excellent effects.

(1) 溶融還元炉はバツチ式であるが、予備還元炉
は連続操業であり、各溶融還元炉からは銑鉄で
はなく順次直接に溶鋼が得られ、全体としてほ
ぼ連続した溶鋼の生産を実現できる。
(1) The smelting reduction furnace is a batch type, but the pre-reduction furnace is a continuous operation, and molten steel is obtained directly from each smelting reduction furnace instead of pig iron, making it possible to achieve almost continuous production of molten steel as a whole. .

(2) 直接溶鋼を得ることができ、転炉設備を不要
とできる。従つて、設備コストの低減、小規模
製造が可能になると共に、銑鉄移送による熱ロ
スがなく、また操業の容易化が図れる。
(2) Molten steel can be obtained directly, eliminating the need for converter equipment. Therefore, equipment costs can be reduced, small-scale production is possible, there is no heat loss due to transfer of pig iron, and operation can be facilitated.

(3) 溶融還元工程にある溶融還元炉の排ガスを還
元ガスとして予備還元炉に供給すべく、複数の
溶融還元炉と1つの予備還元炉との間の還元ガ
スの供給ラインを溶融還元炉における半還元鉄
装入から溶鋼出鋼までのサイクルに応じて順次
切り換えているため、予備還元炉還元ガスの成
分・温度・供給量等を一定にコントロールする
ことが可能となり、予備還元炉での鉄鋼石の還
元率はバラツキが少なく均一なものとなる。
(3) In order to supply the exhaust gas from the smelting reduction furnace in the smelting reduction process to the preliminary reduction furnace as reducing gas, the reducing gas supply line between the multiple smelting reduction furnaces and one preliminary reduction furnace is connected to the smelting reduction furnace. Since the switching is performed sequentially according to the cycle from semi-reduced iron charging to molten steel tapping, it is possible to control the components, temperature, supply amount, etc. of the reducing gas in the pre-reducing furnace at a constant level. The reduction rate of stones becomes uniform with little variation.

(4) 各溶融還元炉を別々に操業できるため、各溶
融還元炉ごとに種々の異なつた鋼種の生産がで
き、小ロツト高級品化に対応できる。
(4) Since each smelting reduction furnace can be operated separately, each smelting reduction furnace can produce a variety of different steel types, making it possible to respond to small lots of high-grade products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の溶融還元法による溶鋼
製造を示す工程図、第3図は本発明方法を実施す
るための装置の系統図である。 図中1,2は溶融還元炉、3は予備還元炉、2
1は還元ガス供給ライン、9,10は半還元鉄導
入ライン、11は酸素吹込ランス、12は石炭供
給シユート、15は溶鋼排出口、16,17は発
生ガス導出ラインである。
1 and 2 are process diagrams showing the production of molten steel by the conventional smelting reduction method, and FIG. 3 is a system diagram of an apparatus for carrying out the method of the present invention. In the figure, 1 and 2 are smelting reduction furnaces, 3 is a preliminary reduction furnace, and 2
1 is a reducing gas supply line, 9 and 10 are semi-reduced iron introduction lines, 11 is an oxygen blowing lance, 12 is a coal supply chute, 15 is a molten steel outlet, and 16 and 17 are generated gas outlet lines.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄鉱石を予備還元炉で還元して半還元鉄を連
続して生成し、該半還元鉄を複数の溶融還元炉に
半還元鉄装入から溶鋼出鋼までのサイクルに応じ
て順次切り換えて装入し、半還元鉄が装入された
溶融還元炉内で炭素を含む高温還元雰囲気下にて
上記半還元鉄を溶融還元した後、同一炉内で引続
き脱炭して溶鋼を製造すると共に、溶融還元工程
にある溶融還元炉の排ガスを予備還元炉還元ガス
として成分・温度・供給量等を調整して供給すべ
く、複数の溶融還元炉と予備還元炉との間の還元
ガスの供給ラインを溶融還元炉における半還元鉄
装入から溶鋼出鋼までのサイクルに応じて順次切
り換えるようにしたことを特徴とする溶融還元を
利用した溶鋼製造法。
1. Semi-reduced iron is continuously produced by reducing iron ore in a preliminary reduction furnace, and the semi-reduced iron is sequentially switched to a plurality of smelting reduction furnaces according to the cycle from charging semi-reduced iron to tapping molten steel. After the semi-reduced iron is melted and reduced in a high-temperature reducing atmosphere containing carbon in a smelting reduction furnace into which semi-reduced iron is charged, the semi-reduced iron is subsequently decarburized in the same furnace to produce molten steel. In order to supply the exhaust gas from the smelting reduction furnace in the smelting reduction process as the pre-reduction furnace reducing gas by adjusting the composition, temperature, supply amount, etc., reducing gas is supplied between multiple smelting reduction furnaces and the pre-reduction furnace. A method for producing molten steel using smelting reduction, characterized in that the line is sequentially switched according to the cycle from charging semi-reduced iron to tapping molten steel in a smelting reduction furnace.
JP21463782A 1982-12-09 1982-12-09 Production of molten steel utilizing melt reduction Granted JPS59107013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21463782A JPS59107013A (en) 1982-12-09 1982-12-09 Production of molten steel utilizing melt reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21463782A JPS59107013A (en) 1982-12-09 1982-12-09 Production of molten steel utilizing melt reduction

Publications (2)

Publication Number Publication Date
JPS59107013A JPS59107013A (en) 1984-06-21
JPH036202B2 true JPH036202B2 (en) 1991-01-29

Family

ID=16659040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21463782A Granted JPS59107013A (en) 1982-12-09 1982-12-09 Production of molten steel utilizing melt reduction

Country Status (1)

Country Link
JP (1) JPS59107013A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150318A (en) * 1976-06-10 1977-12-14 Nippon Steel Corp Production of molten iron by reduction of iron oxide
JPS53142313A (en) * 1977-05-18 1978-12-12 Kawasaki Steel Co Method of making molten reduced iron
JPS5785911A (en) * 1980-11-18 1982-05-28 Ishikawajima Harima Heavy Ind Co Ltd Direct reduction and melting method for iron oxide
JPS57120607A (en) * 1980-09-12 1982-07-27 Korf Stahl Method and apparatus for directly obtaining molten metal from crude iron ore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150318A (en) * 1976-06-10 1977-12-14 Nippon Steel Corp Production of molten iron by reduction of iron oxide
JPS53142313A (en) * 1977-05-18 1978-12-12 Kawasaki Steel Co Method of making molten reduced iron
JPS57120607A (en) * 1980-09-12 1982-07-27 Korf Stahl Method and apparatus for directly obtaining molten metal from crude iron ore
JPS5785911A (en) * 1980-11-18 1982-05-28 Ishikawajima Harima Heavy Ind Co Ltd Direct reduction and melting method for iron oxide

Also Published As

Publication number Publication date
JPS59107013A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
CA2236587C (en) Duplex procedure for the production of metals and metal alloys from oxidic metal ores
US5185032A (en) Process for fluidized bed direct steelmaking
JPH10195513A (en) Production of metallic iron
JP2001500243A (en) Plants and processes for the production of metal melts
EP0074270B1 (en) Process and apparatus for continuous steel-making
KR940008926B1 (en) Mill arrangement and a process of operating the same using off gases to refine pig iron
US5258054A (en) Method for continuously producing steel or semi-steel
KR100769794B1 (en) Process and plant for producing pig iron or liquid primary steel products in a blast furnace
US1939874A (en) Method for the production of steel
US3615351A (en) Direct gaseous reduction of iron oxide
JPH036202B2 (en)
JPH04107206A (en) Production process of chromium-incorporated molten steel
CN103392013B (en) Manufacture molten iron and the method and apparatus of steel
JPS6036613A (en) Production of raw molten nickel-containing stainless steel
JP2600733B2 (en) Smelting reduction method
JPH03130314A (en) Production of iron by smelting reduction method
JP4149531B2 (en) Metallic iron manufacturing method and manufacturing equipment
JPH01129914A (en) Smelting reduction and refining method
US3887360A (en) Methods and furnaces for steel manufacture by direct reduction and melting of iron ore
RU2319749C2 (en) Method of the direct production of iron, in particular steels, and installation for its implementation
JPS6056401B2 (en) Reactor - equipment for iron making
JPH07252545A (en) Method for melting metallic scrap and apparatus therefor
JPS60103109A (en) Method for operating electric furnace
JPS61272346A (en) Melting-reducing refining method for high manganese ferrous alloy
JPS602613A (en) Smelting method of ferrous alloy by melt reduction