JPH0361923B2 - - Google Patents

Info

Publication number
JPH0361923B2
JPH0361923B2 JP57044688A JP4468882A JPH0361923B2 JP H0361923 B2 JPH0361923 B2 JP H0361923B2 JP 57044688 A JP57044688 A JP 57044688A JP 4468882 A JP4468882 A JP 4468882A JP H0361923 B2 JPH0361923 B2 JP H0361923B2
Authority
JP
Japan
Prior art keywords
light
receiving element
optical transmission
optical switch
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57044688A
Other languages
Japanese (ja)
Other versions
JPS58162905A (en
Inventor
Tooru Tejima
Yasunari Kishi
Yoshinori Uchama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP57044688A priority Critical patent/JPS58162905A/en
Publication of JPS58162905A publication Critical patent/JPS58162905A/en
Publication of JPH0361923B2 publication Critical patent/JPH0361923B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3536Optical coupling means having switching means involving evanescent coupling variation, e.g. by a moving element such as a membrane which changes the effective refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • G02B6/35521x1 switch, e.g. on/off switch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/3574Mechanical force, e.g. pressure variations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3594Characterised by additional functional means, e.g. means for variably attenuating or branching or means for switching differently polarized beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3596With planar waveguide arrangement, i.e. in a substrate, regardless if actuating mechanism is outside the substrate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 この発明は、光学伝送路の途上に設けた湾曲部
に該光学伝送路を通る光を選択的に吸収する手段
を設けることにより、上記光の強さを変化させて
スイツチ動作を行なわせるようにしたオプテイカ
ル・スイツチに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention changes the intensity of the light by providing means for selectively absorbing the light passing through the optical transmission line in a curved part provided in the middle of the optical transmission line. This invention relates to an optical switch that performs a switching operation.

光学伝送路を通過する光を該光学伝送の途中で
吸収あるいは減衰させることにより受光端におい
てオン・オフのスイツチ信号を得る、いわゆるオ
プテイカル・スイツチが提案されている。
A so-called optical switch has been proposed in which an on/off switch signal is obtained at a light receiving end by absorbing or attenuating light passing through an optical transmission path during the optical transmission.

この種のオプテイカル・スイツチはオン・オフ
の動作が光の量により行なわれるため、機械的あ
るいは電気的なオン・オフ動作における電気的雑
音あるいは電気的耐圧、スパークその他の問題が
生ぜず、また構造が簡単で小型化、薄型化が容易
であるという利点がある。
Since this type of optical switch is turned on and off by the amount of light, it does not cause electrical noise, electrical breakdown voltage, sparks, or other problems during mechanical or electrical on/off operation, and it also has a structural It has the advantage of being simple and easy to reduce in size and thickness.

従来のオプテイカル・スイツチの一例を第1図
により説明する。第1図に示したオプテイカル・
スイツチは、基板1に高屈折率透明材料から成る
コア2にクラツド3を被覆したオプテイカル・フ
アイバーを埋設し、このオプテイカル・フアイバ
ーの一部のクラツド3を除去すると共にこの部分
を図のごとく湾曲させて基板1の表面に露出せし
め、この露出部分に対して湾曲面と直角に外部よ
り光吸収体7を押圧により密着できるように設け
て構成される。
An example of a conventional optical switch will be explained with reference to FIG. The optical system shown in Figure 1
The switch is constructed by embedding an optical fiber in which a core 2 made of a transparent material with a high refractive index is coated with a cladding 3 in a substrate 1, removing a part of the cladding 3 of the optical fiber, and bending this part as shown in the figure. The light absorber 7 is exposed on the surface of the substrate 1, and the light absorber 7 is provided on the exposed portion at right angles to the curved surface so that it can be pressed into close contact with the exposed portion from the outside.

このように構成したオプテイカル・スイツチ
は、光吸収体7を押圧してオプテイカル・フアイ
バーのコア露出部に密着させることで一端から入
射する光をその途上において吸収又は減衰せしめ
て、他端より射出する。射出した光は適当な受光
手段で受光し、電気信号に変換して後段の電子回
路にスイツチ信号として供給するようにしてい
る。
The optical switch configured in this manner absorbs or attenuates the light incident from one end on the way by pressing the light absorber 7 to bring it into close contact with the exposed core of the optical fiber, and then emits the light from the other end. . The emitted light is received by a suitable light receiving means, converted into an electrical signal, and supplied to a subsequent electronic circuit as a switch signal.

上記した従来のオプテイカル・スイツチは、オ
プテイカル・フアイバーの湾曲部に光吸収体を湾
曲面と直角に押圧する際に、該湾曲部が機械的圧
力を受けるために耐久性が悪く、また、オプテイ
カル・フアイバーを基板に埋設するなどの構造上
の複雑さを有するため、製造工程が複雑となり、
外光の混入を避けるためにクラツド材の外側に更
に黒色のシースを設ける必要がある、などの欠点
があつた。
The conventional optical switch described above has poor durability because the curved part of the optical fiber is subjected to mechanical pressure when the light absorber is pressed against the curved part at right angles to the curved surface. The manufacturing process is complicated due to the structural complexity such as embedding the fiber in the substrate.
There were drawbacks such as the need to further provide a black sheath on the outside of the clad material to prevent outside light from entering.

この発明の目的は、上記した従来技術の欠点を
解決し耐久性が良く、大量生産に適したオプテイ
カル・スイツチを提供するにある。
An object of the present invention is to provide an optical switch which solves the above-mentioned drawbacks of the prior art, has good durability, and is suitable for mass production.

以下、第2図ないし第10図により、この発明
の詳細を説明する。
The details of this invention will be explained below with reference to FIGS. 2 to 10.

第2図は、この発明によるオプテイカル・スイ
ツチの一実施例を示す斜視図で、1は樹脂又は金
属から成る基板、20は基板1に形成したV字形
溝で、この溝内面には高反射率材料を蒸着などに
より被着して光の損失を少なくしてよい。溝20
の内部には高屈折率透明樹脂等のコア材2が蒸着
などにより充てんされる。また3は溝20の湾曲
部21の平面上に形成されたクラツド材で、低屈
折率透明樹脂等の被膜(平面層)となつている。
4は溝20の湾曲部21以外の直線部20′の平
面上に形成された高反射膜で、金属蒸着膜あるい
はアルミテープ等の光反射膜として設けられてい
る。
FIG. 2 is a perspective view showing an embodiment of the optical switch according to the present invention, in which 1 is a substrate made of resin or metal, 20 is a V-shaped groove formed in the substrate 1, and the inner surface of this groove has a high reflectance. Materials may be deposited, such as by vapor deposition, to reduce light loss. Groove 20
The inside of the core material 2 is filled with a core material 2 such as a high refractive index transparent resin by vapor deposition or the like. Reference numeral 3 denotes a cladding material formed on the plane of the curved portion 21 of the groove 20, which is a coating (flat layer) of a low refractive index transparent resin or the like.
Reference numeral 4 denotes a highly reflective film formed on the plane of the straight portion 20' of the groove 20 other than the curved portion 21, and is provided as a light reflective film such as a metal vapor deposition film or aluminum tape.

また、5は可視光又は赤外光を発光するLED、
半導体レーザー、あるいは電球等の発光素子、6
はフオトトランジスタ、その他の受光素子であ
る。発光素子5からの光は溝20のコア材に導入
され、溝の直線部20′、湾曲部21、直線部2
0′を通つて受光素子6に入射される。すなわち、
発光素子5から溝20に導入された光は、溝20
の斜面及び上面の高反射膜で反射をくり返し、又
はコア材2中を直進して、湾曲部21、直線部2
0′を通つて受光素子6に入射する。
In addition, 5 is an LED that emits visible light or infrared light;
Light-emitting elements such as semiconductor lasers or light bulbs, 6
is a phototransistor or other light receiving element. Light from the light emitting element 5 is introduced into the core material of the groove 20, and the light is introduced into the core material of the groove 20.
0' and enters the light receiving element 6. That is,
The light introduced from the light emitting element 5 into the groove 20
The curved part 21 and the straight part 2 are repeatedly reflected by the high reflection film on the slope and the upper surface of the core material 2, or go straight through the core material 2.
0' and enters the light receiving element 6.

第3図は第2図の湾曲部21の拡大断面図で、
湾曲部21のクラツド材3には、光吸収体7を湾
曲部21と平行な位置においてクラツド材3に選
択的に平面的に密着されるように設け、この光吸
収体7をクラツド材3に対して湾曲面と並行に押
圧して密着させることにより、湾曲部を通過する
発光素子5からの光を吸収できるようにしてい
る。第3図aは、支持体8に取り付けた光吸収体
7をクラツド材3から離間させた状態を示し、こ
の場合は湾曲部を通過する光はそのまま受光素子
6に到達する。第3図bは光吸収体7を指により
押下げてクラツド材3に密着させた状態を示し、
この場合は、湾曲部から光が吸収され、発光素子
6に到達する光は減少する。
FIG. 3 is an enlarged sectional view of the curved portion 21 in FIG.
A light absorber 7 is provided on the cladding material 3 of the curved portion 21 so as to be selectively brought into close contact with the cladding material 3 in a planar manner at a position parallel to the curved portion 21. On the other hand, by pressing parallel to the curved surface and bringing it into close contact, light from the light emitting element 5 passing through the curved portion can be absorbed. FIG. 3a shows a state in which the light absorber 7 attached to the support 8 is separated from the cladding material 3; in this case, the light passing through the curved portion reaches the light receiving element 6 as is. FIG. 3b shows a state in which the light absorber 7 is pressed down with a finger and brought into close contact with the cladding material 3.
In this case, light is absorbed from the curved portion, and the amount of light reaching the light emitting element 6 is reduced.

第4図は、第3図で説明した動作の原理を説明
する図で、図中n0,n1,n2は、それぞれ、大気、
クラツド材3、コア材2の屈折率を示し、n2>n1
>n0である。同図aは光吸収体7をクラツド材3
から離間させている状態を示し、この場合、上記
のようにn1>n0であるのでコア材2からの光は図
中矢印のごとく、クラツド材3と大気との境界で
反射されて再びコア材2に戻り、湾曲部21での
光の吸収は生じない。ところが、同図bに示すよ
うに、光吸収体7をクラツド材3に密着させる
と、クラツド材に入つた光のほとんどは反射され
ずに光吸収体7に吸収されるので、受光素子6に
到達する光は減少する。
FIG. 4 is a diagram explaining the principle of operation explained in FIG. 3, where n 0 , n 1 , and n 2 are the atmosphere,
Indicates the refractive index of cladding material 3 and core material 2, n 2 > n 1
>n 0 . Figure a shows the light absorber 7 and the cladding material 3.
In this case, as mentioned above, since n 1 > n 0 , the light from the core material 2 is reflected at the boundary between the cladding material 3 and the atmosphere, as shown by the arrow in the figure, and is reflected again. Returning to the core material 2, no light absorption occurs at the curved portion 21. However, as shown in Figure b, when the light absorber 7 is brought into close contact with the cladding material 3, most of the light that enters the cladding material is absorbed by the light absorber 7 without being reflected. The amount of light that reaches it decreases.

第5図は、上記動作をさらに詳細に示したもの
で、光学伝送路中では、光は角度θ3で示すように
コア材2とクラツド材3の間の全反射角内の角度
以下で伝送されるものと、角度θ2と角度θ3の間の
クラツド材の通つて再びコア材に戻る角度で伝送
されるものとにより伝送される。なお、大気とク
ラツド材との境界を通して大気に出る角度θ1以上
の光はほとんど無視できる。したがつて、上記θ2
とθ3の間でクラツド材に入つて再びコア材に戻る
光を、光吸収体7をクラツド材3に密着させるこ
とで取り除くことができる。
Figure 5 shows the above operation in more detail. In the optical transmission path, light is transmitted at an angle less than or equal to the total reflection angle between the core material 2 and the cladding material 3, as shown by angle θ 3 . and that which is transmitted at an angle between angle θ 2 and angle θ 3 through the cladding material and back to the core material. Note that light at an angle of θ 1 or more that exits to the atmosphere through the boundary between the atmosphere and the cladding material can be almost ignored. Therefore, the above θ 2
The light that enters the cladding material between and θ 3 and returns to the core material can be removed by bringing the light absorber 7 into close contact with the cladding material 3.

また、光学伝送路は湾曲させることでコア材内
の全反射角とクラツド材での全反射角が変化する
ので、第6図に示したように、光学伝送路をS字
に曲げ、各曲げ半径r1,r2及び遷移部の長さdを
適当に選び、光がコア材を出て、クラツド材と大
気との境界面での全反射する量を多くすれば、こ
のS字部に前記と同様の光吸収体を密着させて光
吸収量を大きくしてスイツチ性能を大きくするこ
とができる。
In addition, by bending the optical transmission line, the total reflection angle in the core material and the total reflection angle in the cladding material change, so as shown in Figure 6, the optical transmission line is bent into an S shape, and each bend If the radii r 1 and r 2 and the length d of the transition part are appropriately selected to increase the amount of light that exits the core material and is totally reflected at the interface between the cladding material and the atmosphere, this S-shaped part By bringing a light absorber similar to the above into close contact with each other, the amount of light absorption can be increased and the switching performance can be increased.

第7図は溝を湾曲させてスイツチ性能を大きく
する場合の実施例を示したもので、オプテイカ
ル・スイツチの構造、配置に応じた三つのタイプ
を示している。同図aは直進タイプ、bはUター
ンタイプ、cは直角タイプの種々の実施態様を示
す。これら三種のタイプを適当に組合わせること
によつて、一枚の基板上に複数個のオプテイカ
ル・スイツチをその湾曲部が交叉することなく構
成できる。
FIG. 7 shows an embodiment in which the switch performance is increased by curving the groove, and shows three types depending on the structure and arrangement of the optical switch. In the figure, a shows various embodiments of a straight type, b shows a U-turn type, and c shows a right angle type. By appropriately combining these three types, a plurality of optical switches can be constructed on one substrate without their curved portions intersecting.

なお、上記したコア材2としては、アクリル系
プラスチツク、クラツド材3はポリエチレン系プ
ラスチツク、光吸収体7は黒色軟質ゴムなどが適
当であるが、これに限定されないことは明らかで
ある。
It should be noted that the above core material 2 is suitably made of acrylic plastic, the cladding material 3 is suitably made of polyethylene plastic, and the light absorber 7 is suitably made of black soft rubber, but it is clear that the present invention is not limited thereto.

第8図は、前記したコア材の充てんする溝20
すなわち光学伝送路を構成する溝の種々の形状で
あり同図AのV字溝以外に、U字溝b、台形溝
c、あるいは半円型溝dのように実施できる。な
お、光吸収体との接触面積を大きくするためには
eに示したような扇溝型とすることが考えられ
る。
FIG. 8 shows the groove 20 filled with the core material described above.
That is, the grooves constituting the optical transmission line can have various shapes, such as a U-shaped groove b, a trapezoidal groove c, or a semicircular groove d, in addition to the V-shaped groove shown in FIG. Note that in order to increase the contact area with the light absorber, it is possible to use a fan-groove shape as shown in e.

第9図は、この発明によるオプテイカル・スイ
ツチとその発光素子及び受光素子を離間して配置
する場合の構造の一例を示すもので、基板1に従
来のオプテイカル・フアイバー9,10を結合す
るための溝22を形成したものである。
FIG. 9 shows an example of a structure in which an optical switch according to the present invention and its light emitting element and light receiving element are arranged apart from each other. A groove 22 is formed therein.

第10図は、この発明のオプテイカル・スイツ
チを用いたスイツチ系の構成例であり、発光素子
5からの光をこの発明のオプテイカル・スイツチ
を通して、受光素子6に入力させ、受光素子の出
力を前置増幅器11で増幅した後、反転増幅器あ
るいは電力増幅器12で所要動作レベルとしてス
イツチ出力を得るものである。
FIG. 10 shows an example of the configuration of a switch system using the optical switch of the present invention, in which light from the light emitting element 5 is input to the light receiving element 6 through the optical switch of the present invention, and the output of the light receiving element is forward. After being amplified by a stationary amplifier 11, an inverting amplifier or power amplifier 12 obtains a switch output as a required operating level.

以上説明したように、この発明のオプテイカ
ル・スイツチは、光学伝送路の途中に形成した湾
曲部と並行に光吸収手段を設け、この光吸収手段
を光学伝送路に対して選択的に密着させることに
よつて、オン・オフ信号を得るようにしたので、
前記従来例のような欠点がなく、耐久性の大きい
オプテイカル・スイツチを得ることができ、産業
用のリミツトスイツチ、防爆型スイツチ、あるい
は電子機用の薄型、小型スイツチとしてきわめて
有用である。
As explained above, the optical switch of the present invention provides a light absorption means in parallel with the curved part formed in the middle of the optical transmission line, and selectively brings the light absorption means into close contact with the optical transmission line. Since the on/off signal is obtained by
It is possible to obtain a highly durable optical switch without the disadvantages of the conventional example, and it is extremely useful as an industrial limit switch, an explosion-proof switch, or a thin and compact switch for electronic equipment.

また、この発明のオプテイカル・スイツチは、
樹脂成型、蒸着など汎用の工程により製造できる
ので、製造工程が簡単であり、大量生産が容易で
ある。
Moreover, the optical switch of this invention is
Since it can be manufactured using general-purpose processes such as resin molding and vapor deposition, the manufacturing process is simple and mass production is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のオプテイカル・スイツチの説明
図、第2図はこの発明によるオプテイカル・スイ
ツチの構造図、第3図、第4図、第5図及び第6
図は、この発明の動作説明図、第7図は湾曲部及
び光伝送方向のタイプを説明する図、第8図は第
2図における溝型の種類を説明する図、第9図は
他の実施例、第10図はこの発明によるオプテイ
カル・スイツチ系の説明図である。 1……基板、2……コア材、3……クラツド
材、4……高反射膜、5……発光素子、6……受
光素子、7……光吸収体、9,10……オプテイ
カル・フアイバー、20……溝、21……湾曲
部。
Fig. 1 is an explanatory diagram of a conventional optical switch, Fig. 2 is a structural diagram of an optical switch according to the present invention, Figs. 3, 4, 5, and 6.
The figures are diagrams explaining the operation of the present invention, Figure 7 is a diagram explaining the types of curved portions and light transmission directions, Figure 8 is a diagram explaining the types of groove type in Figure 2, and Figure 9 is a diagram explaining the types of the groove type in Figure 2. Embodiment FIG. 10 is an explanatory diagram of an optical switch system according to the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Core material, 3... Clad material, 4... High reflection film, 5... Light emitting element, 6... Light receiving element, 7... Light absorber, 9, 10... Optical. Fiber, 20...groove, 21...curved portion.

Claims (1)

【特許請求の範囲】[Claims] 1 発光素子と受光素子とを光学伝送路により結
合し、この光学伝送路の一部に、伝送される光を
選択的に吸収する手段を設けることによつて受光
素子に到達する光の強さを変化させてスイツチ動
作を行なわせるようにしたオプテイカル・スイツ
チにおいて、上記光学伝送路は平面板に形成した
一部が湾曲した溝と、この溝内部に蒸着などによ
り充てんした高屈折率透明材料と、上記湾曲部以
外の上記溝を含む平面上に形成された光反射膜
と、上記湾曲部の上記溝を含む平面上に形成され
た低屈折率透明材料の平面層とから成り、上記光
を吸収する手段は、上記溝の湾曲部と平行な位置
において上記低屈折率透明材料の平面層に選択的
に平面的に密着されるように配置された光吸収材
料から成り、上記光吸収手段を上記低屈折率透明
材料の平面層に密着させることにより、上記光学
伝送路を通る光を吸収して上記受光素子に到達す
る光の強さを変化させてスイツチ動作を行なわせ
ることを特徴とするオプテイカル・スイツチ。
1. The intensity of light reaching the light receiving element can be increased by coupling the light emitting element and the light receiving element through an optical transmission line and providing a means for selectively absorbing the transmitted light in a part of this optical transmission line. In an optical switch that performs a switching operation by changing the angle of , a light reflecting film formed on a plane including the grooves other than the curved part, and a plane layer of a low refractive index transparent material formed on the plane including the grooves in the curved part, The absorbing means comprises a light absorbing material disposed so as to be selectively brought into close contact with the flat layer of the low refractive index transparent material in a plane parallel to the curved portion of the groove; By closely contacting the planar layer of the low refractive index transparent material, the light passing through the optical transmission path is absorbed and the intensity of the light reaching the light receiving element is changed to perform a switching operation. Optical switch.
JP57044688A 1982-03-23 1982-03-23 Optical switch Granted JPS58162905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57044688A JPS58162905A (en) 1982-03-23 1982-03-23 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044688A JPS58162905A (en) 1982-03-23 1982-03-23 Optical switch

Publications (2)

Publication Number Publication Date
JPS58162905A JPS58162905A (en) 1983-09-27
JPH0361923B2 true JPH0361923B2 (en) 1991-09-24

Family

ID=12698361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044688A Granted JPS58162905A (en) 1982-03-23 1982-03-23 Optical switch

Country Status (1)

Country Link
JP (1) JPS58162905A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2003778A6 (en) * 1987-01-23 1988-11-16 Jaeger Iberica Device designed to interrupt or to attenuate a light signal which is propagating in an optical guide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116531A (en) * 1977-04-01 1978-09-26 International Standard Electric Corporation Fiber optic switch arrangement
JPS5559402A (en) * 1978-10-30 1980-05-02 Kokusai Denshin Denwa Co Ltd <Kdd> Photo switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116531A (en) * 1977-04-01 1978-09-26 International Standard Electric Corporation Fiber optic switch arrangement
JPS5559402A (en) * 1978-10-30 1980-05-02 Kokusai Denshin Denwa Co Ltd <Kdd> Photo switch

Also Published As

Publication number Publication date
JPS58162905A (en) 1983-09-27

Similar Documents

Publication Publication Date Title
US5631994A (en) Structured surface light extraction overlay and illumination system
US6957006B2 (en) Optical element and optical device using the same
JPS58119108A (en) Decoration lamp
CA2597009A1 (en) Waveguide design incorporating reflective optics
JP2000047071A (en) Optical signal transmission and reception module, optical signal transmission and reception repeater and optical signal transmission and reception system using them
JPH11134918A (en) Linear lighting system
JP2985791B2 (en) Coupling structure of optical waveguide and light receiving element
CA2467400C (en) Focusing fiber optic
TWI509300B (en) Optical coupling module and method of making the same
JPH0361923B2 (en)
EP0132874B1 (en) Geodesic optical component
JPS6296606U (en)
JP2668615B2 (en) Optical reflective element
JPH01183605A (en) Photodetecting device
JPS6138631B2 (en)
FR2527793A1 (en) OPTICAL SWITCH
JPS63240082A (en) Photo-interrupter
JPH02240607A (en) Light incident/exit structure of light guide
JP2521349B2 (en) Infrared receiver coupling
JPH01234805A (en) Method of fixing fiber to fiber bender and optical tapping device
JPS55105209A (en) Variable type optical directional coupler
JPS55101906A (en) Optical plane circuit
JPS58184101A (en) Optical signal transmitter
JPH0688922A (en) Optical coupler
JPH04130405A (en) Connecting device between optical guide and optical fiber