JPH0361856A - Batch-continuous type automatic measuring method for ammonia - Google Patents

Batch-continuous type automatic measuring method for ammonia

Info

Publication number
JPH0361856A
JPH0361856A JP1197830A JP19783089A JPH0361856A JP H0361856 A JPH0361856 A JP H0361856A JP 1197830 A JP1197830 A JP 1197830A JP 19783089 A JP19783089 A JP 19783089A JP H0361856 A JPH0361856 A JP H0361856A
Authority
JP
Japan
Prior art keywords
ammonia
output
sample water
sample
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1197830A
Other languages
Japanese (ja)
Other versions
JPH087183B2 (en
Inventor
Yusuke Nakamura
裕介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1197830A priority Critical patent/JPH087183B2/en
Publication of JPH0361856A publication Critical patent/JPH0361856A/en
Publication of JPH087183B2 publication Critical patent/JPH087183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To make it possible to perform stable measurement for a long period by injecting and agitating standard additive liquids at first and second times, thereafter maintaining the stabilized outputs of an ammonia gas electrode, performing operation, and obtaining the concentration of nitrogen having ammonia property in sample water. CONSTITUTION:Sample water is introduced into a measuring cell 4 from a water sampling tank 13 with a water sampling pump 7. A pinch valve 10 is closed, and a pinch valve 11 is opened. Then, the sample water in the measuring cell 4 overflows, and the quantity is determined. At this time, the first injection of standard additive liquid is performed from a standard additive liquid tank 15. Then, alkali agent is injected into the cell 4 from an alkali tank 1 by actuating an alkali pump 8. Thus pH is set at 11 or more. Liquid to be measured is agitated. When the output of an ammonia electrode 3 is stabilized, the output is maintained at a sample and hold element 22 in an operator 20 through a converter 2. Then, the second injection of the standard additive liquid is performed. When the output of the electrode 3 is stabilized, the output is maintained in a sample hold element 23 in the operator 20. Operation is performed based on the second output in the operator 20, and the measured value is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、水中のアンモニア性窒素(N口、−N)21
度をオンラインで測定する水中アンモニアの分析方法に
係り、特にメンテナンスが容易で、長期に亘り安定した
測定が可能であると共に、アンモニア性窒素の低S度測
定にも適用し得るバッチ連続式自動アンモニア測定方法
に関する。
Detailed description of the invention (Industrial field of application)
This is a batch continuous automatic ammonia analysis method that measures the concentration of ammonia online, and is particularly easy to maintain and enables stable measurement over a long period of time. Regarding measurement methods.

(従来の技術) 生物学的脱窒プロセスで(、t1プロセスを監視するた
めに処理水中のN口。−Nの濃度を測定する必要がある
。一方、浄水場では原水の汚染の指標としてN口3−N
の重要性が知られている。このようにN口。−N濃度の
測定、特にオンラインで長期に亘り、自動分析が可能な
装置に対する必要性が各方面で指摘されている。
(Prior art) In the biological denitrification process, it is necessary to measure the concentration of N in the treated water to monitor the t1 process.On the other hand, in water treatment plants, N is used as an indicator of contamination of raw water. Mouth 3-N
is known to be important. Like this, N mouth. It has been pointed out in various fields that there is a need for an apparatus capable of measuring -N concentration, especially on-line, automatic analysis over a long period of time.

このような要求を満すために本願出願人により水中アン
モニアの分析方法が提案されている(特開昭63−16
5751号公報参照)。
In order to meet these requirements, the applicant has proposed a method for analyzing ammonia in water (Japanese Patent Application Laid-Open No. 63-16
(See Publication No. 5751).

第3図は上述の出願に係る分析方法の概略構成図を示す
。図において実線は物質の流れを、破線は信号の流れを
それぞれ表わす。試料水は採水ポンプP1により汲み上
げられ、分析装置ロッカ外に設置された採水M113に
導入される。ロッカ内へは少量の試料水が導入され、ピ
ンチ弁VLチユーブボンプP3を経て測定セル4に入る
。この過程において、N口、CI標準液およびアルカリ
剤(NapH)を試料水中に混入する。このN。
FIG. 3 shows a schematic diagram of the analytical method according to the above-mentioned application. In the figure, solid lines represent the flow of material, and dashed lines represent the flow of signals. Sample water is pumped up by a water sampling pump P1 and introduced into a water sampling M113 installed outside the analyzer locker. A small amount of sample water is introduced into the locker and enters the measurement cell 4 through the pinch valve VL tube pump P3. In this process, N port, CI standard solution and alkaline agent (NapH) are mixed into the sample water. This N.

OHはアルカリタンク14から定量ポンプP4によりチ
ューブポンプP3の吐出側の試料水流路に注入される。
OH is injected from the alkali tank 14 into the sample water channel on the discharge side of the tube pump P3 by the metering pump P4.

注入流量は被測定液のpl+が11以上になるように定
められ、この関係は第(1)式で表される。
The injection flow rate is determined so that pl+ of the liquid to be measured is 11 or more, and this relationship is expressed by equation (1).

N トI4    +OH37,==N  ト1+ 口
、 O・・・ (1)この第(1)式は、DH>11以
上では、はぼ完全に左側に移動する。すなわち、NH3
−Nは溶存N113ガスとして存在つることになる。
N tI4 +OH37, ==N t1+ 口, O... (1) This equation (1) shows that when DH>11 or more, the axis moves almost completely to the left. That is, NH3
-N exists as dissolved N113 gas.

このようにして、試料水とアルカリ剤とを混入してなる
被測定液が測定セル4に連続的に導入される。一方、標
準液混入機構Aでは、標準液が標準液タンク15からピ
ンチベン■2を通って、チューブポンプP3の吸引流路
に入る。また、被測定液は、測定セル4内に導入され緩
速度で攪拌され流出する。
In this way, the liquid to be measured containing the sample water and the alkaline agent is continuously introduced into the measurement cell 4. On the other hand, in the standard solution mixing mechanism A, the standard solution passes from the standard solution tank 15 through the pinch ben 2 and enters the suction channel of the tube pump P3. Further, the liquid to be measured is introduced into the measurement cell 4, stirred at a slow speed, and then flows out.

この測定セル4の内部には、液温留部の液面とアルカリ
ガス電極3の測定面との間に、図示されていない気相部
が形成され、測定セル4に被測定液を流通でると、気相
部のN83  NPJ度×6は、被測定液中のNH3−
Nm度×Lと平衡状態を保つ。
Inside this measurement cell 4, a gas phase region (not shown) is formed between the liquid level of the liquid temperature retention section and the measurement surface of the alkaline gas electrode 3, and the liquid to be measured flows through the measurement cell 4. and N83 NPJ degree x 6 in the gas phase is NH3- in the liquid to be measured.
Maintain an equilibrium state of Nm degrees x L.

すなわち、第(2)式が成立する。That is, Equation (2) holds true.

XG= Xt / H(2) ここで、口はヘンリ一定数である。XG=Xt/H(2) Here, the number of mouths is Henry's constant.

従って、アンモニアガス電極3の出力EはE=Eo、−
810g×L E  、=E  +5IO(7)+      (3)
O ここで、Sはネルンスト係数で、この出力信号Eが演算
器1に入力され、被測定液中のアンモニア性窒素濃度を
求めることができる。なお、演算器1はピンチ弁V1と
v2とを交互に開くためのオンオフ信号を発生し、その
オンオフ比率を調節することにより、標準液添加率rを
調整する。
Therefore, the output E of the ammonia gas electrode 3 is E=Eo, -
810g×LE,=E+5IO(7)+(3)
O Here, S is a Nernst coefficient, and this output signal E is input to the calculator 1, and the ammonia nitrogen concentration in the liquid to be measured can be determined. Note that the computing unit 1 generates on/off signals for alternately opening the pinch valves V1 and V2, and adjusts the standard solution addition rate r by adjusting the on/off ratio.

例えば、添加率「を2段階(rlおよびr2.rl<r
2)に周期的(周期Tn=1時間)に変化させる。
For example, the addition rate is set in two stages (rl and r2.rl<r
2) is changed periodically (period Tn=1 hour).

ここで、rlは被測定液のN口3−N濃度がアンモニア
ガス電極3の測定限界以上になるように決定する。添加
率「の変化に伴って電極出力Eも周期的に変化し、これ
を利用して測定を行う。この電極出力Eの変化には添加
率「の変化によるものだけでなく、環境条件(特に温I
f>の変化による変動が含まれることがある。
Here, rl is determined so that the N port 3-N concentration of the liquid to be measured is equal to or higher than the measurement limit of the ammonia gas electrode 3. As the addition rate changes, the electrode output E also changes periodically, and this is used for measurement.Changes in the electrode output E are not only due to changes in the addition rate, but also due to environmental conditions (especially Warm I
Variations due to changes in f> may be included.

そこで、この問題を解決するために、添加率rを一定周
期で変化させつつ、添加率変化周期の整数倍に相当する
i間にわたる電極出力Eの移動平均と、移動平均時間の
172に相当する時間だけ過去の電極出力値を用いて被
測定液中のアンモニア性窒素のIIを求めるものである
Therefore, in order to solve this problem, while changing the addition rate r at a constant period, we calculate the moving average of the electrode output E over a period i corresponding to an integral multiple of the addition rate change period, and the moving average time corresponding to 172. The II of ammonia nitrogen in the liquid to be measured is determined by using the electrode output value past the time.

(発明が解決しようとする課題) ところが、このようなアルカリ分析装置は、連続流通式
であるために、アルカリ剤が常時注入されることになり
、 ■薬品量が多くなり、アルカリ剤と反応して、配管内に
スケールが蓄積され閉塞する恐れがある、■標準液の添
加精度に機器の精度が追従できず、安定性に欠ける、 ■排液量が多くなる、 ■安定化するまでの時間が掛りすぎる、■移動平均をと
るために応答が遅く、急激な濃度変化に対応することが
できない、 等の解決すべき重要なWR題があった。
(Problem to be solved by the invention) However, since such an alkali analyzer is of a continuous flow type, an alkali agent is constantly injected, which increases the amount of chemicals and causes reactions with the alkali agent. - There is a risk of scale buildup and blockage in the piping. ■ The accuracy of the equipment cannot follow the addition accuracy of the standard solution, resulting in a lack of stability. ■ The amount of liquid drained increases. ■ Time until stabilization There were important WR issues that needed to be resolved, such as: excessive WR time, and slow response due to taking a moving average, which made it impossible to respond to sudden changes in concentration.

本発明は、上述の点に鑑み、従来技術の問題点を有効に
解決し、応答時間が短縮され、薬品の使用量が減少し、
メンテナンスが容易で、長期に亘り安定した測定が可能
なバッチ連続式自動アンモニア測定方法を提供すること
を目的とづる。
In view of the above points, the present invention effectively solves the problems of the prior art, reduces the response time, reduces the amount of chemicals used,
The purpose of this invention is to provide a batch continuous automatic ammonia measurement method that is easy to maintain and allows stable measurement over a long period of time.

(課題を解決するための手段) このような目的を達成するために、本発明は、恒温槽に
収容された測定セル内に一定量の試料水が注入され、前
記試料水に第1回目のアンモニア性窒素の濃度既知の標
準添加液が注入されさらにアルカリ剤が注入されてpH
11LX上とし撹拌された後の前記測定セルに装着され
前記恒温槽に収容されたアンモニアガス電極の安定した
出力および第2回目の前記標準添加液が注入され攪拌さ
れた後の前記アンモニアガス電極の安定した出力をそれ
ぞれ保持し演算処理して前記試料水中のアンモニア性窒
素の濃度を測定することを特徴とする(作用〉 ところで、このような技術手段により、本発明のアンモ
ニア測定方法は、従来の連続的に試料水を流通し、この
試料水に標準添加液とアルカリ剤とを混入するのに対し
て、バッチ式に一定量の試料水に第1回目のアンモニア
性窒素の濃度既知の標準添加液を注入し、さらにアルカ
リ剤を注入してpH11以上とし撹拌した後の前記アン
モニアガス電極の安定した出力および第2回目の前記標
準添加液を注入し攪拌した後の前記アンモニアガス電極
の安定した出力をそれぞれ保持し演算処理する前記試料
水中のアンモニア性窒素の濃度を測定することによって
、1回ごとの測定時間が決定されるから、応答時間が短
縮され、薬品の使用量が減少し、メンテナンスが容易で
、長期に亘り安定した測定が可能である。
(Means for Solving the Problems) In order to achieve such an object, the present invention provides a method in which a certain amount of sample water is injected into a measurement cell housed in a constant temperature bath, and the sample water is subjected to a first A standard additive solution with a known concentration of ammonia nitrogen is injected, and an alkaline agent is injected to adjust the pH.
Stable output of the ammonia gas electrode attached to the measurement cell and housed in the thermostatic chamber after stirring at 11LX, and stable output of the ammonia gas electrode after the second standard addition liquid was injected and stirred. The ammonia measuring method of the present invention is characterized by maintaining stable outputs and performing calculation processing to measure the concentration of ammonia nitrogen in the sample water. In contrast to continuous flow of sample water and mixing of standard additive solution and alkaline agent into this sample water, the first standard addition of ammonia nitrogen with a known concentration to a fixed amount of sample water is carried out in a batch manner. Stable output of the ammonia gas electrode after injecting the liquid, further injecting an alkaline agent to raise the pH to 11 or more and stirring, and stable output of the ammonia gas electrode after injecting the second standard addition liquid and stirring. The measurement time for each measurement is determined by measuring the concentration of ammonia nitrogen in the sample water, which holds and calculates the output, which reduces response time, reduces the amount of chemicals used, and reduces maintenance costs. It is easy to measure and allows stable measurement over a long period of time.

(実施例〉 次に、本発明の実施例を図面に基づき、詳細に説明する
(Example) Next, an example of the present invention will be described in detail based on the drawings.

第1図は本発明の一実施例の概略構成図を示づ。FIG. 1 shows a schematic configuration diagram of an embodiment of the present invention.

図において第3図と同一の機能を有する部分には、同一
の符号が付されてる。バッチ連続式自動アンモニア測定
装置100は、主としてアンモニアガス電極3、測定セ
ル4、採水槽13、アルカリタンク14、標準添加液タ
ンク15および演算器20から構成される。アンモニア
電極3および測定セル4は温度の影響を除くために、鎖
線で示された恒温槽21内に収容される。
In the figure, parts having the same functions as in FIG. 3 are given the same reference numerals. The batch continuous automatic ammonia measurement device 100 mainly includes an ammonia gas electrode 3, a measurement cell 4, a water sampling tank 13, an alkali tank 14, a standard additive tank 15, and a computing unit 20. The ammonia electrode 3 and the measurement cell 4 are housed in a constant temperature bath 21 shown by a chain line in order to eliminate the influence of temperature.

採水槽13より採水ポンプ7によって試料水が測定セル
4に導入される。この際、ピンチ弁10゜11を開放す
ることにより測定セル4内の洗浄を行う。ピンチ弁10
を閉鎖してピンチ弁11を開放することにより、測定セ
ル4内の試料水がオーバフローされ定量される。ここに
、標準添加液タンク15より標準添加液ポンプ9を作動
させて、測定セル4内への標準添加液の第1回目の注入
を行う。さらに、アルカリタンク14よりアルカリポン
プ8を作動させて、測定セル4内にアルカリ剤を注入し
、pHを11以上にする。このままで、測定セル4内に
設けられた撹拌器5および撹拌子6によって、被測定液
を撹拌しアンモニア電極3の出力が安定づるまで保ち、
安定したところでその出力を変換器2を介して、演算器
20のサンプルホールド要素(第2図)22にホールド
させる。
Sample water is introduced from the water sampling tank 13 into the measurement cell 4 by the water sampling pump 7 . At this time, the inside of the measurement cell 4 is cleaned by opening the pinch valves 10 and 11. pinch valve 10
By closing and opening the pinch valve 11, the sample water in the measurement cell 4 overflows and is quantified. At this time, the standard additive liquid pump 9 is operated from the standard additive liquid tank 15 to perform the first injection of the standard additive liquid into the measuring cell 4. Furthermore, the alkali pump 8 is operated from the alkali tank 14 to inject an alkali agent into the measurement cell 4 to adjust the pH to 11 or higher. In this state, the liquid to be measured is stirred by the stirrer 5 and stirrer 6 provided in the measurement cell 4 until the output of the ammonia electrode 3 becomes stable.
When the output is stabilized, the output is held in the sample and hold element (FIG. 2) 22 of the arithmetic unit 20 via the converter 2.

次に、標準添加液の第2回目の注入を行い、同様に撹拌
器5および撹拌子6によって、被測定液を撹拌し、アン
モニア電極3の出力が安定するまで保ち、安定したとこ
ろで演算器20のサンプルホールド要素23にホールド
させる。演算器20は、この第1回目と第2回目との電
極出力によって、演算処理を行い測定値を求める。
Next, the standard additive liquid is injected for the second time, and the liquid to be measured is similarly stirred using the stirrer 5 and the stirrer 6 until the output of the ammonia electrode 3 becomes stable. The sample hold element 23 is used to hold the sample. The arithmetic unit 20 performs arithmetic processing based on the first and second electrode outputs to obtain a measured value.

演算器20による演算処理は、基本的には第2図に示す
従来技術の演算器1と同様である。しかし、本アンモニ
ア測定装置100はバッチ処理方式であるから、その標
準添加液の添加量変化について、その周期の移動平均を
用いる必要がなく、その構成が簡易化される。
The arithmetic processing by the arithmetic unit 20 is basically the same as that of the conventional arithmetic unit 1 shown in FIG. However, since the present ammonia measuring device 100 is of a batch processing type, there is no need to use a moving average of the period for changes in the addition amount of the standard additive liquid, and the configuration is simplified.

第(2)式に示す被測定液中のアンモニア111度(×
、〉と、測定セル4内の気相部のアンモニアガス濃度(
X6)との気相平衡関係は、測定セル4およびアンモニ
アガス電極3を恒温槽21に入れることにより、バッチ
1回の処理内ではヘンリ一定数口の値を一定とする。
Ammonia 111 degrees (×
, > and the ammonia gas concentration (
Regarding the gas phase equilibrium relationship with X6), by placing the measurement cell 4 and the ammonia gas electrode 3 in a constant temperature bath 21, the value of a certain number of Henry ports is kept constant within one batch process.

標準液添加率r=「1のときの電極出力E1は次式(4
)が成立する。
The electrode output E1 when the standard solution addition rate r = 1 is calculated by the following formula (4
) holds true.

E  = E  −S too XG1     ・・
・(4)0 この出力E1が安定したところで、次の標準液添加率r
=r2 (rl<r2 )のときの電極出力E2は次式
(5)が成立する。
E = E −S too XG1 ・・
・(4)0 When this output E1 becomes stable, the next standard solution addition rate r
=r2 (rl<r2), the following equation (5) holds true for the electrode output E2.

E2=Eo−810(l Xo2    −・・(5)
電極出力E、、E2の差ΔEについて次式(6)が成立
する。
E2=Eo-810(lXo2-...(5)
The following equation (6) holds true for the difference ΔE between the electrode outputs E, , E2.

ΔE=S (10(J X  −1ogXG1)2 02 = Slog − X        ・・・(6) 1 ここで、 ×11=トIXGI                
       ・・・ (7)X、2=口X6゜   
       ・・・(8)また、r=r1. r2の
ときの測定液のアンモニア濃度について、第(9)式お
よび第(10)式が成立する。
ΔE=S (10(J
... (7)X, 2=mouth x6°
...(8) Also, r=r1. Regarding the ammonia concentration of the measurement liquid when r2, Equations (9) and (10) hold true.

X  =(1−rl)X  +rlX    ・=(9
)Ll        o    5 XL2=(1−Δr−rl)Xo + (△r+rfン
・X、       ・・・〈10) ここで、Xo:試料水のアンモニア濃度X、:標準液の
アンモニア濃度 Δr=r2−r1 次に、第(6)式ないし第(10)式を用いてX11を
変形するために、第(9)式から第(11)式を導き、 X  = (XtlrIX、)/ (1−rl) =・
(11)第(10〉式に代入して、第(12)式とする
X = (1-rl)X +rlX ・=(9
) Ll o 5 XL2 = (1-Δr-rl) r1 Next, in order to transform X11 using equations (6) to (10), equation (11) is derived from equation (9), and X = (XtlrIX,)/(1-rl ) =・
(11) Substitute into equation (10>) to obtain equation (12).

Δr       Δ「 X  −(1−) X、1+ (−) X。Δr      Δ“ X -(1-)X, 1+(-)X.

2− f−rll−rl ・・・(12) ここで、XLIとXL2との比をRとすれば、第(13
)式が成立する。
2-f-rll-rl (12) Here, if the ratio between XLI and XL2 is R, then the (13th
) holds true.

X   X alA r 1 R=−= −= (1−) + X    X       1−rl l2    G2 △r   X。X  X alA r 1 R=-=-=(1-)+ X 1-rl l2 G2 △r   X.

□・□    ・・・(13) 1−rI   X11 第(13〉式を変形して第(14)式とする。□・□   ・・・(13) 1-rI  X11 Equation (13) is transformed into equation (14).

ΔrX。ΔrX.

X11= (1−rl)(R−1>+△「 ・・・(14) 第(14)式を第(11)式に代入づることにより、既
知のΔr、r1 、R,XSから第(15)式によって
、試料水中のアンモニア濃度X。を求めることかできる
X11= (1-rl)(R-1>+△" ...(14) By substituting the equation (14) into the equation (11), the ( The ammonia concentration X in the sample water can be determined using equation 15).

すなわち、     ΔrX。That is, ΔrX.

X=X( 5 (1−rl)(R−1>+△r 次に、第2図は第1図に示す演算器のブロック図である
。図において演算器20は、主としてサンプルホールド
要素22.23と、割算器24および4則演算部25と
から構成される。第(4)式、第(5)式に示す電極出
力E1.E2は、それぞれサンプルホールド要素22.
23にホールドされる。このホールドされた出力から、
割算器24にて第(13)式ニ示t ’IIAML X
 tl、 X t2(7) 比Rを求める。4則演算部
25は、第〈15)式に示す演算処理をして、既知のΔ
r、N、R9X3から試料水中のアンモニア濃度X。を
算出する。
X=X( 5 (1-rl) (R-1>+△r) Next, FIG. 2 is a block diagram of the arithmetic unit shown in FIG. .23, a divider 24, and a four-arithmetic calculation unit 25.The electrode outputs E1 and E2 shown in equations (4) and (5) are respectively generated by the sample and hold elements 22.
It is held at 23. From this held output,
The divider 24 shows equation (13) t 'IIAML
tl, X t2(7) Find the ratio R. The four arithmetic calculation unit 25 performs the calculation process shown in equation (15) to obtain the known Δ
Ammonia concentration X in sample water from r, N, R9X3. Calculate.

このように、アルカリガス電極3および測定セル4は、
恒温槽21に収容され環境変動を少なくし、バッチ処理
方式を採用して応答時間が1回ごとの測定時間で決定さ
れ、薬品の使用量が減少でき、安定した標準添加液の注
入が可能である。また、1回の測定ごとに、測定セル4
内の試料水による洗浄工程を取入れることにより、配管
内のスケールの付着を大幅に低減させることができる。
In this way, the alkaline gas electrode 3 and the measurement cell 4 are
It is housed in a constant temperature bath 21 to reduce environmental fluctuations, and by adopting a batch processing method, the response time is determined by the time taken for each measurement, reducing the amount of chemicals used and making it possible to stably inject standard additive solutions. be. In addition, for each measurement, the measurement cell 4
By incorporating a cleaning process using sample water inside the piping, it is possible to significantly reduce scale adhesion inside the piping.

(発明の効果) 以上に説明したように、本発明によれば、恒温槽に収容
された測定セル内に一定量の試料水が注入され、前記試
料水に第1回目のアンモニア性窒素の濃度既知の標準添
加液が注入されさらにアルカリ剤が注入されてDI−1
11LX上とし撹拌された後の前記測定セルに装着され
前記恒温槽に収容されたアンモニアガス電極の安定した
出力および第2回目の前記標準添加液が注入され攪拌さ
れた後の前記アンモニアガス電極の安定した出力をそれ
ぞれ保持し演算処理して前記試料水中のアンモニア性窒
素の濃度を測定することにより、従来技術の問題点が有
効に解決され、バッチ処理方式の採用により、応答時間
が1回ごとの測定時間で決まるから時間短縮され、薬品
の使用量が減少するから安定した標準液添加が可能で、
メンテナンスが容易で、長期に亘り安定した測定が可能
であると共に、アンモニア性窒素の低′a度測定にも適
用し得る等の効果を奏する。
(Effects of the Invention) As explained above, according to the present invention, a certain amount of sample water is injected into a measurement cell housed in a thermostatic chamber, and the sample water has a first concentration of ammonia nitrogen. A known standard additive solution is injected, and an alkaline agent is injected, resulting in DI-1.
Stable output of the ammonia gas electrode attached to the measurement cell and housed in the thermostatic chamber after stirring at 11LX, and stable output of the ammonia gas electrode after the second standard addition liquid was injected and stirred. By maintaining stable outputs and performing calculation processing to measure the concentration of ammonia nitrogen in the sample water, the problems of the conventional technology are effectively solved, and by adopting a batch processing method, the response time is reduced for each measurement. Because it is determined by the measurement time of
It is easy to maintain, enables stable measurement over a long period of time, and has the advantage of being applicable to low a degree measurement of ammonia nitrogen.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成図、第2図は第1
図に示す演舞器のブロック図、第3図は従来のアンモニ
ア分析方法のR略構成図である。 3・・・アンモニアガス電極 4・・・測定セル フ・・・採水ポンプ 8・・・アルカリポンプ 9・・・標準添加液ポンプ 13・・・採水槽 14・・・アルカリタンク 15・・・標準添加液タンク 20・・・演舞器 22.23・・・サンプルホールド要素24・・・割算
器 25・・・4則演算部 100・・・バッチ連続式自動アンモニア測定装置投込 3 アンモニアガス電嶺 4−−JJI!etJl。 8・°・アルカリポンプ 13・・尿水潅 15・a宇企舶波夕;り 2oIItIIIs 100・バラチAすえ式自動アンモニーア別定装置7 
採水ポンプ 9・JPヂ添刀′Rポ〉プ 14・・・アルカリタンク 第  1  rM るユ$I鉾善 第 図 第 図
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIG.
FIG. 3 is a block diagram of the performance instrument shown in the figure, and FIG. 3 is a schematic configuration diagram of a conventional ammonia analysis method. 3...Ammonia gas electrode 4...Measuring self...Water sampling pump 8...Alkali pump 9...Standard additive pump 13...Water sampling tank 14...Alkali tank 15...Standard Additive liquid tank 20... Performer 22.23... Sample hold element 24... Divider 25... Four arithmetic operation section 100... Batch continuous type automatic ammonia measuring device Input 3 Ammonia gas electric Mine 4--JJI! etJl. 8・°・Alkali pump 13・・Urine water irrigation 15・aUkishiphayu;ri 2oIItIIIs 100・Barachi A-type automatic ammonia separation device 7
Water sampling pump 9, JP Jisoeto'R pop 14... Alkaline tank No. 1

Claims (1)

【特許請求の範囲】[Claims] 1)恒温槽に収容された測定セル内に一定量の試料水が
注入され、前記試料水に第1回目のアンモニア性窒素の
濃度既知の標準添加液が注入されさらにアルカリ剤が注
入されてpH11以上とし撹拌された後の前記測定セル
に装着され前記恒温槽に収容されたアンモニアガス電極
の安定した出力および第2回目の前記標準添加液が注入
され攪拌された後の前記アンモニアガス電極の安定した
出力をそれぞれ保持し演算処理して前記試料水中のアン
モニア性窒素の濃度を測定することを特徴とするバッチ
連続式自動アンモニア測定方法。
1) A certain amount of sample water is injected into a measurement cell housed in a constant temperature bath, and the first standard addition solution of ammonia nitrogen with a known concentration is injected into the sample water, and then an alkaline agent is injected to bring the pH to 11. Stable output of the ammonia gas electrode attached to the measurement cell and housed in the thermostatic chamber after stirring as described above, and stability of the ammonia gas electrode after the second standard additive solution is injected and stirred. A batch continuous automatic ammonia measuring method characterized in that the concentration of ammonia nitrogen in the sample water is measured by holding and calculating the respective outputs.
JP1197830A 1989-07-29 1989-07-29 Batch continuous automatic ammonia measurement method Expired - Lifetime JPH087183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1197830A JPH087183B2 (en) 1989-07-29 1989-07-29 Batch continuous automatic ammonia measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1197830A JPH087183B2 (en) 1989-07-29 1989-07-29 Batch continuous automatic ammonia measurement method

Publications (2)

Publication Number Publication Date
JPH0361856A true JPH0361856A (en) 1991-03-18
JPH087183B2 JPH087183B2 (en) 1996-01-29

Family

ID=16381052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1197830A Expired - Lifetime JPH087183B2 (en) 1989-07-29 1989-07-29 Batch continuous automatic ammonia measurement method

Country Status (1)

Country Link
JP (1) JPH087183B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315395A (en) * 2001-04-06 2002-10-25 Mitsubishi Heavy Ind Ltd Wind turbine generator
CN104458869A (en) * 2014-11-10 2015-03-25 深圳泽峰环保技术有限公司 Online ammonia escape monitoring and analyzing method and online ammonia escape monitoring and analyzing instrument
CN111122670A (en) * 2020-02-03 2020-05-08 徐玲 Large-batch PH value detection equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315395A (en) * 2001-04-06 2002-10-25 Mitsubishi Heavy Ind Ltd Wind turbine generator
CN104458869A (en) * 2014-11-10 2015-03-25 深圳泽峰环保技术有限公司 Online ammonia escape monitoring and analyzing method and online ammonia escape monitoring and analyzing instrument
CN111122670A (en) * 2020-02-03 2020-05-08 徐玲 Large-batch PH value detection equipment
CN111122670B (en) * 2020-02-03 2020-09-29 江西中红普林医疗制品有限公司 Batch PH value detection equipment

Also Published As

Publication number Publication date
JPH087183B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
KR101248213B1 (en) Etchant managing device
JP6721157B2 (en) Method and apparatus for measuring component concentration of developer, and method and apparatus for managing developer
JPH048736B2 (en)
CN100427175C (en) Device and method for controlling infusion of flocculating agent
US4774101A (en) Automated method for the analysis and control of the electroless metal plating solution
JP2005260238A (en) Real-time control system of composition for lithography process using near-infrared spectroscope and method for controlling same
US4873057A (en) Apparatus for carrying out a titration procedure for the chemical analysis of a sample
US3898042A (en) Method and apparatus for continuously determining total copper in an aqueous stream
CN103983753B (en) Can self-inspection correct active sludge aerobic respiration measurement device and using method
EP1368643B1 (en) Continuous flow titration
JPH0361856A (en) Batch-continuous type automatic measuring method for ammonia
KR100219440B1 (en) Method and apparatus for putting coagulant
US5106413A (en) Measurement method, adjustment method and adjustment system for the concentrations of ingredients in electroless plating solution
JP4474628B2 (en) Automatic titrator
JP2742128B2 (en) Method for adjusting plating solution concentration and plating method
JPS63165751A (en) Analysis of ammonia in water
TW201841218A (en) Developing apparatus
JPH0618474A (en) Measurement method of batch continuous system for ammonia in water
TW201828333A (en) Apparatus for measuring component concentration in developing solution and developing solution management apparatus capable of accurately computing concentration of each component of alkaline developing solution and maintaining and managing developing performance in optimal state
JPH0933404A (en) Water quality measuring apparatus
JPS6093940A (en) Sampling apparatus
JPH08313513A (en) Method for measuring respiration speed
SU1065774A1 (en) Liquid toxicity checking device
RU4169U1 (en) SYSTEM FOR AUTOMATED QUALITY CONTROL OF NATURAL AND SEWAGE WATERS
JPH11118680A (en) Sample dilution analyzer