JPH0360414A - Method for joining carbon material, joined body by this method and material using the same - Google Patents

Method for joining carbon material, joined body by this method and material using the same

Info

Publication number
JPH0360414A
JPH0360414A JP19612789A JP19612789A JPH0360414A JP H0360414 A JPH0360414 A JP H0360414A JP 19612789 A JP19612789 A JP 19612789A JP 19612789 A JP19612789 A JP 19612789A JP H0360414 A JPH0360414 A JP H0360414A
Authority
JP
Japan
Prior art keywords
carbon
joined
metal
materials
joined body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19612789A
Other languages
Japanese (ja)
Other versions
JP2805022B2 (en
Inventor
Toru Yoshida
亨 吉田
Hirohiko Omura
大村 博彦
Takashi Matsumoto
松本 喬
Teruhisa Kondo
照久 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP1196127A priority Critical patent/JP2805022B2/en
Publication of JPH0360414A publication Critical patent/JPH0360414A/en
Application granted granted Critical
Publication of JP2805022B2 publication Critical patent/JP2805022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simply form a tough joined body having high heat resistance in a short time by interposing copper plated iron (alloy) between materials to be joined such as a carbon material and a metallic material and heating them under prescribed conditions. CONSTITUTION:The surface of iron (alloy) 5 is plated with copper 4 by electrolysis, chemical vapor deposition or other means. The copper plated iron (alloy) is interposed between a carbon material contg. >=0.2wt.% free carbon and the same carbon material or a metallic material as materials 2 to be joined or the materials 2 are coated with copper. Both the materials 2 are not made of carbon steel. They are then heated in vacuum, in an inert gas or in the presence of a flux.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素材の接合方法に関し、更に詳しくはフリー
カーボンを0.2重量%以上含有する炭素材と、該炭素
材または金属材とを接合する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for joining carbon materials, and more specifically, the present invention relates to a method for joining carbon materials, and more specifically, a method for joining carbon materials containing 0.2% by weight or more of free carbon, and the carbon material or metal material. Concerning the method of joining.

〔従来の技術〕[Conventional technology]

炭素材料は、その特性が広く、工業用の用途で広く使わ
れている。
Carbon materials have a wide range of properties and are widely used in industrial applications.

その形態としては、一般に、炭素材として、定義されて
いるが、より細かくは、黒鉛単独、炭素単独、各種金属
との炭化物、又は、これらを含む複合材として用いられ
るのが静通である。
Its form is generally defined as a carbon material, but more specifically, it is used as graphite alone, carbon alone, carbides with various metals, or composite materials containing these.

たとえば、黒鉛単独材としては、その高温での耐熱衝撃
性に優れている事から、核燃料炉の構造材として使われ
たり、熱伝導率が大きく、かつ潤滑性が良好な所から、
鋳造のモールド、スリーブに、高温強度に優れている点
で、ホットプレスのモールドに、導電性が大きい事から
スッパタリング用ターゲットに用いられたりしている。
For example, graphite alone is used as a structural material for nuclear fuel reactors due to its excellent thermal shock resistance at high temperatures, and due to its high thermal conductivity and good lubricity,
It is used in casting molds and sleeves, in hot press molds due to its excellent high-temperature strength, and in sputtering targets due to its high conductivity.

炭素単独材としては、その耐食性より、化学装置のライ
ニング材に用いられたり、その電気抵抗に見合った電気
ブラシ材などの用途がある。
Carbon-based materials have applications such as being used as lining materials for chemical equipment due to their corrosion resistance, and as electric brush materials due to their electrical resistance.

炭化物としては、例えばチタンカーバイドは、その高温
強度に優れる点でサーメットなどの硬質耐熱合金の主要
成分として用いられ、シリコンカーバイトはその耐食性
に着目し、熱交換機隔壁に、又タングステンカーバイド
は、その硬度が大きい事からチップ材、カム接触部、ダ
イス材、及びピストンヘッドに用いられている。
As carbides, for example, titanium carbide is used as a main component of hard heat-resistant alloys such as cermets due to its excellent high-temperature strength, silicon carbide is used for heat exchanger partition walls, and tungsten carbide is used for its corrosion resistance. Due to its high hardness, it is used for chip materials, cam contact parts, die materials, and piston heads.

更に、複合材では、炭素の基盤に、電気伝導度の高い金
属を含浸させ、潤滑性と導電性とを活用した電気ブラシ
としたり、炭素と樹脂とを複合化し、シール材或いは放
電加工電極材として使用したりしている。
Furthermore, in the case of composite materials, carbon bases are impregnated with metals with high electrical conductivity to create electric brushes that take advantage of their lubricity and conductivity, and carbon and resin are composited to create sealing materials or electrical discharge machining electrode materials. It is also used as a.

この様に、炭素材料の用途は、広範に、かつ着実に、拡
大しつつ有るが、実際に工業化を進めるには、なお問題
点を残している。
As described above, the uses of carbon materials are widely and steadily expanding, but problems still remain in order to actually advance industrialization.

一般に、工業装置の大型化、高機能化の要求は、日増し
に高まりつつあり、各部材を、一体物で作り上げるには
、製造設備或いは各素材機能の性質上の制約が有り必ず
しも容易ではない。更に、複雑な形状をした鋳造モール
ドなど、いわゆるニア・シェーブで作り上げるにも、そ
の加工成形には、制約がある。
In general, demands for larger and more sophisticated industrial equipment are increasing day by day, and it is not always easy to create each component as a single piece due to restrictions due to the nature of the manufacturing equipment or the functions of each material. . Furthermore, even when creating a casting mold with a complex shape using a so-called near shave, there are restrictions on the processing and shaping.

他に、炭素材料の持つ特性を・活かしきっても、なおそ
れ以上の特性を要求される場合も多く、例えば核燃料炉
構造材では、構造材としての黒鉛にかかる熱負荷が大き
く、強制的な水冷が必要となる場合があるが、黒鉛材自
身水冷は、その水分浸透性により不可能であり、水冷用
の金属配管との組み合わせ、特に熱伝導性を高めるため
接合が必要である。
In addition, even if the properties of carbon materials are fully utilized, there are many cases in which even higher properties are required. For example, in nuclear fuel reactor structural materials, the thermal load placed on graphite as a structural material is large, and forced Water cooling may be required, but water cooling of the graphite material itself is impossible due to its water permeability, and it is necessary to combine it with metal piping for water cooling, especially bonding to improve thermal conductivity.

又、使用時に期待される炭素材としての特性がその表(
裏)面層だけにあれば良い様な場合も多く、その表(裏
)面層の下(上)の基層には、表(裏)面層と異なる材
料を用いる事がある。
In addition, the properties expected as a carbon material during use are shown in the table (
In many cases, it is sufficient to use only the back layer, and the base layer below (above) the front (back) layer may be made of a material different from that of the front (back) layer.

このような要求に対する最も普通の手段は炭素材と他の
金属材料、あるいは炭素材同志を接合することであり、
この接合により上記各機能を賦与せしめ、複合機能によ
り対処する手段である。
The most common means to meet these requirements is to bond carbon materials and other metal materials, or to bond carbon materials together.
This connection provides each of the above functions and is a means for dealing with complex functions.

このような要請からこの種上記材料同志の接合について
は従来からも種々提案されている。
In response to such demands, various proposals have been made in the past for joining the above-mentioned materials together.

しかし乍ら従来の各種接合方法はいずれも接合強度が不
充分であったり、或いは接合材により制約があったり、
或いは操作に煩雑な手間や時間を要したりするものが多
く、現在なお満足すべき方法は極めて少ない。
However, all of the various conventional bonding methods have insufficient bonding strength, or have limitations due to the bonding material.
Alternatively, there are many methods that require complicated operations and time, and there are currently very few methods that are satisfactory.

〔発明が解決しようとする課題] 本発明が解決しようとする課題はこの種炭素材同志また
は炭素材と金属材とを出来るだけ簡単な操作でしかも接
合強度大きく接合出来、しかも耐熱性、耐衝撃性及び耐
食性に優れた接合材が収得出来る新しい接合方法を開発
することである。
[Problem to be Solved by the Invention] The problem to be solved by the present invention is to bond carbon materials of this kind or carbon materials and metal materials with as simple an operation as possible and with high bonding strength, and which also has heat resistance and impact resistance. The objective is to develop a new joining method that can obtain a joining material with excellent properties and corrosion resistance.

[課題を解決するための手段〕 この課題はフリーカーボンを0.2重量%以上含む炭素
材と、該炭素材または金属材とを接合するに際しく但し
炭素鋼同志を接合する場合を除く)、銅を鉄または鉄合
金の表面にメッキ、化学的蒸着法等適宜な手段で被覆し
、これを被接合材間に存在させて、時には被接合材であ
る黒鉛や金属材料に銅被覆を施して、真空下、不活性ガ
ス下またはフラックス存在下に加熱することによって解
決される。
[Means for solving the problem] This problem is solved when bonding a carbon material containing 0.2% by weight or more of free carbon and the carbon material or metal material (except when bonding carbon steel together), Copper is coated on the surface of iron or iron alloy by an appropriate method such as plating or chemical vapor deposition, and it is placed between the materials to be joined, and sometimes the graphite or metal material to be joined is coated with copper. , by heating under vacuum, under inert gas or in the presence of flux.

〔発明の作用並びに構成] 本発明に於いては、炭素材同志または炭素材と金属材と
の接合に際し、銅を鉄またはその合金好ましくは厚み1
IIII!1以下の薄板状乃至箔状体にメッキ、化学的
蒸着法等の適宜な手段で被覆し、これを介在させて真空
下または不活性ガス雰囲気下或いはフラックス存在下に
、加熱することにより、炭素材側の被接合体接触面に鉄
系の合金を晶出せしめ、これにより強固な接合を得るも
のである。
[Operation and configuration of the invention] In the present invention, when joining carbon materials together or a carbon material and a metal material, copper is replaced with iron or an alloy thereof, preferably with a thickness of 1
III! 1 or less in the form of a thin plate or foil by an appropriate means such as plating or chemical vapor deposition, and by heating the coated body under vacuum, an inert gas atmosphere, or in the presence of flux, charcoal can be applied. An iron-based alloy is crystallized on the contact surface of the material to be joined, thereby achieving a strong joint.

更に図面を用いて本発明の作用を詳しく説明する。Furthermore, the operation of the present invention will be explained in detail using the drawings.

第1図は説明の便宜上炭素材同志を接合する際の模擬的
な説明図を示す。第1図に於いて(1)は気密容器、(
2)は炭素材、(3)はヒーター、(4)は鉄または鉄
合金に被覆された銅、(5)は鉄または鉄合金を示す。
For convenience of explanation, FIG. 1 shows a simulated explanatory diagram when carbon materials are joined together. In Figure 1, (1) is an airtight container, (
2) is a carbon material, (3) is a heater, (4) is copper coated with iron or an iron alloy, and (5) is iron or an iron alloy.

炭素材(2)の間に銅(4)が被覆された鉄または鉄合
金を存在させる。必要に応じ重り又は治具(6)等で加
圧しつつヒーター(3)により加熱すると、炭素材(2
)と鉄または鉄合金の両面に電気メッキで被覆された接
合材である鋼中に鉄系合金が晶出し、橋かけ接合効果に
より炭素材(2)と鉄または鉄合金とは強固に接合され
、全体として一体となって接合される。接合された状態
を示したものが第2図であり、第2図中(7)は晶出し
た鉄合金層である。
Iron or iron alloy coated with copper (4) is present between the carbon materials (2). When heated with a heater (3) while applying pressure with a weight or jig (6) as necessary, the carbon material (2
) and iron or iron alloy are coated on both sides with electroplating.The iron-based alloy crystallizes in the steel, which is the bonding material, and the carbon material (2) and the iron or iron alloy are firmly bonded due to the bridging bonding effect. , are joined together as a whole. FIG. 2 shows the joined state, and (7) in FIG. 2 is the crystallized iron alloy layer.

この場合気密容器(1)内は真空にしても或いは不活性
ガスを導入しても良い。またフラックスを用いる場合や
抵抗加熱による場合には気密容器(1)は必ずしも使用
する必要はない。
In this case, the inside of the airtight container (1) may be evacuated or an inert gas may be introduced. Further, when using flux or using resistance heating, it is not necessary to use the airtight container (1).

以下に本発明法を更に詳しく説明する。The method of the present invention will be explained in more detail below.

本発明に於いて接合すべき材料は炭素材同志または炭素
材と金属材である。但し炭素材同志の場合として特に炭
素鋼同志を接合する場合は含まない。この際の炭素材と
しては、フリーカーボンを0.2重量%、好ましくは0
65重量%以上含有する炭素材であり、含水炭素や炭化
水素等は勿論含まない。ここでフリーカーボン0.2重
量%以上含有する炭素材とは加熱中において鉄または鉄
合金と結合拡散を生ずるカーボンを少なくとも0.22
&−1%以上含むものをいう。例えば超硬合金の基本成
分であるWCは12(10 ’C以下では長時間の加熱
によっても安定であるが不安定な(フリー)カーボンを
0.4%位含んでいてこれが結合に寄与するものであり
、その他の炭化物も同様である。この際フリーカーボン
が 0.2重量%に達しないものでは炭素材との間に橋
かけ効果を生ぜず望ましくない。この具体的な例として
は黒鉛単独から成るもの、炭素単独から戒るもの、各種
金属の炭化物、或いはこれ等をその少なくとも一成分と
した他の材料との複合材が例示出来、その他各種セラミ
ックや金属中にフリーカーボンを所定量含有せしめたも
のでも良い。各種金属の炭化物としては、チタンカーバ
イトやシリコーンカーバイトをはじめ、その他たとえば
炭素鋼、各種合金鋼等が好ましい例として例示出来る。
In the present invention, the materials to be joined are carbon materials or carbon materials and metal materials. However, this does not include the case where carbon steels are joined together, especially when carbon steels are joined together. The carbon material at this time is 0.2% by weight of free carbon, preferably 0.
It is a carbon material containing 65% by weight or more, and of course does not contain hydrated carbon or hydrocarbons. Here, the carbon material containing 0.2% by weight or more of free carbon means at least 0.22% of carbon that binds and diffuses with iron or iron alloy during heating.
&-1% or more. For example, WC, which is the basic component of cemented carbide, is stable even when heated for a long time below 12 (10'C), but contains about 0.4% of unstable (free) carbon, which contributes to bonding. The same applies to other carbides.In this case, if the free carbon content is less than 0.2% by weight, it will not create a bridging effect with the carbon material, which is undesirable.A specific example of this is graphite alone. Examples include those consisting of carbon alone, carbides of various metals, or composites with other materials containing at least one of these as a component, and various other ceramics and metals containing a predetermined amount of free carbon. Preferred examples of carbides of various metals include titanium carbide and silicone carbide, as well as carbon steel and various alloy steels.

また被接合材たる金属材としては広く各種の金属が包含
され、金属としては合金も含まれる。好ましい金属とし
てはたとえばタングステン、モリブデン、鉄、珪素、ハ
ステロイ、炭素鋼、ステンレス鋼などの各種合金鋼等で
ある。
Further, the metal material to be joined includes a wide variety of metals, and metals also include alloys. Preferred metals include tungsten, molybdenum, iron, silicon, Hastelloy, carbon steel, various alloy steels such as stainless steel, and the like.

これ等被接合材たる炭素材や金属材は、その材質が上記
で説明したものであるかぎりその形状、大きさ、等は何
等限定されず、適宜な形状、大きさのものが使用される
The shape, size, etc. of these carbon materials and metal materials to be joined are not limited in any way as long as the material is as described above, and any suitable shape and size may be used.

この接合材は本発明に於いては鉄または鉄合金就中特に
板状乃至薄板状鉄または鉄合金に予め被覆した状態で使
用する。或いは被接合材である黒鉛や金属材料に予め銅
被覆を行う。この際の被覆手段は何等限定されず、電解
メッキ法、化学メッキ法、メッキ、化学的熱的蒸着法、
イオン化傾向による析出法金属溶射法等各種の手段が広
く採用される。このように予め被覆しておくことにより
、接合時の取扱いが極めて簡単になる。被覆する厚みは
通常0.05〜0.5M好ましくは0.05〜0.2 
m程度である。余りに薄いと鉄屑にムラ等が生じ易く、
厚すぎると接合効果が寧ろ低下することもあり、また不
経済である。
In the present invention, this bonding material is used in a state in which iron or iron alloys, particularly plate-like or thin-plate iron or iron alloys, are coated in advance. Alternatively, the graphite or metal material to be joined is coated with copper in advance. The coating method at this time is not limited in any way, and includes electrolytic plating, chemical plating, plating, chemical thermal vapor deposition,
Various methods such as precipitation method and metal spraying method based on ionization tendency are widely adopted. By coating in advance in this manner, handling during bonding becomes extremely easy. The coating thickness is usually 0.05 to 0.5M, preferably 0.05 to 0.2M.
It is about m. If it is too thin, unevenness may occur in the iron scrap,
If it is too thick, the bonding effect may actually decrease, and it is also uneconomical.

また鉄または鉄合金としては、本接合方法に於ける1種
の芯材的な作用を有し、接合物中に残存するため、その
形状としては薄板乃至板状体、箔状体等が特に好ましく
、この際の厚みとしては1mm以下特に好ましくは0.
5M以下である。この際1Mよりも厚(なりすぎると接
合部の耐衝撃性などが劣下することがありあまり望まし
くない。
In addition, iron or iron alloy acts as a kind of core material in this joining method and remains in the joined product, so its shape is particularly suitable for thin plates, plate-like bodies, foil-like bodies, etc. Preferably, the thickness in this case is 1 mm or less, particularly preferably 0.
It is 5M or less. At this time, the thickness is less than 1M (if it is too thick, the impact resistance of the joint may deteriorate, so it is not very desirable).

これ等多材料を用いて本発明法を実施するに際しては、
第1図ですでに説明した通り、鉄または鉄合金好ましく
はその薄板状乃至箔状体(5)を芯材としてその上下に
予め接合材(4)を被覆して配置する。接合条件として
は、真空下または不活性ガス雰囲気下、或いはフラック
ス存在下のいずれか、或いはこれ等の2つ以上の手段を
併用する。いずれも接合材の表面が酸化されないように
するためである。この際の真空下とは実質的に酸素の影
響が生じない程度に酸素量が少ない状態をいい、通常1
0−’気圧以下好ましくは10−’気圧程度であり、ま
た不活性雰囲気としては通常の不活性ガスたとえばアル
ゴン、窒素ガス等を使用すれば良い。
When carrying out the method of the present invention using these many materials,
As already explained with reference to FIG. 1, a thin plate or foil-like body (5) of iron or an iron alloy, preferably made of iron or iron alloy, is used as a core material and the bonding material (4) is coated above and below in advance. As the bonding conditions, either a vacuum, an inert gas atmosphere, or the presence of flux is used, or two or more of these methods are used in combination. This is to prevent the surface of the bonding material from being oxidized. In this case, under vacuum refers to a state where the amount of oxygen is so small that there is virtually no effect of oxygen, and usually 1
The pressure is less than 0-' atm, preferably about 10-' atm, and a normal inert gas such as argon or nitrogen gas may be used as the inert atmosphere.

またフラックスとしては接合材をうまく被覆して酸素と
の接触を遮断出来るものであれば良く、代表例としてホ
ウ砂、ホウ酸、硼弗化物またはそれ等の混合物等を例示
することができる。このフラックスを使用する場合は空
気中でも良く、また上記の雰囲気下で行っても良い。尚
フラックスは加熱接合条件下では蒸発、分解等により揮
散して接合面には残らない。
Further, any flux may be used as long as it can cover the bonding material well and block contact with oxygen, and representative examples include borax, boric acid, borofluoride, and mixtures thereof. When using this flux, it may be carried out in the air or in the above atmosphere. Note that the flux is volatilized by evaporation, decomposition, etc. under heated bonding conditions and does not remain on the bonding surface.

加熱条件としては原則的には接合材中に鉄合金が晶出し
うる温度であり、通常接合材の軟化点よりも高温好まし
くは50°Ciil後高温である。
The heating conditions are, in principle, a temperature at which the iron alloy can crystallize in the bonding material, and is usually higher than the softening point of the bonding material, preferably at a temperature after 50°C.

この際本発明に於いては必要に応じ、若干荷電をかける
ことも出来る。これにより接合材が溶融して流れ、接合
面全面を均一に濡らし、また接合面に空洞が発生するの
を防止することが出来る。
At this time, in the present invention, it is possible to apply a slight charge if necessary. As a result, the bonding material melts and flows, uniformly wetting the entire surface of the bonding surface, and also prevents the formation of cavities on the bonding surface.

本発明法に依り接合された材料はその優れた接合強度を
生かして広く各種分野に使用することが出来る。たとえ
ば炭素材同志の接合品である黒鉛シート同志の接合品は
高温用パイプ継手部のパッキング材、高温用ボールバル
ブの弁座、熱遮蔽材、軸受、自動車用ガスケット等とし
て有効に使用される。また炭素材と金属材との接合品は
更に広く各種の分野に使用され、炭素質複合材料(以下
C7C材という)と金属との接合品としてたとえばC/
C材にボルト等を接合したものやC/C材の一面に金属
製パイプを接合したもの等を例示出来る。前者のボルト
等を接合したものは核融合プラズマ閉じ込め装置の第1
壁に該炭素材を取付けるに好適であり、またパイプを接
合したものは同じくプラズマ閉じ込め装置内部の高負荷
熱を受ける部分の冷却を目的として水循環用パイプを接
続した構造部材として極めて優れており、その他炭素質
レーザー光用反射鏡の裏面に同様に冷却用パイプを接合
した形態としても使用される。尚本発明接合方法並びに
接合品は上記の例に限定されるものではなく、その他従
来から炭素材料が使用されてきた各種分野に広く用いら
れることは当然である。
Materials bonded by the method of the present invention can be widely used in various fields by taking advantage of their excellent bonding strength. For example, a bonded product of graphite sheets, which is a bonded product of carbon materials, is effectively used as a packing material for high-temperature pipe joints, a valve seat for a high-temperature ball valve, a heat shielding material, a bearing, a gasket for automobiles, and the like. In addition, bonded products of carbon materials and metal materials are used more widely in various fields, such as bonded products of carbonaceous composite materials (hereinafter referred to as C7C materials) and metals.
Examples include a material in which a bolt or the like is joined to a C material, and a material in which a metal pipe is joined to one side of a C/C material. The former, which is made by joining bolts, etc., is the first part of the fusion plasma confinement device.
It is suitable for attaching the carbon material to the wall, and the one with pipes joined is also extremely excellent as a structural member to which water circulation pipes are connected for the purpose of cooling the parts that receive high load heat inside the plasma confinement device. In addition, it is also used in a form in which a cooling pipe is similarly joined to the back surface of the carbonaceous laser beam reflecting mirror. It goes without saying that the bonding method and bonded product of the present invention are not limited to the above-mentioned examples, and can be widely used in various other fields in which carbon materials have been conventionally used.

〔実施例] 以下に実施例を示して本発明法を更に詳しく説明する。〔Example] The method of the present invention will be explained in more detail with reference to Examples below.

実施例1 第1図に示した手順により行った。この際使用した炭素
材(2)はフリーカーボン99.9%、嵩比重1゜77
、熱膨張率4.OX 10−’/’C(室温〜4(10
°C)、異方比1.02のブロック体(サイズ0.6c
mxO,6em X 2.25cm )である。また接
合材(4)としては両面0.05mmの厚さにて被覆さ
れた銅である。芯材としては鉄箔(厚み0.1ma+)
(5)を使用した。条件としては、容器(1)内にN2
ガスを導入し密閉し、1050 ’Cで4分間ヒーター
(3)により加熱した。
Example 1 The procedure shown in FIG. 1 was followed. The carbon material (2) used at this time was 99.9% free carbon and had a bulk specific gravity of 1°77.
, coefficient of thermal expansion 4. OX 10-'/'C (room temperature ~ 4 (10
°C), block body with anisotropy ratio of 1.02 (size 0.6c)
m x O, 6<em>x 2.25 cm). The bonding material (4) is copper coated on both sides with a thickness of 0.05 mm. Iron foil as core material (thickness 0.1ma+)
(5) was used. The conditions are that N2 is in the container (1).
Gas was introduced, the mixture was sealed, and the mixture was heated at 1050'C for 4 minutes using a heater (3).

この加熱により、被覆された銅と芯部の鉄箔(5)との
間に鉄系の合金が晶出し、炭素材(2)と、接合部(4
)とは、強固に接合され、第2図の如く、合金(7)が
晶出し強固な結合が保たれている。
By this heating, an iron-based alloy crystallizes between the coated copper and the core iron foil (5), and the carbon material (2) and the joint part (4)
) are strongly bonded, and as shown in FIG. 2, alloy (7) crystallizes and maintains a strong bond.

この様にして得られた炭素材同志での接合部は、十分な
強度を有している。たとえばこの接合材の熱間四点部げ
強度を、横軸には接合材の融点をlとする相対温度、縦
軸には四点由1げ強度を用いて示すと第4図の通りであ
る。
The joint between the carbon materials thus obtained has sufficient strength. For example, the hot four-point bending strength of this bonding material is shown in Figure 4, with the horizontal axis representing the relative temperature with the melting point of the bonding material as l, and the vertical axis representing the four-point bending strength. be.

この結果から、炭素材とほぼ同等の1111げ強度が、
接合材に認められ、接合材の融点をlとする相対温度で
0.6迄は、十分な耐熱強度があることが示されている
From this result, the 1111 strength is almost the same as that of carbon material.
It is found in bonding materials and has been shown to have sufficient heat resistance strength up to a relative temperature of 0.6, where 1 is the melting point of the bonding material.

実施例2 上記実施例1に於ける炭素材同志の接合に代え、その一
方だけを金属(SS−41)とし、その他は同様に行っ
た。この結果第3図に示す通り実施例1と同様に強固に
接合が出来ていた。
Example 2 Instead of bonding the carbon materials together in Example 1, only one of them was made of metal (SS-41), and the rest was carried out in the same manner. As a result, as shown in FIG. 3, a strong bond was achieved as in Example 1.

実施例3 上記実施例Iに於ける炭素÷1同志の接合に代え、その
一方だけを金属(炭素を0.8%含有する炭素鋼)とし
、その他は同様に行った。この結果実施例1と同様に強
固6ζ接合が出来ていた。
Example 3 In place of the bonding of carbon ÷ 1 in Example I, only one of them was made of metal (carbon steel containing 0.8% carbon), and the other steps were carried out in the same manner. As a result, similar to Example 1, a strong 6ζ bond was achieved.

実施例4 膨張黒鉛圧縮シート(東洋炭素■製「パーマフォイル」
、比重1.1、熱膨張係数3 X 10−”/ ”C。
Example 4 Expanded graphite compressed sheet (“Permafoil” manufactured by Toyo Tanso ■)
, specific gravity 1.1, thermal expansion coefficient 3 x 10-”/”C.

1(10mmX50胴xi、0 ++u+i) 2枚の
間に、厚み0.05恥の純銅を予め両面にメッキした全
体の厚みO,1mmの鉄箔を介在させて、N2ガス中1
150°Cに昇温し、同温度で45分間保持し接合せし
めた。得られた接合物は強固に接合しており、繰り返し
1111げても充分に耐えて眉間剥離等は全く生じなか
った。
1 (10 mm x 50 body xi, 0 ++ u + i) A steel foil with a total thickness of 0.1 mm, which has been plated on both sides with pure copper with a thickness of 0.05 mm, is interposed between the two sheets, and 1 mm in N2 gas is inserted.
The temperature was raised to 150°C and held at the same temperature for 45 minutes to bond. The resulting bonded product was firmly bonded and could withstand repeated 1111 cycles without causing any peeling between the eyebrows or the like.

実施例5 上記実施例4に於いて得られた膨張黒鉛圧縮シートを接
合して得られた接合シートを第5図に示す円板状の形状
に切り抜き、高温配管用継手部材(バンキング材)を製
造した。但し第5図に於いては(10)は圧縮シートを
、(11)は黒鉛シートを、(12)は接合部を示す。
Example 5 The bonded sheet obtained by bonding the compressed expanded graphite sheets obtained in Example 4 above was cut out into a disk shape as shown in FIG. 5, and a joint member for high temperature piping (banking material) was cut out. Manufactured. However, in FIG. 5, (10) indicates a compressed sheet, (11) a graphite sheet, and (12) a joint portion.

実施例6 圧縮黒鉛シートと第6図に示rボールバルブ弁座台(ス
テンレス鋼5US316製)を用い、且つ黒鉛シートの
形状として第6図に示す形状となし、その他は実施例4
と同様に処理してボールバルブ弁座を製造した。但し第
6図に於いてI2中は弁座台、(21)は黒鉛シートを
示す。
Example 6 A compressed graphite sheet and a ball valve valve seat (made of stainless steel 5US316) shown in FIG. 6 were used, and the shape of the graphite sheet was as shown in FIG. 6, and the rest was as in Example 4.
A ball valve seat was manufactured in the same manner as above. However, in FIG. 6, I2 indicates the valve seat, and (21) indicates the graphite sheet.

実施例7 上記実施例4に於いて黒鉛圧縮シートの代わりに金属(
SS−41)を用い、形状として第7図に示す形状に上
記金属並びに黒鉛シートを形威し、その他は実施例4と
同様に処理し、軸受を製造した。但し第7図中り31)
は金属、(30)は黒鉛シートを示す。この軸受はたと
えば換気扇の低繰音部用或いは高温部用軸受として好適
である。
Example 7 In Example 4 above, metal (
Using SS-41), the above metal and graphite sheets were shaped into the shape shown in FIG. 7, and the other processes were the same as in Example 4 to produce a bearing. However, in Figure 7 (31)
indicates metal, and (30) indicates graphite sheet. This bearing is suitable, for example, as a bearing for a low-repetition section or a high-temperature section of a ventilation fan.

実施例日 炭化珪素で被覆した黒鉛とステンレス鋼とを接合した。Example date Graphite coated with silicon carbide and stainless steel were joined.

即ち炭化珪素被覆黒鉛(東洋炭素■製「パーマコート」
、熱膨張係数4.3〜5.OXl0−”/ ”C125
X25XI2tin)とステンレス鋼(SUS 304
.50 X 50 X 10’ mm) とを実施例工
と同様の接合方法に依り接合し、強固に接合された接合
物を得た。
In other words, silicon carbide-coated graphite (“Permacoat” manufactured by Toyo Tanso ■)
, thermal expansion coefficient 4.3-5. OXl0-”/”C125
X25XI2tin) and stainless steel (SUS 304
.. 50 x 50 x 10' mm) were joined using the same joining method as in the example work to obtain a strongly joined product.

実施例9 上記実施例日の接合方法をレーザー光用反射鏡の熱冷却
用水冷バイブの接合に応用した。即ち第8図に示す様に
、水冷用バイブ(40)を予め接合したステンレス鋼板
(41)に表面がSiCで被覆された黒鉛製反射鏡(4
2)を接合した。
Example 9 The joining method of the above example was applied to joining a water-cooled vibrator for thermal cooling of a laser beam reflector. That is, as shown in FIG. 8, a graphite reflector (4) whose surface is coated with SiC is attached to a stainless steel plate (41) to which a water-cooling vibrator (40) is previously bonded.
2) was joined.

実施例10 メカニカルシール回転環とステンレス鋼との接合に実施
例8の方法を応用した。即ち第9図(A)に示す通り、
ステンレス鋼製メカニカルシール台座(50)にSiC
被覆黒鉛材(51)を接合した。
Example 10 The method of Example 8 was applied to join a mechanical seal rotating ring to stainless steel. That is, as shown in FIG. 9(A),
SiC on stainless steel mechanical seal pedestal (50)
The coated graphite material (51) was joined.

従来この種メカニカルシールに於いては第9図(B)に
示す通り、ローリング(52)を用いていたが、シール
性に問題が指摘されているが、本発明接合方法に依れば
極めて優れたものとなる。
Conventionally, this type of mechanical seal used rolling (52) as shown in Figure 9 (B), but problems were pointed out in terms of sealing performance, but the joining method of the present invention provides extremely excellent sealing performance. It becomes something.

尚この場合、中心部まで炭化珪素である所謂炭化珪素焼
結体も本例に示す(炭素を基体とした炭化珪素被覆品と
同等に使用できることも確認された。) 実施例11 SiC製発熱体の端末に銅製ボルトを実施例8と同様の
条件で接合した。
In this case, a so-called silicon carbide sintered body, which is made of silicon carbide up to the center, is also shown in this example (it was also confirmed that it can be used equivalently to a silicon carbide coated product with a carbon base). Example 11 SiC heating element A copper bolt was joined to the end of the sample under the same conditions as in Example 8.

(発明の効果〕 本発明法によれば被接合材の間に片面のみに114メッ
キにて被覆された鉄または鉄合金を介在させて加熱する
という極めて簡単な操作で、しかも極く短時間で強固な
且つ耐熱性に富んだ接合体が収得出来、その産業上の利
用価値は極めて高い。
(Effects of the Invention) According to the method of the present invention, iron or iron alloy coated with 114 plating on only one side is interposed between the materials to be joined, and the operation is extremely simple and can be carried out in an extremely short time. A bonded body that is strong and highly heat resistant can be obtained, and its industrial value is extremely high.

またこの接合方法により炭素材同志あるいはこれと金属
材とを強固にしかも充分なる耐熱性をもって接合出来る
結果、広く各種の分野に接合物を利用することが出来る
に至る効果がある。
Furthermore, this bonding method allows carbon materials or carbon materials to be bonded to metal materials firmly and with sufficient heat resistance, resulting in the effect that the bonded product can be used in a wide variety of fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図であり、第2及び3図は
いずれも本発明法により得られる接合物の模擬的な構造
図である。第4図は実施例1で得られた接合物の強度を
示すグラフである。 第5図は本発明接合方法により得た接合体を用いた継手
部材の一例を示す図面であり、第6図は同じくボールバ
ルブ弁座を示す図面であり、第7図は同じく軸受の一例
を示す図面であり、第8図は同じくレーザー光用黒鉛製
反射鏡、及び第9図は同じくメカニカルシールを示す図
面である。 1・・・・・・気密容器     20・・・・・・弁
座台2・・・・・・炭素材      21・・・・・
・黒鉛シート3・・・・・・ヒーター     30・
・・・・・黒鉛シート4・・・・・・を同メシキ   
   31・・・・・・金属5・・・・・・鉄またはそ
の合金 40・・・・・・水冷用バイブロ・・・・・・
重す41・・・・・・ステンレス板7・・・・・・晶出
合金     42・・・・・・黒鉛製反射鏡8・・・
・・・金属材料     50・・・・・・メカニカル
10・・・・・・黒鉛圧縮シート     シール台座
11・・・・・・黒鉛シート51・・・・・・SiC被
覆黒鉛材12・・・・・・鉄板        52・
・・・・・ローリング(以 上) 第 図 第 図 第 図 第 5 図 第 図 第 図 第 図 2 第 図 (A)
FIG. 1 is a detailed explanatory diagram of the present invention, and FIGS. 2 and 3 are both simulated structural diagrams of a bonded product obtained by the method of the present invention. FIG. 4 is a graph showing the strength of the bonded product obtained in Example 1. FIG. 5 is a diagram showing an example of a joint member using a joined body obtained by the joining method of the present invention, FIG. 6 is a diagram showing a ball valve seat, and FIG. 7 is a diagram showing an example of a bearing. FIG. 8 is a drawing showing a graphite reflecting mirror for laser light, and FIG. 9 is a drawing showing a mechanical seal. 1... Airtight container 20... Valve seat 2... Carbon material 21...
・Graphite sheet 3・・・Heater 30・
・・・Graphite sheet 4・・・The same mesh
31...Metal 5...Iron or its alloy 40...Vibro for water cooling...
Weight 41...Stainless steel plate 7...Crystallized alloy 42...Graphite reflector 8...
...Metal material 50...Mechanical 10...Graphite compressed sheet Seal pedestal 11...Graphite sheet 51...SiC coated graphite material 12...・・Iron plate 52・
...Rolling (and above) Figure Figure Figure Figure 5 Figure Figure Figure 2 Figure (A)

Claims (1)

【特許請求の範囲】 (1)フリーカーボンを0.2重量%以上含む炭素材と
、該炭素材または金属材とを接合するに際し(但し炭素
鋼同志を接合する場合を除く)、銅を鉄または鉄合金の
表面にメッキ、化学的蒸着法等適宜な手段で被覆し、こ
れを被接合材間に存在させて、または被接合材である黒
鉛や金属材料に銅被覆を施して、真空下、不活性ガス下
またはフラックス存在下に加熱することを特徴とする炭
素材の接合方法。 (2)鉄または鉄合金が薄板状乃至箔状である請求項1
に記載の接合方法。 (3)黒鉛シート同志を請求項1または2に記載の方法
で接合して得られる接合体。 (4)請求項3の接合体を高温配管用継手部材(パッキ
ング材)として使用した継手部材。 (5)黒鉛と金属とを請求項1または2に記載の方法で
接合して得られる接合体。 (6)請求項5の金属がステンレス鋼である接合体をボ
ールバルブとして使用したボールバルブ。 (7)請求項5の接合体を用いた軸受。 (8)請求項5の金属がステンレスである接合体を用い
たレーザー光用反射鏡冷却部材。(9)請求項5の金属
がステンレス鋼である接合体を用いたメカニカルシール
。 (10)炭化珪素と金属とを請求項1または2の方法で
接合した接合体。 (11)請求項10の金属が銅であり、炭化珪素が炭化
珪素製発熱体である炭化珪素製発熱体。
[Claims] (1) When joining a carbon material containing 0.2% by weight or more of free carbon with the carbon material or metal material (excluding when joining carbon steel together), copper is Alternatively, the surface of an iron alloy may be coated with an appropriate method such as plating or chemical vapor deposition, and the coating may be placed between the materials to be joined, or the graphite or metal material to be joined may be coated with copper, and the coating may be applied under vacuum. , a method for joining carbon materials characterized by heating under an inert gas or in the presence of a flux. (2) Claim 1 wherein the iron or iron alloy is in the form of a thin plate or foil.
The joining method described in . (3) A joined body obtained by joining graphite sheets together by the method according to claim 1 or 2. (4) A joint member using the joined body according to claim 3 as a joint member (packing material) for high temperature piping. (5) A joined body obtained by joining graphite and metal by the method according to claim 1 or 2. (6) A ball valve using the joined body according to claim 5 in which the metal is stainless steel. (7) A bearing using the joined body according to claim 5. (8) A laser beam reflector cooling member using the joined body according to claim 5, wherein the metal is stainless steel. (9) A mechanical seal using the joined body according to claim 5, wherein the metal is stainless steel. (10) A joined body in which silicon carbide and metal are joined by the method of claim 1 or 2. (11) The silicon carbide heating element according to claim 10, wherein the metal is copper and the silicon carbide is a silicon carbide heating element.
JP1196127A 1989-07-27 1989-07-27 Bonding method of carbon material, bonded article by the method, and material using the bonded article Expired - Lifetime JP2805022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1196127A JP2805022B2 (en) 1989-07-27 1989-07-27 Bonding method of carbon material, bonded article by the method, and material using the bonded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1196127A JP2805022B2 (en) 1989-07-27 1989-07-27 Bonding method of carbon material, bonded article by the method, and material using the bonded article

Publications (2)

Publication Number Publication Date
JPH0360414A true JPH0360414A (en) 1991-03-15
JP2805022B2 JP2805022B2 (en) 1998-09-30

Family

ID=16352694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1196127A Expired - Lifetime JP2805022B2 (en) 1989-07-27 1989-07-27 Bonding method of carbon material, bonded article by the method, and material using the bonded article

Country Status (1)

Country Link
JP (1) JP2805022B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963435B2 (en) * 2008-01-23 2011-06-21 Seiko Epson Corporation Method of forming bonded body and bonded body
US7967185B2 (en) * 2008-01-23 2011-06-28 Seiko Epson Corporation Method of forming bonded body and bonded body
US7980448B2 (en) * 2008-01-23 2011-07-19 Seiko Epson Corporation Method of forming bonded body and bonded body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776148B1 (en) * 2015-07-31 2017-09-08 덕산하이메탈(주) Low temperature bonding method using metal coating layer with exothermic and amorphous characteristics
WO2017014605A1 (en) * 2015-07-23 2017-01-26 덕산하이메탈(주) Metal plating film having heat-generating and amorphous properties and method for manufacturing same, use of same and low-temperature bonding method using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144175A (en) * 1986-12-03 1988-06-16 新明和工業株式会社 Ceramic to metal joint structure
JPS63239165A (en) * 1987-03-27 1988-10-05 株式会社東芝 Ceramic joined body
JPS6442370A (en) * 1987-08-08 1989-02-14 Toshiba Corp Method for joining ceramics and metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144175A (en) * 1986-12-03 1988-06-16 新明和工業株式会社 Ceramic to metal joint structure
JPS63239165A (en) * 1987-03-27 1988-10-05 株式会社東芝 Ceramic joined body
JPS6442370A (en) * 1987-08-08 1989-02-14 Toshiba Corp Method for joining ceramics and metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963435B2 (en) * 2008-01-23 2011-06-21 Seiko Epson Corporation Method of forming bonded body and bonded body
US7967185B2 (en) * 2008-01-23 2011-06-28 Seiko Epson Corporation Method of forming bonded body and bonded body
US7980448B2 (en) * 2008-01-23 2011-07-19 Seiko Epson Corporation Method of forming bonded body and bonded body

Also Published As

Publication number Publication date
JP2805022B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
AU2001275856C1 (en) Reducing metals as a brazing flux
US7128980B2 (en) Composite component for fusion reactors
US4627896A (en) Method for the application of a corrosion-protection layer containing protective-oxide-forming elements to the base body of a gas turbine blade and corrosion-protection layer on the base body of a gas turbine blade
US3015885A (en) Cladding of steel plates with titanium
US4065302A (en) Powdered metal consolidation method
AU2001275856A1 (en) Reducing metals as a brazing flux
CN110257679B (en) Preparation method of molybdenum-based alloy coating
JP2004519330A (en) Method for producing clad material having steel base material and corrosion resistant metal coating
CN105834540B (en) A kind of method of Ti-Ni high-temp solder soldering TZM alloy
JPH0360414A (en) Method for joining carbon material, joined body by this method and material using the same
US3145466A (en) Diffusion bonding of metal members
CN110064834B (en) Method for realizing local diffusion connection of aluminum alloy plates
CA2440130C (en) Corrosion resistant component and method for fabricating same
AU2020101497A4 (en) Molybdenum-based alloy coating and substrate having the alloy coating
CN111687530B (en) Method for compounding hydrogen absorption expansion substance and other materials
KR20110130930A (en) Method for diffusion bonding of nickel-based alloys
JPH1163853A (en) Heating furnace pipe and manufacture of heating furnace pipe
JPS6126705A (en) Formation of metallic coating surface onto metallic product by hip treatment
JPH01290567A (en) Method for bonding carbon materials
Watson et al. Development of high-Z plasma facing components for ITER
JPS61223106A (en) Production of high alloy clad product
JPH03218986A (en) Method for joining carbon material
Capus Advances in P/M materials and processes
JPH10298677A (en) Aluminum-aluminum matrix composite, and its production
McKechnie et al. Continuous spray forming of functionally gradient materials