JPH0360393A - Induction motor control method and film winding method making use of its control method - Google Patents

Induction motor control method and film winding method making use of its control method

Info

Publication number
JPH0360393A
JPH0360393A JP1193226A JP19322689A JPH0360393A JP H0360393 A JPH0360393 A JP H0360393A JP 1193226 A JP1193226 A JP 1193226A JP 19322689 A JP19322689 A JP 19322689A JP H0360393 A JPH0360393 A JP H0360393A
Authority
JP
Japan
Prior art keywords
induction motor
voltage
film winding
current
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1193226A
Other languages
Japanese (ja)
Inventor
Katsumi Yamakawa
山川 勝己
Hitoshi Kuriyama
仁 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAJIMA ENG KK
Original Assignee
TAJIMA ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAJIMA ENG KK filed Critical TAJIMA ENG KK
Priority to JP1193226A priority Critical patent/JPH0360393A/en
Publication of JPH0360393A publication Critical patent/JPH0360393A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To attain highly accurate rotation control of a motor with simple constitution by giving an induction motor the effective value of such necessary voltage as to fulfill specified conditions based on the T-I type equivalent circuit of a three-phase induction motor as inverter output voltage, regarding the method of winding a film such as polyethylene, etc. CONSTITUTION:As regards the T type equivalent circuit equation of an induction motor, based on a T-I type equivalent circuit, the condition to maintain exciting currents ¦I0'¦ constant, that is, the effective value V1 of such necessary voltage as to fulfill formula I, that is, the one shown by formula II is given to the induction motor as inverter output voltage. Thus, the effective value V1 of voltage for maintaining the exciting current ¦I0'¦ constant can be obtained easily, and the control of the motor can be performed smoothly.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は三相誘導モーターのトルク及び回転速度の制御
方法とその制御方法を利用したポリエチレンフィルム、
ポリプロピレンフィルム等のフィルムの捲取方法に関す
るものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for controlling the torque and rotational speed of a three-phase induction motor, and a polyethylene film using the control method.
The present invention relates to a method for winding up films such as polypropylene films.

(従来の技術) 従来に於いては誘導モーターの回転子に鎖交する磁束φ
を検出し、駆動電流のベクトル量を制御する方式が採用
されていたがマイクロコンピュータ−を用いてきわめて
複雑な座標変換、ベクトル演算が行われており、その制
御システムの理解は直感的レベルを越えているものであ
り、その取扱い処理のレベルも高く現場には不向きであ
った。
(Prior art) In the past, the magnetic flux φ interlinking with the rotor of an induction motor
However, extremely complex coordinate transformations and vector calculations were performed using a microcomputer, and the understanding of the control system was beyond an intuitive level. However, the level of handling and processing was high, making it unsuitable for on-site use.

(技術的課題) 而して、本発明は従来技術の欠点に鑑みなされたもので
、簡単な構成により安価にしてその回転制御を行うこと
を技術的課題とするものである。
(Technical Problem) The present invention has been made in view of the drawbacks of the prior art, and its technical problem is to control the rotation of the rotor with a simple structure and at low cost.

(技術的手段) 本発明では上記の技術的課題を解決する為に、三相誘導
モーターのT−T型等価回路に基き、励磁電流IIol
を一定に保つための条件 EN/fN=06 = (VIN −(RIN+ J XIN) I IN
) / fN(N・・・定格時のサフィックス) を満たすような必要な電圧の実効値v1.即ちV+ =
Cc−f+ (R1+J (2wf)5Lt )4tを
インバーター出力電圧として、誘導モーターに与えるよ
うに威しである。
(Technical means) In order to solve the above technical problem, the present invention uses an excitation current IIol based on a T-T type equivalent circuit of a three-phase induction motor.
Condition for keeping constant EN/fN=06 = (VIN - (RIN+ J XIN) I IN
) / fN (N... suffix at rated time) The effective value of the required voltage v1. That is, V+ =
Cc-f+ (R1+J (2wf)5Lt)4t is given as the inverter output voltage to the induction motor.

(a)誘導モーターのT型等価回路方程式について第1
図に示したT型等価回路に於いて、その回路方程式をマ
ト リックス表示で示すと次式と なる。
(a) First about the T-type equivalent circuit equation of induction motor
In the T-type equivalent circuit shown in the figure, when the circuit equation is expressed in matrix form, it becomes the following equation.

ここにXi =ω11  ・◆・−次漏れリアクタンス
X2 =ω文2 ・・・二次漏れリアクタンスXa =
ω(3%/2)・・・励磁リアクタンス(1)式の電流
IIはそのままで二次電流を12/αに変換(α・・・
任意パラメーター)するために電流を次式で変換する。
Here, Xi = ω11 ・◆・-Second leakage reactance X2 = ω Sentence 2 ...Secondary leakage reactance Xa =
ω (3%/2)...Exciting reactance Current II in formula (1) is kept as is, and the secondary current is converted to 12/α (α...
(arbitrary parameter), convert the current using the following formula.

(2)式を(1)式に代入しCtを両辺に左側より掛け
て[Z]を(1)式のインピーダンス行列とすれば、次
式を得る。
By substituting equation (2) into equation (1) and multiplying both sides by Ct from the left side to make [Z] the impedance matrix of equation (1), the following equation is obtained.

なる変数変換である。This is a variable transformation.

(4)式のマトリックス乗算を実行して次式を得る。The following equation is obtained by performing matrix multiplication of equation (4).

(5)式を図示したのが第2図に示す一般化等価回路で
ある。
The generalized equivalent circuit shown in FIG. 2 illustrates equation (5).

これは誘導モーターの等価回路のパラメーター表示であ
る。
This is a parameter representation of the equivalent circuit of an induction motor.

而して、第2図の回路の入力インピーダンスZ1はZ1
=V+ /It = (Rt +jxt )+jXm 
 (R2/S+j I2 ) / (R2/S+j (
I2 +XI ) )二次電力P2は P2=3α2 R2/S・II2/α12 =3Rz/
S・lI212となり第1図の回路と同じになる。
Therefore, the input impedance Z1 of the circuit in Fig. 2 is Z1
=V+/It=(Rt+jxt)+jXm
(R2/S+j I2) / (R2/S+j (
I2 +XI) ) Secondary power P2 is P2=3α2 R2/S・II2/α12 =3Rz/
The circuit becomes S.lI212, which is the same as the circuit shown in FIG.

従って、トルクも不変である。Therefore, the torque also remains unchanged.

第2図の一般化等価回路ではパラメータ一定数αの値が
変わっても一次の変数は変わらないし二次では二次電力
、トルクもαに無関係で不変であることが理解できる。
In the generalized equivalent circuit shown in FIG. 2, it can be understood that even if the value of the constant parameter α changes, the primary variables do not change, and in the secondary case, the secondary power and torque are unrelated to α and remain unchanged.

次は制御解析に都合のよいα値を定めることにより制御
式に特性を与えられることを示す。
Next, we will show that characteristics can be given to the control equation by determining an α value that is convenient for control analysis.

パラメータ一定数αを a= Xs  /  (I2  + Xs  )   
         (6)とすれば、二次漏れリアクタ
ンスα2・I2−αXSは α2・I2−αx、  = α (I2・α−XI )
=α ((x2+Xs  )ct−xa  )  =a
  ((I2  +X=  )  XI  /  (x
2+x麿 )−x・ )=0 となり、第3図のT−T型等価回路が得られる。
The parameter constant α is a = Xs / (I2 + Xs)
(6), the secondary leakage reactance α2・I2−αXS is α2・I2−αx, = α (I2・α−XI)
=α ((x2+Xs)ct-xa) =a
((I2 +X= ) XI / (x
2+xmaro)-x・)=0, and the T-T type equivalent circuit shown in FIG. 3 is obtained.

ここにx+ =x1−axI a=Xs / (I2 
+xa)XS  =  α X− / R2=α2R2 I’2’=I2/α     とする。
Here x+ = x1-axI a=Xs / (I2
+xa) XS = α X- / R2 = α2R2 I'2' = I2/α.

(b)誘導モーターのT−T型等価回路について。(b) Regarding the T-T type equivalent circuit of an induction motor.

第3図のT−T型等価回路に於いては次式が成立する。In the T-T type equivalent circuit shown in FIG. 3, the following equation holds.

I< = −j SX’@ I’) /R27)トルク
は T=  (3F/2)  (R2/ (Sω))lI2
1= (3F/2)(1/R2)(3M’/2) 2 
Sω・ IIO12(8) であり、 E’x jx; I’: =Vl−(R1+JXI )
 It  (8)となる。
I< = -j SX'@I') /R27) Torque is T= (3F/2) (R2/ (Sω))lI2
1= (3F/2) (1/R2) (3M'/2) 2
Sω・IIO12(8) and E'x jx; I': =Vl-(R1+JXI)
It becomes (8).

而して、(7)式、(8)式よりll0Iを一定に保て
ば二次電流工2とトルクTはすべり周波数(S−f)ω
=2πfに比例することが理解できる。
Therefore, from equations (7) and (8), if ll0I is kept constant, the secondary current 2 and torque T will be equal to the slip frequency (S-f)ω
It can be understood that it is proportional to =2πf.

/ IIO1を一定に保つためには(9)式よりE’=jx
ζバであるから / E/f=j(2π皇−)  I。
/ To keep IIO1 constant, E'=jx from equation (9)
Because ζ is / E/f=j (2π Emperor -) I.

となりE/fを一定に保てばよいことが理解できる。Therefore, it can be understood that it is sufficient to keep E/f constant.

ここで、誘導モーターのモーター回路定数を用いて計算
されたE/fの値Coは (VIN −(RIN+ J xrN) I IN) 
/ fs = Es’ 1fN=Co    (Nは定
格時を示すサフィックス)となるからE/f一定制御す
るための制御式はVl =Co・f+  (R+  +
 J  (2wf)nI LI+(10) となる。
Here, the value Co of E/f calculated using the motor circuit constants of the induction motor is (VIN - (RIN + J xrN) I IN)
/ fs = Es' 1fN = Co (N is the suffix indicating the rated time), so the control formula for constant E/f control is Vl = Co・f+ (R+ +
J (2wf)nI LI+(10).

(10)式が成立すれば(8)式よりトルクはすべり(
Sω)に比例してくる。
If equation (10) holds true, the torque will be slip (
Sω).

(10)式を実際の誘導モーターの制御に用いる場合、
サンプリング制御とすればサンプリング時間tがt(:
1secであればインダクタンスの効果を考慮して V(n)=Co f(n)+ (R+ +J (2rf
cn))見イ)・It(n−t)(l l) と定義できる。
When formula (10) is used to control an actual induction motor,
If sampling control is used, the sampling time t is t(:
If it is 1 sec, V(n)=Co f(n)+ (R+ +J (2rf
It can be defined as:cn))Seei)・It(nt)(l l).

ここにサフィックス(n−1)は現在のサンプリング値
を表わしサフィックス(n)は次回の指令値を示す。
Here, the suffix (n-1) represents the current sampling value, and the suffix (n) represents the next command value.

/ it =x+ /(1)50= ((xt +X@ )
−(Xs2/ (X2 +Xs )) /ωso= (
xt X2 + (xt +X2)Xi ’i/ ((
1)50 (X2 +x、) 2)= (ωsou+1
2 +(1)502  (JLt +12)  (3M
/2) ) / [(1)5G(ω5oiz  +(1
)50 (3M/2)  ) 2]  =  (it 
 412  +(文1 +!L2 )  (3M/2)
) / (文2  +  (3M/2)2)     
                  (12)となり
、モーター回路定数より定まった値となる。
/ it =x+ /(1)50= ((xt +X@)
−(Xs2/ (X2 +Xs)) /ωso= (
xt X2 + (xt +X2)Xi 'i/ ((
1) 50 (X2 +x,) 2)= (ωsou+1
2 + (1) 502 (JLt +12) (3M
/2) ) / [(1)5G(ω5oiz +(1
)50 (3M/2) ) 2] = (it
412 + (sentence 1 +!L2) (3M/2)
) / (sentence 2 + (3M/2)2)
(12), which is a value determined by the motor circuit constants.

(c)実施例(応用例)(第4図) 本実施例は前記した誘導モーターの制御方法をフィルム
捲取機の捲取り速度及び捲取りテンション制御に応用し
たものである。
(c) Embodiment (Application example) (FIG. 4) In this embodiment, the above-described induction motor control method is applied to the winding speed and winding tension control of a film winding machine.

lは三相電圧型インバーターで三相誘導モーター2と電
気接続しである。 該三相誘導モーター2の回転軸には
捲取りローラー3を連結してポリエチレンフィルム、ポ
リプロピレンフィルム等のフィルム4を捲き取るように
成しである。
1 is a three-phase voltage type inverter electrically connected to the three-phase induction motor 2. A winding roller 3 is connected to the rotating shaft of the three-phase induction motor 2 so as to wind up a film 4 such as a polyethylene film or a polypropylene film.

2Aは誘導モーター2の回転速度を計測するためのタコ
ジェネレーターで回転速度現在値周波数信号fs(n−
1)を次回運転周波数指令演算回路5へ入力すべく成し
である。 又、前記した三相電圧型インバーター1から
誘導モーター2の駆動電圧の現在サンプリング周波数信
号f (11−1)を次回運転周波数指令演算回路5へ
入力すべく威しである。
2A is a tacho generator for measuring the rotational speed of the induction motor 2, and a rotational speed current value frequency signal fs(n-
1) is to be input to the next operating frequency command calculation circuit 5. Further, the current sampling frequency signal f (11-1) of the drive voltage of the induction motor 2 from the three-phase voltage type inverter 1 described above is inputted to the next operating frequency command calculation circuit 5.

而して、誘導モーター2の回転速度現在値周波数信号f
 *(n−1)と電圧型インバーター1の現在サンプリ
ング周波数信号f (n−1)より 現在すべり周波数信号(S・f) (n−1)は(S 
@ f) (11−1) = f (n−r>  −f
i(n−1)である。
Therefore, the current rotational speed frequency signal f of the induction motor 2
*(n-1) and current sampling frequency signal f of voltage type inverter 1 (n-1), current slip frequency signal (S f) (n-1) is (S
@ f) (11-1) = f (n-r> -f
i(n-1).

この時、E/f−Go(一定)制御であればモーターの
トルクT =Trl(n−1)はすべり周波数(S−f
) (n−1)に比例するから Tr6(n−1) = k (S m f) (It−
1) = k (f (n−+)fm(n−1))  
              (13)である。
At this time, if E/f-Go (constant) control is used, the motor torque T = Trl (n-1) is the slip frequency (S-f
) (n-1), so Tr6(n-1) = k (S m f) (It-
1) = k (f (n-+)fm(n-1))
(13).

6はテンションローラーで捲取りローラー3に捲き取ら
れて行くフィルム4のテンションをテンシ1ン計7によ
り検出するものである。
Reference numeral 6 is a tension roller that detects the tension of the film 4 being wound up by the winding roller 3 using a tension 7 in total.

このテンション計7により捲取りテンションの現在値電
圧信号T e n (n −1)が得られる。
This tension meter 7 provides a current value voltage signal T e n (n −1) of the winding tension.

(n −1)は現在値を表わすサフィックス、(n)は
次回指令値を表わすサフィックスである。
(n-1) is a suffix representing the current value, and (n) is a suffix representing the next command value.

この現在値電圧信号T e n < n −t >は次
回運転周波数指令演算回路5へ入力せしめられる。
This current value voltage signal Ten<n-t> is input to the next operating frequency command calculation circuit 5.

ここで、テンション計7の現在値電圧信号T e n 
(n −1)とフィルム捲取りテンションの指令値T 
e n (S )よりαをインバーターの加速減速能力
値より決まる制御定数として次回トルク必要値Trl(
n)と現在トルク値T−1)との関係は無偏差収束型動
作を与えるrt(n 次の関数形式となる。
Here, the current value voltage signal T e n of the tension meter 7
(n −1) and the command value T of film winding tension
From e n (S), the next torque required value Trl (
The relationship between the current torque value T-1) and the current torque value T-1) is in the form of a function of rt(n order) that provides a non-deviating convergence type operation.

Trt(n)rt(n−1)  (Ten(S)+α)
=T / (T e n (n −1)+α) −一一一(1
4)よって、(13)式(14)式より次回指令周波数
信号f (n)は f(n〉= (f(n−x)−fs(n−+))  (
Ten(s)+α)/ (Ten(n−1) + cc
) + f *(11)      (15)を得る。
Trt(n)rt(n-1) (Ten(S)+α)
= T / (T e n (n -1) + α) -111 (1
4) Therefore, from equations (13) and (14), the next command frequency signal f (n) is f(n>= (f(n-x)-fs(n-+)) (
Ten(s)+α)/(Ten(n-1)+cc
) + f * (11) (15) is obtained.

本制御方法において注目すべきは(15)式の成立過程
に於いて(8)式で示されたものの中に入っている二次
抵抗Rりが(14)式の採用により消去されていること
である。
What should be noted in this control method is that in the process of establishing equation (15), the secondary resistance R included in the equation (8) is eliminated by adopting equation (14). It is.

即ち、従来の誘導モーターのベクトル制御に於いて/ 常に問題となる二次抵抗R2の温度依存性が本制御方法
では短かいサンプリング時間の演算中に常に打消されて
いることを意味し、二次抵抗R2の変化は本制御に何等
影響を与えないことを示している。
In other words, this means that the temperature dependence of the secondary resistance R2, which is always a problem in conventional vector control of induction motors, is always canceled during calculations with a short sampling time in this control method. This shows that the change in resistance R2 has no effect on this control.

一方、フィルム4の速度はピンチローラ−8を介してヤ
ード発振器9によりフィルム現在捲取り速度信号U(n
−1)として次回運転周波数指令演算回路5へ入力すべ
く威しである・ U (S)をフィルム捲取り速度指令値信号とするとモ
ーターの次回の回転速度指令周波数信号fs(n)は制
御定数βを用いて、 fs(n)=  fs(n−t〉 (U(S)  +β
)  /  (U(n−t) +β)(16) となる。
On the other hand, the speed of the film 4 is determined by a yard oscillator 9 via a pinch roller 8 as a film current winding speed signal U(n
-1) to be input to the next operating frequency command calculation circuit 5. If U (S) is the film winding speed command value signal, the motor's next rotational speed command frequency signal fs (n) is a control constant. Using β, fs(n)=fs(nt〉(U(S) +β
) / (U(nt) + β) (16).

よって(15)式、(16)式より f (n)= (f (n−1) −f 5(n−t)
)  (Ten(s)+α)/ (Tencn−+〉+
a)+ fs(n−1) (U(S)+β)/(U(n
−+)+β)                  (
17)となる。
Therefore, from equations (15) and (16), f (n) = (f (n-1) - f 5 (nt)
) (Ten(s)+α)/(Tencn-+〉+
a) + fs(n-1) (U(S)+β)/(U(n
−+)+β) (
17).

即ち、現在(n−1)のサンプリング値より次回モータ
ーに加わるべき電圧の次回指令周波数信号f(n)が指
定される。
That is, the next command frequency signal f(n) of the voltage to be applied to the motor next time is specified based on the current (n-1) sampling value.

10は次回運転電圧指令演算回路で前記した三相電圧型
インバーター1への次回指令電圧信号V(n)はE’/
f=co(一定)を満たすべき要請より(11)式で定
まる。
10 is the next operating voltage command calculation circuit, and the next command voltage signal V(n) to the three-phase voltage type inverter 1 described above is E'/
Based on the requirement that f=co (constant) be satisfied, it is determined by equation (11).

即ち、実効値に変換して V(n) = Co−f (n) + 、/”M丁+ 
(2wfrnt JLi” ) 2・ I (n−1)
                 (18)と定まる
That is, converted to an effective value, V(n) = Co−f (n) +, /”M+
(2wfrnt JLi”) 2・I (n-1)
It is determined as (18).

ここに、R1はステーター−次抵抗、文1は(12)式
で定まる値、I (n−1)は電流センサーCTより得
られる現在のサンプリング電流値信号である。
Here, R1 is the stator-order resistance, statement 1 is a value determined by equation (12), and I (n-1) is the current sampling current value signal obtained from the current sensor CT.

而して、捲取り機の捲取りテンション、捲取り速度は第
4図に於いて(17)式、(18)式により制御される
The winding tension and winding speed of the winding machine are controlled by equations (17) and (18) in FIG.

(効 果) 而して、本発明は叙上の如き構成及び作用を右するので
下記の如き効果がある。
(Effects) Since the present invention has the structure and operation described above, it has the following effects.

請求項1の記載に於いて。In the description of claim 1.

励磁電流1Io1を一定に保つための電圧の実効値v1
を容易に得ることが出来てモーターの制御がスムースに
行い得る。
Effective value v1 of voltage to keep excitation current 1Io1 constant
can be easily obtained and the motor can be controlled smoothly.

請求項2の記載に於いて。In the description of claim 2.

次回指令電圧信号V(n)を容易に得ることが出来、き
わめて高精度の制御がスムースに行い得る。
The next command voltage signal V(n) can be easily obtained, and control with extremely high precision can be performed smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る誘導モーターのT型等価回路、第
2図は一般化等価回路、第3図はT−T型等価回路であ
る。 第4図はフィルム捲取方法を示すブロックダイヤ
グラムである。 l・・・三相電圧型インバーター 2・・・三相誘導モーター 4・・・フィルム 5・・・次回運転周波数指令演算回路 10・・・次回運転電圧指令演算回路 f(n)  ・・・次回指令周波数信号V(n)  ・
・・次回指令電圧信号
FIG. 1 shows a T-type equivalent circuit of an induction motor according to the present invention, FIG. 2 shows a generalized equivalent circuit, and FIG. 3 shows a T-T type equivalent circuit. FIG. 4 is a block diagram showing the film winding method. l...Three-phase voltage type inverter 2...Three-phase induction motor 4...Film 5...Next operation frequency command calculation circuit 10...Next operation voltage command calculation circuit f(n)...Next time Command frequency signal V(n) ・
・Next command voltage signal

Claims (2)

【特許請求の範囲】[Claims] (1)三相誘導モーターのT−I型等価回路に基き励磁
電流|I■|を一定に保つための条件 E_N/f_N=C_0 ={V_1_N−(R_1_N+jx_■_■)I_1
_N}/f_N(N・・・定格時のサフィックス) を満たすような必要な電圧の実効値V_1、即ちV_1
=C_0・f+√{R_1^2+(2πfl_1′)^
2}なる式で与えた誘導モーターの制御方法
(1) Conditions for keeping the excitation current |I■| constant based on the T-I type equivalent circuit of a three-phase induction motor E_N/f_N=C_0 = {V_1_N-(R_1_N+jx_■_■)I_1
_N}/f_N (N... suffix at rated time) The effective value of the necessary voltage V_1, that is, V_1
=C_0・f+√{R_1^2+(2πfl_1')^
2} Induction motor control method given by the formula
(2)フィルムの捲取り速度の制御及びテンションの制
御を電圧型インバーターを介して誘導モーターにより行
うものに於いて、 フィルム現在捲取速度信号U_(_n_−_1_)とフ
ィルム捲取りテンションの現在値電圧信号T_e_n_
(_n_−_1_)とモーターの回転速度現在値周波数
信号f_m_(_n_−_1_)と現在サンプリング周
波数信号f_(_n_−_1_)とを夫々次回運転周波
数指令演算回路5へ入力せしめて演算し、該演算回路5
からの次回指令周波数信号f_(_n_)を前記電圧型
インバーターへ入力せしめる一方、該次回指令周波数信
号f_(_n_)を次回運転電圧指令演算回路10へ入
力せしめて演算し、次回指令電圧信号V_(_n_)を
V_(_n_)=C_0・f_(_n_)+√{R_1
^2+(2πf_(_n_)l_1′)^2}×I_(
_n_−_1_) なる式で電圧型インバーターへ入力せしめて誘導モータ
ーを制御すべく成したフィルム捲取方法
(2) In cases where the film winding speed and tension are controlled by an induction motor via a voltage inverter, the current film winding speed signal U_(_n_-_1_) and the current value of the film winding tension are Voltage signal T_e_n_
(_n_-_1_), motor rotational speed current value frequency signal f_m_(_n_-_1_), and current sampling frequency signal f_(_n_-_1_) are respectively input to the next operation frequency command calculation circuit 5 and calculated. circuit 5
The next command frequency signal f_(_n_) from V_(_n_) is input to the voltage type inverter, and the next command frequency signal f_(_n_) is input to the next operating voltage command calculation circuit 10 for calculation, and the next command voltage signal V_( _n_) to V_(_n_)=C_0・f_(_n_)+√{R_1
^2+(2πf_(__n_)l_1')^2}×I_(
_n_−_1_) A film winding method developed to control an induction motor by inputting it to a voltage type inverter using the following formula:
JP1193226A 1989-07-26 1989-07-26 Induction motor control method and film winding method making use of its control method Pending JPH0360393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1193226A JPH0360393A (en) 1989-07-26 1989-07-26 Induction motor control method and film winding method making use of its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1193226A JPH0360393A (en) 1989-07-26 1989-07-26 Induction motor control method and film winding method making use of its control method

Publications (1)

Publication Number Publication Date
JPH0360393A true JPH0360393A (en) 1991-03-15

Family

ID=16304418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193226A Pending JPH0360393A (en) 1989-07-26 1989-07-26 Induction motor control method and film winding method making use of its control method

Country Status (1)

Country Link
JP (1) JPH0360393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777569A (en) * 1993-09-08 1995-03-20 Ishikawa Seisakusho:Kk Sound source detector
CN109534063A (en) * 2018-11-30 2019-03-29 长春工业大学 More motor coupled system indirect tension control methods based on multiple agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110496A (en) * 1980-01-31 1981-09-01 Meidensha Electric Mfg Co Ltd Controlling system for induction motor
JPS6331491A (en) * 1986-07-23 1988-02-10 Mitsubishi Electric Corp Controller for air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110496A (en) * 1980-01-31 1981-09-01 Meidensha Electric Mfg Co Ltd Controlling system for induction motor
JPS6331491A (en) * 1986-07-23 1988-02-10 Mitsubishi Electric Corp Controller for air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777569A (en) * 1993-09-08 1995-03-20 Ishikawa Seisakusho:Kk Sound source detector
CN109534063A (en) * 2018-11-30 2019-03-29 长春工业大学 More motor coupled system indirect tension control methods based on multiple agent

Similar Documents

Publication Publication Date Title
Ohtani et al. Vector control of induction motor without shaft encoder
US4757248A (en) Induction motor torque control system
US4282473A (en) Rotating field machine drive and method
Bose Scalar decoupled control of induction motor
JPH0360393A (en) Induction motor control method and film winding method making use of its control method
CN1032962C (en) Apparatus for controlling speed of elevator
US4967134A (en) Synthesis of load-independent ac drive systems
JPH0250718B2 (en)
US2408461A (en) Control system
US5150029A (en) Method and apparatus for controlling the magnetic flux of an induction motor
JP2625969B2 (en) Vector controller for induction motor
RU1836801C (en) Induction motor with diode rectifier
JPS58127599A (en) Speed setter for variable speed motor group
Wu et al. Eigenvalue sensitivity analysis of GTO-CSI induction machine drives
SU1758821A1 (en) A c electric drive
Paul et al. AC operated EOT crane control with variable voltage variable frequency drive
Luiz et al. Assessment of flux observer performance for induction motor drive
JPS611288A (en) Controller for induction motor
JPH0349587A (en) Method of controlling induction motor and method of winding film utilizing the same
JP2521985B2 (en) Control method of induction motor
JP2001194433A (en) Inverter apparatus equipped with constant-measurement setting function
JPH0223086A (en) Controlling method for induction motor
SU1739326A1 (en) Method of leakage inductance resistivity measuring of asynchronous motor windings
JPH0356088A (en) Controlling method for induction motor, and film taking-up method using its controlling method
CN114142780A (en) Stator resistance robust hybrid model flux linkage observation system