JPH0358487A - Manufacture of diamond light emitting element - Google Patents

Manufacture of diamond light emitting element

Info

Publication number
JPH0358487A
JPH0358487A JP1192678A JP19267889A JPH0358487A JP H0358487 A JPH0358487 A JP H0358487A JP 1192678 A JP1192678 A JP 1192678A JP 19267889 A JP19267889 A JP 19267889A JP H0358487 A JPH0358487 A JP H0358487A
Authority
JP
Japan
Prior art keywords
diamond
light emitting
light
carbon monoxide
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1192678A
Other languages
Japanese (ja)
Inventor
Satoshi Katsumata
聡 勝又
Tomio Kazahaya
風早 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1192678A priority Critical patent/JPH0358487A/en
Publication of JPH0358487A publication Critical patent/JPH0358487A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a diamond light emitting element of high luminance by a method wherein a diamond thin film is formed on a substrate through a vapor phase composition method under a reaction pressure of 0.01-20Torr by the use of carbon monoxide and hydrogen gas as material gas. CONSTITUTION:A diamond thin film is formed on a substrate through a vapor phase composition method under a reaction pressure of 0.01-20Torr by the use of carbon monoxide and hydrogen gas as material gas. That is, when material gas of carbon monoxide and hydrogen gas is used to form a diamond thin film on a substrate, even if carbon monoxide is made comparatively high in concentration, the diamond thin film oriented in a (100) plane can be obtained without deteriorating diamond crystal grains in crystallinity if a reaction pressure is kept lower than a certain value. By this setup, a diamond light emitting element capable of emitting light of high brightness can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、発光層にダイヤモンド薄膜を用いた発光デバ
イス、すなわちダイヤモンド発光素子の製造方法に関し
,特に高輝度の発光を可能としたダイヤモンド発光素子
の製造方法に関する.[従来の技術] 近年、カラー発光をともなう発光デバイスとして、ダイ
ヤモンド発光素子が注目されている.特に、従来の発光
デバイスではなし得なかった、十分な輝度を有し色相の
良い青色発光を行なう発光素子としてダイヤモンド発光
素子が期待されている. 従来、ダイヤモンド発光素子に関しては、特開昭63−
246885号あるいは特開平1−102893号等で
その研究戊果が報告開示されている。このうち、特開昭
63−2461185号公報には,窒素濃度の高い合金
溶媒を用い、かつ該溶媒中にほう素を均一に添加して、
高圧温度差法によりダイヤモンド発光素子を合成する技
術が記載されている.また、特開平1−102893号
公報には、発光層をダイヤモンド薄膜で形威し、かつこ
の発光層を絶縁層で挾んだ構或の発光デバイスが記載さ
れている. [解決すべき課題] 上述した従来の技術のうち,特開昭63−246885
号のものは、高圧温度差法のため、製造方法を実用化す
るのが困難であり、また、基板上にダイヤモンド薄膜な
生威させることができなかった.一方、特開平1−10
2893号のものは、実用化の可能性は高いものの、発
光輝度を高める観点からすると、改良の余地があった. ダイヤモンドの場合,発光輝度の高い結晶面は(100
)面であることが知られている.そこで、高輝度の発光
をもたらす素子とするには,発光面を(10G)面とす
る必要があるが、数gmのダイヤモンド結晶粒子が集ま
って膜を構成するダイヤモンド薄膜゛において,結晶粒
子を(100)面に配向するには、例えば、メタンと水
素の混合ガスを用いるが、この場合には、ダイヤモンド
合虞時における原料ガス中のメタンガス濃度を高くしな
ければならないことが知られている.しかし、単にメタ
ンガス濃度を高くしただけでは、ダイヤモンド結晶粒子
の結晶性が悪くなり、発光輝度の点で不利になるという
問題があった. さらに、この場合のメタンガスの濃度は3%前後と非常
に制御幅が狭く、制御性も困難であり、また、生威速度
も小さくコストの点からも実用化が困難であった. 本発明は上記の事情にかんがみてなされたもので,高輝
度の発光を可能とするダイヤモンド発光素子を得るため
、ダイヤモンド薄膜におけるダイヤモンド結晶粒子の配
向面が(100)面となるようなダイヤモント発光素子
の簡単な製造方法の提供を目的とする. なお、従来、各種の分野においてダイヤモンド合威技術
を利用する場合、ダイヤモンドS膜を生成させる際の条
件として重要なことは、均一のダイヤモンドg膜を速く
生威させることである.このため、現在行なわれている
一般的なダイヤモンド薄膜合威においては、反応圧力を
40〜50Torrとするのが常であった.これに対し
、ダイヤモンド薄膜を発光素子に利用する場合,高郷度
発光素子製造時における反応圧力について検討したこと
はなかった.すなわち,反応圧力をどの程度にすれば、
発光面の配向が(10G)面となり高輝度の発光を得ら
れるかについては検討されたことがなかった. [課題の解決手段] 上記目的を達或するため、本発明者らは、鋭意研究を重
ねた結果,一酸化炭素と水素ガスからなる原料ガスを用
いてダイヤモンド薄膜を生威する際に、一酸化炭素ガス
濃度を比較的高くしても、反応圧力を一定圧力以下とす
ると、ダイヤモンド結晶粒子の結晶性を損なうことなく
、( 100)面配向のダイヤモンド生戒を行なえるこ
とを見出し、本発明を完威するに至った. すなわち,本発明のダイヤモンド発光素子の製造方法は
、原料ガスに一酸化炭素と水素ガスを用い、反応圧力0
.01〜20Torrの条件下における気相合威法によ
って、基体上にダイヤモンド薄膜を生成して発光素子を
製造するようにしてあり,好ましくは、上記原料ガス中
における一酸化炭素の含有率を、ガス全体に対して30
VoJLl以下の含有率としてある. [作用] 上記発明の方法によって製造したダイヤモンド発光素子
によれば、発光面のダイヤモンド結晶粒子の配向が(i
on)面となり,高輝度の発光を得られる. [実施例] 以下、本発明ダイヤモンド発光素子の製造方法を具体的
に説明する. 本発明のダイヤモンド発光素子の製造方法としては,気
相法により結晶性ダイヤモンドを形威することのできる
方法であれば、特に制限はなく,例えば直流または交流
アーク放電によりプラズマ分解する方法、高周波誘電放
電によりプラズマ分解する方法、マイクロ波放電により
プラズマ分解する方法(有磁場−CVD法を含む.)、
光エネルギーにより分解する方法あるいはプラズマ分解
をイオン室またはイオン銃で行なわせ、電界によりイオ
ンを引き出すイオンビーム法、熱フィラメントによる加
熱により熱分解する熱分解法( EACVD法を含む.
)、さらに燃焼炎法、スパッタリング法などのいずれも
採用することができる.特に、一酸化炭素ガスと水素ガ
スとの混合ガスにマイクロ波を照射し、プラズマを形或
させることにより活性化された該混合ガスを、基体に接
触させてダイヤモンドな生戊させるマイクロ波プラズマ
CVD法、あるいは、この際、マイクロ波を該基体に対
して複数の方向から導入するマイクロ波プラズマCVD
法.また,発散磁界において生しるマイクロ波吸収帯域
に、広範囲にわたって高密度安定化プラズマを発生せし
め、基体上にダイヤモンドを気相戊長させる有磁場CV
D法などが好ましい。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a light-emitting device using a diamond thin film as a light-emitting layer, that is, a diamond light-emitting element, and in particular, a diamond light-emitting element capable of emitting high-intensity light. Concerning the manufacturing method. [Prior Art] In recent years, diamond light-emitting elements have attracted attention as light-emitting devices that emit color light. In particular, diamond light-emitting devices are expected to be a light-emitting device that emits blue light with sufficient brightness and a good hue, which has not been possible with conventional light-emitting devices. Conventionally, regarding diamond light emitting elements, Japanese Patent Application Laid-Open No. 1986-
The research results are reported and disclosed in No. 246885 or Japanese Patent Application Laid-open No. 1-102893. Among these, JP-A No. 63-2461185 uses an alloy solvent with a high nitrogen concentration and uniformly adds boron to the solvent.
A technique for synthesizing diamond light-emitting devices using a high-pressure temperature difference method is described. Furthermore, Japanese Patent Application Laid-Open No. 1-102893 describes a light emitting device having a structure in which a light emitting layer is formed of a diamond thin film and this light emitting layer is sandwiched between insulating layers. [Problems to be solved] Among the conventional techniques mentioned above, Japanese Patent Application Laid-Open No. 63-246885
The method used in this issue was difficult to put into practical use because it used a high-pressure temperature difference method, and it was also impossible to produce a thin diamond film on the substrate. On the other hand, JP-A-1-10
Although the product of No. 2893 has a high possibility of being put to practical use, there is still room for improvement from the viewpoint of increasing luminance. In the case of diamond, the crystal plane with high luminance is (100
) is known to be a surface. Therefore, in order to create a device that emits high-intensity light, it is necessary to make the light-emitting surface a (10G) plane. 100) plane, for example, a mixed gas of methane and hydrogen is used, but it is known that in this case, it is necessary to increase the methane gas concentration in the raw material gas during diamond coalescence. However, there was a problem in that simply increasing the methane gas concentration deteriorated the crystallinity of the diamond crystal particles, resulting in a disadvantage in terms of luminance. Furthermore, the concentration of methane gas in this case was around 3%, which made the control range very narrow and controllability difficult, and the growth rate was also low, making it difficult to put it into practical use from a cost standpoint. The present invention has been made in view of the above circumstances, and in order to obtain a diamond light emitting device that enables high luminance light emission, a diamond light emitting device in which the orientation plane of diamond crystal grains in a diamond thin film is the (100) plane. The purpose is to provide a simple method for manufacturing devices. Conventionally, when using diamond coalescence technology in various fields, an important condition for producing a diamond S film is to quickly produce a uniform diamond G film. For this reason, in the general diamond thin film synthesis currently practiced, the reaction pressure has usually been set at 40 to 50 Torr. On the other hand, when using a diamond thin film in a light emitting device, there has been no study on the reaction pressure during the production of a high density light emitting device. In other words, at what level should the reaction pressure be set?
It has never been investigated whether the orientation of the light-emitting surface is the (10G) plane and whether high-brightness light emission can be obtained. [Means for Solving the Problems] In order to achieve the above object, the inventors of the present invention have conducted intensive research, and have found that, when producing a diamond thin film using a raw material gas consisting of carbon monoxide and hydrogen gas, It has been discovered that even if the concentration of carbon oxide gas is relatively high, if the reaction pressure is kept below a certain pressure, it is possible to carry out the treatment of diamonds with (100) plane orientation without impairing the crystallinity of diamond crystal particles, and the present invention It has come to be a complete success. That is, the method for manufacturing a diamond light emitting device of the present invention uses carbon monoxide and hydrogen gas as raw material gases, and the reaction pressure is 0.
.. A light emitting device is manufactured by producing a diamond thin film on a substrate by a gas phase synthesis method under conditions of 0.01 to 20 Torr. Preferably, the content of carbon monoxide in the raw material gas is lower than that of the entire gas. 30 against
The content is below VoJLl. [Function] According to the diamond light emitting device manufactured by the method of the above invention, the orientation of the diamond crystal particles on the light emitting surface is (i
on) surface, and high-intensity light emission can be obtained. [Example] The method for manufacturing the diamond light emitting device of the present invention will be specifically explained below. The method for manufacturing the diamond light emitting device of the present invention is not particularly limited as long as it can form crystalline diamond using a vapor phase method, such as plasma decomposition using direct current or alternating current arc discharge, high frequency dielectric A method of plasma decomposition by electric discharge, a method of plasma decomposition by microwave discharge (including magnetic field-CVD method),
A method in which decomposition is performed using light energy, an ion beam method in which plasma decomposition is performed in an ion chamber or an ion gun, and ions are extracted by an electric field, and a thermal decomposition method in which thermal decomposition is performed by heating with a hot filament (including the EACVD method).
), combustion flame method, sputtering method, etc. can also be adopted. In particular, microwave plasma CVD involves irradiating a mixed gas of carbon monoxide gas and hydrogen gas with microwaves to form a plasma, which is activated and brought into contact with a substrate to form a diamond. or, in this case, microwave plasma CVD, in which microwaves are introduced into the substrate from multiple directions.
Law. In addition, a magnetic field CV that generates high-density stabilized plasma over a wide range in the microwave absorption band generated in a diverging magnetic field and elongates diamond in the vapor phase on the substrate.
D method etc. are preferred.

この場合基体としては、一般的には、ガラス,サファイ
ア等の透明基体あるいはシリコン,マンガン,ハナシウ
ム,タリウム,アルミニウム,チタン,タングステン.
モリブデン,ゲルマニウム及びクロムなどの金属、これ
ら金属の酸化物,窒化物及び炭化物、AI20z−Fe
系、TiC−Ni系、Tic−Go系及び84C−Fe
系等のサーメットならびに各種セラミックス等を用いる
ことができる.透明基体を用いる場合には、可視領域で
の透明度がよく、かつ表面平滑性に優れたものを用いる
ことが好ましい。
In this case, the substrate is generally a transparent substrate such as glass or sapphire, or silicon, manganese, hanasium, thallium, aluminum, titanium, or tungsten.
Metals such as molybdenum, germanium and chromium, oxides, nitrides and carbides of these metals, AI20z-Fe
system, TiC-Ni system, Tic-Go system and 84C-Fe
Cermets such as cermets and various ceramics can be used. When using a transparent substrate, it is preferable to use one that has good transparency in the visible region and excellent surface smoothness.

そして、ダイヤモンド合或時における基体の表面温度は
、前記原料ガスの励起手段によって異なるので、一概に
快定することはできないが、通常,500〜1200℃
、好ましくは600〜1100°Cてある。
The surface temperature of the substrate during diamond coalescence differs depending on the excitation means for the raw material gas, so it cannot be fixed unconditionally, but it is usually between 500 and 1200 degrees Celsius.
, preferably 600 to 1100°C.

前記の温度か、500℃より低いと、ダイヤモンド層の
生成速度が遅くなったり、グラファイト等の非ダイヤモ
ント或分の含有や結晶性の低下など生成物の純度,均質
性が失われたりする。一方、1200℃より高くしても
、それに見合った効果は奏されず、ダイヤモンドが生威
されなかったり、エネルギー効率の点ても不利になる. 原料ガスとしては、一酸化炭素を炭素源ガスとして含有
する水素ガスを用いる。この場合、原料ガス中における
一酸化炭素の含有率は、:lOVo文X以下.好ましく
は20VoJl %以下、より好ましくは10Vou 
Z以下とする。炭素源ガスの含有率をこれ以上高くする
と、反応圧力のいかんに拘わらず.ダイヤモンド膜中の
非ダイヤモン}!−成分の増加により発光素子としての
性能が低下する.上記原料ガスを用いてダイヤモンド合
或を行なう際の反応圧力は、通常0.01〜20Tor
r、好ましくは0.01〜15Torrとする.反応圧
力が0.01Torrより低過ぎると生或速度か遅くな
り、また20Torrより高過ぎると(100)面の配
向が困難となり、特に40Torrより高過ぎると発光
面のダイヤモンド結晶面の配向面は(111)面が優先
となり、100丁orrではほぼ完全に(111)面配
向となる. 反応時間は、前記原料ガスの濃度,基体の種類,基体の
表面の温度,反応圧力.必要とするダイヤモンドa膜の
厚さなどにより相違するので、これらに応じて適宜決定
する. ダイヤモンド薄膜からなる発光面は、通常、絶縁体であ
るが,発光素子の種類.使用法によっては発光面に導電
性をもたせる必要の生じることもある.この場合には、
不純物をドーピングする。
If the temperature is lower than 500° C., the formation rate of the diamond layer will be slow, and the purity and homogeneity of the product will be lost due to the inclusion of non-diamond components such as graphite and a decrease in crystallinity. On the other hand, even if the temperature is higher than 1200°C, the corresponding effect will not be achieved, diamonds will not be grown, and energy efficiency will be disadvantageous. As the raw material gas, hydrogen gas containing carbon monoxide as a carbon source gas is used. In this case, the content of carbon monoxide in the raw material gas is less than or equal to: lOVoTextX. Preferably 20VoJl% or less, more preferably 10Vou
It shall be less than or equal to Z. If the content of carbon source gas is increased any higher than this, regardless of the reaction pressure. Non-diamond in diamond film}! - The performance as a light emitting device deteriorates due to an increase in the component. The reaction pressure when performing diamond coalescence using the above raw material gas is usually 0.01 to 20 Torr.
r, preferably 0.01 to 15 Torr. If the reaction pressure is too low than 0.01 Torr, the production rate will be slow, and if it is too high than 20 Torr, it will be difficult to align the (100) plane.In particular, if the reaction pressure is too high than 40 Torr, the orientation plane of the diamond crystal plane on the light emitting surface will be ( The (111) plane has priority, and at 100 orr, the (111) plane is almost completely oriented. The reaction time depends on the concentration of the raw material gas, the type of substrate, the temperature of the surface of the substrate, and the reaction pressure. It varies depending on the required thickness of the diamond a film, etc., and should be determined accordingly. The light-emitting surface made of a diamond thin film is usually an insulator, but it depends on the type of light-emitting element. Depending on the usage, it may be necessary to make the light emitting surface conductive. In this case,
Doping with impurities.

不純物としては、例えば. B , Al, Ga, 
In及びTI等の周期表第mb族元素の単体並びにその
化合物や、N,P,Sb. Bl等の周期表第vb族元
素の単体並びにその化合物を挙げることができる.ダイ
ヤモンド薄膜は、例えば、ほう素を添加するとP型半導
体としての性質を生じ、リンを添加するとn型半導体と
しての性質を生じる. 前記原料ガスにおける前記第mb族元素の単体並びにそ
の化合物及び、第vb族元素の単体並びにその化合物の
少なくとも一種(以下,これをトーバント元素と称する
ことがある.)の含有割合は,前記トーバント元素と前
記一酸化炭素との割合[(ドーバント元素)/(一酸化
炭素)モル比]で,通常. 10−’〜10−’、好ま
しくは10−7〜10−2である. このようにしてダイヤモンド発光素子を製造すると、ダ
イヤモンド結晶膜の発光面が(100)面配向となって
高輝度発光が可能となる. [実施例と比較例] 実施例1 次の条件によってダイヤモンド発光素子を製造した. 〈条件〉 原料ガス+ GO−}1.  Go含有率5VoJl[
全流量100sccM 基体  :シリコン基板 表面温度900℃反応圧力:
 10Torr 反応時間: 4時間 合威法 :マイクロプラズマCVD法 (マイクロ波周波数2.45GH.) 〈結果〉 この結果、 SEM (走査形電子顕微鏡)で自形而の
USを行なったところ、第1図の代用写真に示すように
結晶粒子か口形をした( 100)面配向を示している
ことが判明した. また. SEMと分光器でカソ一ドルミネッセンスベク
トルの測定を行なったところ照射電子線の加速電圧5k
v,電子線プローブの電流密度が2ロO uLA/mm
”の条件で、波長300 〜800nm (7)分光を
得た.そして、420nmの比較例lに対する強度比は
8であった. 分光特性を第3図に示す.なお、ピーク高さは適宜スケ
ールダウンしてある。
Examples of impurities include: B, Al, Ga,
Elements of group mb elements of the periodic table such as In and TI, as well as compounds thereof, N, P, Sb. Examples include simple elements of Group VB elements of the periodic table, such as Bl, as well as their compounds. For example, when a diamond thin film is added with boron, it exhibits properties as a P-type semiconductor, and when phosphorus is added, it exhibits properties as an N-type semiconductor. The content ratio of the simple substance of the Group Mb element and its compound, and the simple substance of the Group VB element and at least one of its compounds (hereinafter sometimes referred to as a tovant element) in the raw material gas is equal to the tobant element. The ratio of the above carbon monoxide [(dovant element)/(carbon monoxide) molar ratio] is usually. 10-' to 10-', preferably 10-7 to 10-2. When a diamond light-emitting device is manufactured in this manner, the light-emitting surface of the diamond crystal film is oriented in the (100) plane, making it possible to emit high-intensity light. [Examples and Comparative Examples] Example 1 A diamond light emitting device was manufactured under the following conditions. <Conditions> Raw material gas + GO-}1. Go content 5VoJl [
Total flow rate 100sccM Substrate: Silicon substrate Surface temperature 900℃ Reaction pressure:
10 Torr Reaction time: 4 hours Method: Microplasma CVD method (microwave frequency 2.45 GH.) <Results> As a result, when we performed automorphic US using an SEM (scanning electron microscope), Fig. 1 As shown in the substitute photo, it was found that the crystal grains had a mouth-shaped (100) plane orientation. Also. When the cassodoluminescence vector was measured using an SEM and a spectrometer, the accelerating voltage of the irradiated electron beam was 5k.
v, the current density of the electron beam probe is 2 O uLA/mm
”, a spectrum with a wavelength of 300 to 800 nm (7) was obtained.The intensity ratio of 420 nm to Comparative Example 1 was 8.The spectral characteristics are shown in Figure 3.The peak heights are scaled appropriately. It's down.

塩紋負1 〈条件〉 反応圧力を100Torrとした以外、実施例lと同じ
条件でダイヤモンド発光素子を製造した。
Salt pattern negative 1 <Conditions> A diamond light emitting device was manufactured under the same conditions as in Example 1 except that the reaction pressure was 100 Torr.

く結果〉 この結果、第2図に示すように結晶粒子かΔ形をした(
111)面配向を示していることか判明した. 分光特性を第3図に示す。
As a result, as shown in Figure 2, the crystal grains were Δ-shaped (
111) It was found that it shows plane orientation. The spectral characteristics are shown in Figure 3.

生蚊亘l 反応圧力を50Torrとした以外、実施例1と同じ条
件でダイヤモンド発光素子を製造した.〈結果〉 この結果、420nmの比較例1に対する強度比は2で
あった. 分光特性を第3図に示す. 上記実施例と比較例からも明らかなように、酸化炭素と
水素ガスを用い、反応圧力を10Torrとしてダイヤ
モンド発光素子を製造すると、輝度の高い発光デバイス
を得られることが判明した.[発明の効果〕 以上のように,本発明のダイヤモンド発光素子の製造方
法によれば、簡単な方法で高輝度のダイヤモンド発光素
子を製造することかできる.
A diamond light emitting device was manufactured under the same conditions as in Example 1 except that the reaction pressure was 50 Torr. <Results> As a result, the intensity ratio of 420 nm to Comparative Example 1 was 2. The spectral characteristics are shown in Figure 3. As is clear from the above Examples and Comparative Examples, it has been found that when a diamond light emitting device is manufactured using carbon oxide and hydrogen gas at a reaction pressure of 10 Torr, a light emitting device with high brightness can be obtained. [Effects of the Invention] As described above, according to the method for manufacturing a diamond light emitting device of the present invention, a diamond light emitting device with high brightness can be manufactured by a simple method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法によって製造したダイヤモンド発
光素子発光面のダイヤモンドの配向構造を示す図面に代
る電子顕微鏡写真、第2図は比較例の製造方法によって
製造したダイヤモンド発光素子発光面のダイヤモンドの
配向構造を示す図面に代る電子顕微鏡写真、第3図は本
発明方法による実施例及び比較例で製造したダイヤモン
ド発光素子の分光特性図を示す.
FIG. 1 is an electron micrograph showing the diamond orientation structure on the light-emitting surface of a diamond light-emitting device manufactured by the method of the present invention, and FIG. 2 is an electron micrograph showing the diamond orientation structure on the light-emitting surface of a diamond light-emitting device manufactured by the manufacturing method of the comparative example. FIG. 3 is an electron micrograph in place of a drawing showing the orientation structure of diamond.

Claims (2)

【特許請求の範囲】[Claims] (1)原料ガスに一酸化炭素と水素ガスを用い、反応圧
力0.01〜20Torrの条件下における気相合成法
によって、基体上にダイヤモンド薄膜を生成して発光素
子を製造することを特徴としたダイヤモンド発光素子の
製造方法。
(1) A light-emitting device is manufactured by producing a diamond thin film on a substrate by a vapor phase synthesis method using carbon monoxide and hydrogen gas as raw material gases and a reaction pressure of 0.01 to 20 Torr. A method for manufacturing a diamond light emitting device.
(2)上記原料ガス中における一酸化炭素の含有率を、
ガス全体に対して30Vol%以下の含有率としたこと
を特徴とする請求項1記載のダイヤモンド発光素子の製
造方法。
(2) The content of carbon monoxide in the raw material gas is
2. The method for manufacturing a diamond light emitting device according to claim 1, wherein the content of the gas is 30 Vol% or less based on the entire gas.
JP1192678A 1989-07-27 1989-07-27 Manufacture of diamond light emitting element Pending JPH0358487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192678A JPH0358487A (en) 1989-07-27 1989-07-27 Manufacture of diamond light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192678A JPH0358487A (en) 1989-07-27 1989-07-27 Manufacture of diamond light emitting element

Publications (1)

Publication Number Publication Date
JPH0358487A true JPH0358487A (en) 1991-03-13

Family

ID=16295227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192678A Pending JPH0358487A (en) 1989-07-27 1989-07-27 Manufacture of diamond light emitting element

Country Status (1)

Country Link
JP (1) JPH0358487A (en)

Similar Documents

Publication Publication Date Title
US5210430A (en) Electric field light-emitting device
US6514113B1 (en) White light source using carbon nanotubes and fabrication method thereof
RU2194328C2 (en) Cold-emission film cathode and its production process
US5750188A (en) Method for forming a thin film of a non-stoichiometric metal oxide
JP3592055B2 (en) Organic light emitting device
JPH03281594A (en) Luminescent material and display device
US5612548A (en) Diamond light-emitting element
US10403495B2 (en) Sn doped ZnS nanowires for white light source material
JPH0358487A (en) Manufacture of diamond light emitting element
JPH03165074A (en) Manufacture of light-emitting device of diamond
RU2161838C2 (en) Field-emission film-coated cathode and process of its manufacture
KR20010039636A (en) Apparatus of white light source using carbon nanotubes and fabrication Method thereof
WO2001004966A1 (en) Diamond ultraviolet luminescent element
JP2001274455A (en) Diamond semiconductor and diamond semiconductor light emitting element
JPH03110828A (en) Manufacture of diamond illuminant element
US20080122370A1 (en) Field Electron Emission Element, a Method of Manufacturing the Same and a Field Electron Emission Method Using Such an Element as Well as an Emission/Display Device Employing Such a Field Electron Emission Element and a Method of Manufacturing the Same
KR20070085323A (en) Boron nitride thin film emitter and production method therefor, and electron emission method using boron nitride thin film emitter
JPH03254161A (en) Diamond light emission element and manufacture thereof
JP2003347580A (en) Diamond ultraviolet light emitting element
JPS63265890A (en) Production of thin diamond film or thin diamond-like film
JPH03110876A (en) Of diamond light-emitting element and manufacture thereof
JPS6330397A (en) Method for synthesizing diamond
JPH09241632A (en) Production of phosphor
JPH07188654A (en) Luminescent material
JPH03259575A (en) Diamond light-emitting element and el light-emitting element