JPH035837Y2 - - Google Patents

Info

Publication number
JPH035837Y2
JPH035837Y2 JP12377785U JP12377785U JPH035837Y2 JP H035837 Y2 JPH035837 Y2 JP H035837Y2 JP 12377785 U JP12377785 U JP 12377785U JP 12377785 U JP12377785 U JP 12377785U JP H035837 Y2 JPH035837 Y2 JP H035837Y2
Authority
JP
Japan
Prior art keywords
furnace
heat
heat medium
heating
hot air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12377785U
Other languages
Japanese (ja)
Other versions
JPS6232994U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12377785U priority Critical patent/JPH035837Y2/ja
Publication of JPS6232994U publication Critical patent/JPS6232994U/ja
Application granted granted Critical
Publication of JPH035837Y2 publication Critical patent/JPH035837Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、ワーク(工作物)の乾燥等に利用さ
れる間接加熱式熱風循環炉の改良に関するもので
ある。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an improvement of an indirectly heated hot air circulation furnace used for drying workpieces, etc.

従来の技術 この種の炉は、従来第3図で示されるような構
成となつている。この図において、符号1,2,
3はワーク(図示せず)の通路に沿つて設置され
た作業炉であり、ワークはこの中を矢印方向へ進
行しつつ乾燥処理される。この乾燥には熱風が利
用され、該熱風を循環させるための熱風循環路
4,5,6が各作業炉1,2,3に設けられてい
る。符号7,8,9は熱風を循環させるためのフ
アンである。
2. Description of the Related Art This type of furnace has conventionally been constructed as shown in FIG. In this figure, symbols 1, 2,
Reference numeral 3 denotes a working furnace installed along the path of the workpiece (not shown), and the workpiece is dried while traveling in the direction of the arrow. Hot air is used for this drying, and each work furnace 1, 2, 3 is provided with hot air circulation paths 4, 5, 6 for circulating the hot air. Reference numerals 7, 8, and 9 are fans for circulating hot air.

また、上記各熱風循環路4,5,6には各々熱
媒循環路10,11,12が付設され、各熱媒循
環路10,11,12には熱媒加熱部であるバー
ナ13,14,15及び燃焼炉16,17,18
が設けられている。また熱媒を循環させるための
フアン19,20,21も設けられている。な
お、符号22,23,24は燃料流量調節バルブ
であり、符号25,26,27は排気ダクトであ
る。
Further, each of the hot air circulation paths 4, 5, and 6 is provided with a heat medium circulation path 10, 11, and 12, respectively, and each of the heat medium circulation paths 10, 11, and 12 is provided with burners 13, 14, which are heat medium heating sections. , 15 and combustion furnaces 16, 17, 18
is provided. Fans 19, 20, and 21 are also provided for circulating the heat medium. Note that numerals 22, 23, and 24 are fuel flow rate control valves, and numerals 25, 26, and 27 are exhaust ducts.

上記各熱風循環路4,5,6と各熱媒循環路1
0,11,12との所定の接点箇所には熱媒であ
る燃焼ガスから風に対して熱を与えるための熱交
換器28,29,30が設けられている。
Each of the above hot air circulation paths 4, 5, 6 and each heat medium circulation path 1
Heat exchangers 28, 29, and 30 are provided at predetermined points of contact with the wind turbines 0, 11, and 12 for supplying heat from combustion gas, which is a heat medium, to the wind.

しかして、燃焼炉16,17,18内でバーナ
13,14,15からの燃料が燃焼されると、そ
の熱焼ガスがフアン19,20,21の作用で各
熱媒循環路10,11,12中を矢印方向に循環
し、また同時に熱風循環路4,5,6内において
も風がフアン7,8,9によつて矢印方向に流
れ、その間熱交換器28,29,30によつて熱
媒から熱を受けて熱風ととなり、各作業炉1,
2,3内を経由する。作業炉1,2,3内にて該
熱風はワークに当り乾燥等の作業を行なうもので
ある。
When the fuel from the burners 13, 14, 15 is combusted in the combustion furnaces 16, 17, 18, the combustion gas is transferred to each heating medium circulation path 10, 11, 12 in the direction of the arrow, and at the same time in the hot air circulation paths 4, 5, 6, the air flows in the direction of the arrow by the fans 7, 8, 9, while the air is circulated in the direction of the arrow by the heat exchangers 28, 29, 30. It receives heat from the heating medium and becomes hot air, which is then sent to each work furnace 1,
Pass through 2 and 3. The hot air hits the workpieces in the work furnaces 1, 2, and 3 and performs operations such as drying.

考案が解決しようとする問題点 しかしながら、上記従来の炉は熱媒として燃焼
ガス等の気体を使用しているため、熱交換器2
8,29,30、配管等が大型化し、またフアン
19,20,21等の動力も多く必要とするとい
う欠点を有している。
Problems to be solved by the invention However, since the above-mentioned conventional furnace uses gas such as combustion gas as a heat medium, the heat exchanger 2
8, 29, 30, piping, etc. are large in size, and the fans 19, 20, 21, etc. require a large amount of power.

さらに、炉の稼動開始にあたり、その立ち上り
時間を短縮する必要があるが、そのためにはバー
ナ13,14,15、燃焼炉16,17,18等
の容量を稼動時負荷の倍以上に設定しなければな
らない。ところが、上記従来の方式であると各作
業炉1,2,3に対して上記バーナ13,14,
15等を設けなければならないため、設備の大型
化が助長され、また稼動のための動力もさらに大
きなものが要求されるという欠点を有するもので
ある。
Furthermore, when the furnace starts operating, it is necessary to shorten the start-up time, but to do so, the capacity of burners 13, 14, 15, combustion furnaces 16, 17, 18, etc. must be set to more than twice the operating load. Must be. However, in the conventional method, the burners 13, 14,
15 etc. must be provided, which tends to increase the size of the equipment, and has the drawback that it requires even greater power for operation.

問題点を解決するための手段 本考案は上記問題点を解決するため、所定箇所
に熱媒加熱部を有する熱媒循環路と、所定箇所に
各作業炉を有する複数の熱風循環路とを備え、両
循環路の所定の接点箇所に上記風が上記熱媒から
熱を受け取るための熱交換器が設けられた間接加
熱式熱風循環炉において、上記熱媒循環路の熱媒
加熱部は1箇所のみ設けられると共に該熱媒は液
体とされ、かつ熱媒循環路は熱媒加熱部と上記各
熱交換器との間に形成されており、各熱媒循環路
の往路には制御弁が設置されると共に上記作業炉
の起動に際してワークの流れの上流側に位置する
作業炉に対応した制御弁から順次下流側の制御弁
に向けて経時的に開動作させる制御部が設けられ
ている構成を採用している。
Means for Solving the Problems In order to solve the above problems, the present invention includes a heat medium circulation path having a heat medium heating section at a predetermined location, and a plurality of hot air circulation paths each having a working furnace at a predetermined location. In the indirect heating type hot air circulation furnace, in which a heat exchanger for the wind to receive heat from the heating medium is provided at a predetermined contact point of both circulation paths, the heating medium heating section of the heating medium circulation path is provided at one location. The heating medium is a liquid, and the heating medium circulation path is formed between the heating medium heating section and each of the heat exchangers, and a control valve is installed on the outgoing path of each heating medium circulation path. and a control section that opens the control valve sequentially from the control valve corresponding to the work furnace located on the upstream side of the flow of the work toward the downstream control valve when starting the work furnace. We are hiring.

作 用 熱媒循環路の熱媒としてガスでなく液体が用い
られている。また、その加熱部は1箇所である。
このため熱媒循環路及びその周辺は小型化され、
占有スペースも小さくなつている。
Function: A liquid rather than a gas is used as the heating medium in the heating medium circuit. Moreover, there is only one heating section.
For this reason, the heat medium circulation path and its surroundings have been downsized,
The space it occupies is also getting smaller.

炉の稼動に際して制御部が作動すると、ワーク
の流れの上流側に位置する作業炉の制御弁が開い
て第1作業炉内の予熱がなされる。この予熱は通
常運転時の熱量の倍程度を使用することによりな
されるから迅速に立ち上る。制御部のタイマ等で
設定される所定時間が経過し、第1作業炉内が所
定温度に到達すると、次の第2作業炉に対応する
制御弁がさらに開かれて第2作業炉内に熱風が流
入する。このとき第1作業炉はすでに立ち上つて
いてその負荷は小さいので、熱量は第2作業炉の
方へより多く供給されることになる。さらに所定
時間が経過すると、第3作業炉に対応する制御弁
が開かれ、上記と同様の理由から、第1,第2よ
りも第3作業炉の方へより多く熱量が配分される
こととなる。
When the control unit is activated during operation of the furnace, a control valve of the work furnace located upstream of the flow of the workpiece is opened, and the inside of the first work furnace is preheated. This preheating is done by using about twice the amount of heat used during normal operation, so it starts up quickly. When a predetermined time set by a timer or the like in the control unit has passed and the temperature inside the first work furnace reaches a predetermined temperature, the control valve corresponding to the next second work furnace is further opened to blow hot air into the second work furnace. will flow in. At this time, the first working furnace has already started up and its load is small, so more heat is supplied to the second working furnace. Furthermore, after a predetermined period of time has elapsed, the control valve corresponding to the third working furnace is opened, and for the same reason as above, more heat is distributed to the third working furnace than to the first and second working furnaces. Become.

したがつて、全作業炉の立ち上がりが速やかに
なされることになる。
Therefore, all working furnaces will be started up quickly.

実施例 第1図及び第2図は本考案の一実施例を示して
いる。なお、これらの図において第3図における
と同一構成をとるものについては同一符号を付す
る。
Embodiment FIGS. 1 and 2 show an embodiment of the present invention. Components in these figures that have the same configuration as in FIG. 3 are given the same reference numerals.

第1図で示されるように、熱媒加熱部31は1
箇所のみ設けられている。また、熱媒も気体では
なくて液体である油が使用されている。熱媒加熱
部31はボイラであり、該ボイラにはバーナ3
2、排気ダクト33等が付設されている。なお、
符号34は燃料調節弁であり、符号35はバーナ
32に新鮮な空気を送るための導管であり、符号
36は該空気を排ガスで予熱するための熱交換器
である。
As shown in FIG. 1, the heat medium heating section 31 has one
Only certain locations are provided. Furthermore, the heat medium used is not gas but liquid oil. The heat medium heating section 31 is a boiler, and the boiler includes a burner 3.
2. An exhaust duct 33 etc. are attached. In addition,
Reference numeral 34 is a fuel control valve, reference numeral 35 is a conduit for sending fresh air to the burner 32, and reference numeral 36 is a heat exchanger for preheating the air with exhaust gas.

上記熱媒加熱部31と各熱風循環路4,5,6
の熱交換器37,38,39との間には熱媒循環
路40,41,42が並列的に形成されており、
各往路には電磁弁などの制御弁43,44,45
が設置されている。また所定箇所にはポンプ46
が設置されている。これらの制御弁43,44,
45はすべて制御部47によつて制御されるよう
になつており、制御部47はタイマ等を備え、作
業炉1,2,3の起動に際してワークの流れの上
流側に位置する作業炉1に対応した制御弁43か
ら順次下流側の制御弁44,45に向けて経時的
に開動作させるよう構成されている。一つの制御
弁の開動作から次の弁の開動作に至るまでの時間
Tは一つの作業炉の立上り時間とほぼ一致してい
る。
The heat medium heating section 31 and each hot air circulation path 4, 5, 6
Heat medium circulation paths 40, 41, 42 are formed in parallel between the heat exchangers 37, 38, 39,
Control valves 43, 44, 45 such as solenoid valves are provided on each outward path.
is installed. In addition, a pump 46 is installed at a predetermined location.
is installed. These control valves 43, 44,
45 are all controlled by a control unit 47, and the control unit 47 is equipped with a timer, etc., and when starting up the work furnaces 1, 2, and 3, the control unit 47 controls the work furnace 1 located on the upstream side of the workpiece flow. It is configured to sequentially open the control valves 44 and 45 downstream from the corresponding control valve 43 over time. The time T from the opening operation of one control valve to the opening operation of the next valve almost coincides with the start-up time of one working furnace.

しかして、作業炉1,2,3の始動に際して
は、熱媒加熱器31であるボイラが稼動され、熱
媒の加熱がなされる。この熱媒たる油は比熱が
424(Kal/m3,℃)であり、従来の熱媒たる空気
の0.30(Kcal/m3・℃)の約1,400倍にあたり、
それ故、熱媒循環路40,41,42の配管、ポ
ンプ46は従来のものに比べ格段に小型化されて
いる。また、熱交換器37,38,39も従来の
気体−気体方式に対して気体−液体方式となり、
熱通過率(Kcal/m2・h・℃)が約2倍になる
ため従来の大きさの半分程度のものを使用し得る
ものである。
Thus, when starting up the working furnaces 1, 2, and 3, the boiler, which is the heat medium heater 31, is operated to heat the heat medium. This heating medium, oil, has a specific heat of
424 (Kcal/m 3 ℃), which is approximately 1,400 times the 0.30 (Kcal/m 3 ℃) of air, which is a conventional heating medium.
Therefore, the piping of the heat medium circulation paths 40, 41, 42 and the pump 46 are much smaller than those of the conventional ones. In addition, the heat exchangers 37, 38, and 39 are also of a gas-liquid type instead of the conventional gas-gas type,
Since the heat transfer rate (Kcal/m 2 ·h ·°C) is approximately doubled, it is possible to use a device that is about half the size of the conventional one.

次いで、制御部47からの信号に基づき、制御
弁43が開かれ、熱媒が熱交換器37に至り、一
方フアン7の作動による風が熱風循環路4中を循
環しつつ熱交換器37で熱を受け取り作業炉1内
を加熱する。第2図Aで示されるように、この制
御弁43のみが開かれる時間Tはこの作業炉1の
立ち上り時間に相当し、このTをできるだけ短縮
するためバーナ32の容量はこの間標準稼動時に
該作業炉1の負荷をQとすれば例えば2Qに設定
される。この作業炉1内の温度が所定の高さに立
ち上れば、制御部47の図示しない検知器により
検知されさらに次の制御弁44が開かれる。
Next, the control valve 43 is opened based on a signal from the control unit 47, and the heat medium reaches the heat exchanger 37, while the air generated by the operation of the fan 7 circulates in the hot air circulation path 4 and flows through the heat exchanger 37. It receives heat and heats the inside of the working furnace 1. As shown in FIG. 2A, the time T during which only the control valve 43 is opened corresponds to the start-up time of the working furnace 1, and in order to shorten this time T as much as possible, the capacity of the burner 32 is reduced during the normal operation. If the load of the furnace 1 is Q, it is set to 2Q, for example. When the temperature inside the working furnace 1 rises to a predetermined level, it is detected by a detector (not shown) in the control section 47, and the next control valve 44 is opened.

この結果、第2図Bで示されるように下流側の
隣接作業炉2に2Qの熱量が加えられるようバー
ナ32の容量が2Q+Q=3Qとして調節され、該
炉2も時間Tの間はより多く加熱されて立ち上り
時間の短縮化がなされる。時間Tが経過すると、
さらに次の制御弁45が開かれる。
As a result, as shown in FIG. 2B, the capacity of the burner 32 is adjusted as 2Q+Q=3Q so that 2Q of heat is added to the adjacent work furnace 2 on the downstream side, and the furnace 2 also increases the amount of heat during time T. It is heated and the rise time is shortened. When time T has passed,
Furthermore, the next control valve 45 is opened.

その結果、第2図Cで示されるように、さらに
下流側の作業炉3に2Qの熱量が加えられるよう
にバーナ32の容量が2Q+Q+Q=4Qとして調
節され、該炉3も時間Tの間より多く加熱されて
立ち上り時間の短縮化がなされる。時間Tが経過
するとバーナ32の容量は3Qに調整され、作業
炉3は負荷3Qの標準稼動状態とされて、ワーク
の炉1,2,3内への搬入が開始されることとな
る。
As a result, as shown in FIG. A large amount of heat is generated, and the rise time is shortened. When the time T has elapsed, the capacity of the burner 32 is adjusted to 3Q, the work furnace 3 is brought into a standard operating state with a load of 3Q, and workpieces are started to be carried into the furnaces 1, 2, and 3.

ここで、従来の方式と比較すると、従来は炉
1,2,3の始動に際し立ち上り時間を短縮する
ためバーナ13,14,15の容量を2Qに設定
するとすれば、作業炉がN個あるとして、全体で
2QNを必要とする。これに対し、本考案によれ
ば、バーナ32の容量はQ(N+1)で済ませ得
るものである。従つて、そのバーナ容量の低減割
合は作業炉の個数が多いほど大きくなるという好
結果をもたらすものである。
Here, in comparison with the conventional system, if the capacity of burners 13, 14, 15 is set to 2Q in order to shorten the start-up time when starting furnaces 1, 2, and 3, then assuming that there are N working furnaces, , in total
Requires 2QN. On the other hand, according to the present invention, the capacity of the burner 32 can be reduced to Q(N+1). Therefore, the reduction rate of the burner capacity increases as the number of working furnaces increases, which is a good result.

考案の効果 本考案は以上のような構成及び作用からなるの
で、熱媒加熱部31、熱媒循環路40,41,4
2熱交換器37,38,39等の小型化をなし
得、従つて、間接加熱式熱風循環炉全体の構成を
簡素にし、占有スペースの減少、放熱損失等の設
備の固定損失の低減を図り得るものである。
Effects of the invention Since the present invention has the above-described configuration and operation, the heating medium heating section 31, the heating medium circulation paths 40, 41, 4
2 The heat exchangers 37, 38, 39, etc. can be downsized, and the overall configuration of the indirect heating type hot air circulation furnace can be simplified, occupying space, and fixed losses of equipment such as heat radiation loss can be reduced. It's something you get.

さらに、作業炉の立ち上り時間を短くした状態
において熱媒加熱部31のバーナ32の低容量化
を図り得るので、作業炉1,2,3の標準稼動下
におけるバーナ32の効率向上を図り得るもので
ある。しかもバーナ32の容量は、従来方式が
2NQ必要であるとすれば、本考案ではQ(N+
1)で済むので、作業炉1,2,3を増設する場
合等において特に有益である。
Furthermore, since the capacity of the burner 32 of the heat medium heating section 31 can be reduced in a state where the start-up time of the work furnace is shortened, the efficiency of the burner 32 can be improved under standard operation of the work furnaces 1, 2, and 3. It is. Moreover, the capacity of the burner 32 is smaller than that of the conventional method.
If 2NQ is necessary, in this invention Q(N+
1) is sufficient, so it is particularly useful when increasing the number of working furnaces 1, 2, and 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本考案の間接加熱式熱風循
環炉の一実施例を示し、第1図はそのブロツク回
路図、第2図はその操作の一例を示すブロツク回
路図で、Aは炉の起動時、BはT時間後Cは2T
時間に夫々該当するものであり、第3図は従来方
式のブロツク回路図である。 1,2,3:作業炉、4,5,6:熱風循環
路、31:熱媒加熱部、32:バーナ、37,3
8,39:熱交換器、40,41,42:熱媒循
環路、43,44,45:制御弁、46:ポン
プ、47:制御部。
1 and 2 show an embodiment of the indirect heating type hot air circulation furnace of the present invention, FIG. 1 is a block circuit diagram thereof, and FIG. 2 is a block circuit diagram showing an example of its operation. When the furnace is started, B is T hours later, C is 2T.
FIG. 3 is a block circuit diagram of a conventional system. 1, 2, 3: Working furnace, 4, 5, 6: Hot air circulation path, 31: Heat medium heating section, 32: Burner, 37, 3
8, 39: heat exchanger, 40, 41, 42: heat medium circulation path, 43, 44, 45: control valve, 46: pump, 47: control section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 所定箇所に熱媒加熱部を有する熱媒循環路と、
所定箇所に各作業炉を有する複数の熱風循環路と
を備え、両循環路の所定の接点箇所に上記風が上
記熱媒から熱を受け取るための熱交換器が設けら
れた間接加熱式熱風循環炉において、上記熱媒循
環路の熱媒加熱部は1箇所のみ設けられると共に
該熱媒は液体とされ、かつ熱媒循環路は熱媒加熱
部と上記各熱交換器との間に形成されており、各
熱媒循環路の往路には制御弁が設置されると共に
上記作業炉の起動に際してワークの流れの上流側
に位置する作業炉に対応した制御弁から順次下流
側の制御弁に向けて経時的に開動作させる制御部
が設けられていることを特徴とする間接加熱式熱
風循環炉。
a heating medium circulation path having a heating medium heating section at a predetermined location;
An indirect heating hot air circulation system comprising a plurality of hot air circulation paths each having a working furnace at a predetermined location, and a heat exchanger for the air to receive heat from the heating medium at a predetermined contact point between the two circulation paths. In the furnace, the heat medium heating section of the heat medium circulation path is provided at only one location, the heat medium is in liquid form, and the heat medium circulation path is formed between the heat medium heating section and each of the heat exchangers. A control valve is installed on the outgoing path of each heat medium circulation path, and when starting the above-mentioned work furnace, the control valve corresponding to the work furnace located on the upstream side of the flow of workpieces is sequentially directed to the downstream control valve. An indirect heating type hot air circulation furnace characterized by being provided with a control unit that opens the furnace over time.
JP12377785U 1985-08-12 1985-08-12 Expired JPH035837Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12377785U JPH035837Y2 (en) 1985-08-12 1985-08-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12377785U JPH035837Y2 (en) 1985-08-12 1985-08-12

Publications (2)

Publication Number Publication Date
JPS6232994U JPS6232994U (en) 1987-02-26
JPH035837Y2 true JPH035837Y2 (en) 1991-02-14

Family

ID=31015190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12377785U Expired JPH035837Y2 (en) 1985-08-12 1985-08-12

Country Status (1)

Country Link
JP (1) JPH035837Y2 (en)

Also Published As

Publication number Publication date
JPS6232994U (en) 1987-02-26

Similar Documents

Publication Publication Date Title
US4653466A (en) Apparatus and method for removing recuperative condensate
JP4725985B2 (en) Operation method of flue gas treatment equipment
JPH08121703A (en) Waste heat recovery apparatus
JPH035837Y2 (en)
KR20060021018A (en) Combustion waste gas heat recovery system in reheating furnace
JPH09287013A (en) Device for utilizing heat in hot stove
EP0724683B1 (en) Integration construction between a steam boiler and a steam turbine and method in preheating of the supply water for a steam turbine
US4109858A (en) System for the utilization of waste heat from a boiler room to heat a fluid medium and lower the ambient temperature of a boiler room
JPH035836Y2 (en)
JP2948346B2 (en) Control method of heat recovery device
JP3179024B2 (en) White smoke prevention equipment in refuse incinerator facilities
SU1307165A2 (en) Air conditioning system with recovering heat power
US3946801A (en) Recuperator
JPH0311362B2 (en)
JPH0236629Y2 (en)
JPH0719561Y2 (en) Mill air system
JP2001099418A (en) Gas/gas heat exchanger
JP2803679B2 (en) Preheating method of air preheating device and its heat transfer body
SU1285270A1 (en) Method for corrosion protection of air heaters
JPH0224218A (en) Heater for vehicle
JPH06313508A (en) Heat exchanging method
JPH0547921Y2 (en)
JPH04342807A (en) Cogeneration exhaust heat recovery system
JP2587009Y2 (en) Bath kettle with hot water supply
JPH0590106U (en) Coal fired exhaust gas reburn combined cycle plant