JPH0357982A - Directional receiving device for variable-depth sonar - Google Patents

Directional receiving device for variable-depth sonar

Info

Publication number
JPH0357982A
JPH0357982A JP1194798A JP19479889A JPH0357982A JP H0357982 A JPH0357982 A JP H0357982A JP 1194798 A JP1194798 A JP 1194798A JP 19479889 A JP19479889 A JP 19479889A JP H0357982 A JPH0357982 A JP H0357982A
Authority
JP
Japan
Prior art keywords
receiver
depth
signal
variable
directional width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1194798A
Other languages
Japanese (ja)
Inventor
Takashi Ikeda
孝 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1194798A priority Critical patent/JPH0357982A/en
Publication of JPH0357982A publication Critical patent/JPH0357982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable detection at long to short distances without adjusting the depth of a receiver, by adding a circuit processing an output signal of a depth binder and a transmission timing signal and by changing the degree of amplification of a preampli fier on the basis of an output of the circuit. CONSTITUTION:The directional width of a receiver constructed of a plurality of receiv ing elements 11 to 17 arranged in the shape of a cylinder changes according to a depth and a time required for a sound wave to go and return. A processing circuit 4 receives a suspension depth signal of a depth finder 3 and a transmission timing signal of a terminal 5 as inputs, processes and computes them and controls the degree of amplification of each of variable-gain preamplifiers 21 to 27. Then the directional width of vertical directivity of each of elements 11 to 17 is changed thereby. For instance, a value theta of 1/2 of the directional width for receiving a signal of a point B on the surface of the sea can be expressed by theta = Sin<-1> (2 DO/ct). Mark DO denotes the depth of the receiver, (c) an underwater sound speed (1500 m/s) and (t) a time required for the sound wave emitted from the receiver to be reflected at the point B and returned to the receiver. By controlling the directional width of the receiver to be in the relationship expressed by this equation, accordingly, search and detection at a short distance in the vicinity of the receiver to a long distance therefrom can be executed without adjusting a suspension depth.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水中に音波を放射する送受波器と水中物体から
の反響音を受信する受波器、または送波器,受波器の両
機能を兼ね備える送受波器を船舶,航空機等から海中に
吊下し水中物体の位置を計測する可変深度ソーナー用指
向性受信装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a transducer that emits sound waves underwater and a receiver that receives echoes from underwater objects, or both a transducer and a receiver. This invention relates to a directional receiving device for a variable depth sonar that measures the position of underwater objects by suspending a transducer with multiple functions into the sea from a ship, aircraft, etc.

[従来の技術] 従来、この種の可変深度用ソーナーでは海面上の空中に
ホバリング停止したヘリコプタがら送波器,受波器また
は送受波器を海中に吊下するヘリコブタソーナーが典型
例である。このヘリコブターソーナーの受信装置は受波
素子を円筒状に配列し、このうち垂直に配列した受波素
子を1群としてその出力信号を合成し、垂直指向性を形
成し、更にこの垂直指向性を持つ信号群の位相,レベル
を調整し合成することにより、水平指向性を形成し、水
中物体の方位の計測を行っている。
[Prior Art] Conventionally, a typical example of this type of variable depth sonar is a helicopter sonar in which a transmitter, a receiver, or a transducer are suspended in the sea from a helicopter hovering above the sea surface. . The receiving device of this helicopter sonar arranges wave receiving elements in a cylindrical shape, and combines the output signals of the vertically arranged wave receiving elements as a group to form vertical directivity. By adjusting the phase and level of the signal group and combining them, horizontal directivity is formed and the direction of underwater objects is measured.

[発明が解決しようとする問題点] 上述した従来のヘリコプタ用ソーナーの受信装置は、吊
下した受波器の付近の全方位について海中の物体を捜索
するもので、その受信指向性は水平方向には複数の受信
ビームにより全周方位をカバーし、垂直方向には単一の
ビームとなっている。
[Problems to be Solved by the Invention] The conventional helicopter sonar receiver described above searches for underwater objects in all directions near a suspended receiver, and its reception directivity is in the horizontal direction. The receiver has multiple receiving beams covering the entire circumference, and a single beam in the vertical direction.

一般のソーナーてはてきるだけ微弱な信号音までも検出
し遠方の物体を探知することが望まれるが、この対応と
して水平,垂直の指向性の指向幅を狭め、指向性利得を
高めることにより、目標信号対水中雑音の比を高めるこ
とがなされている。
It is desirable for general sonar to detect even the weakest signal sound and detect distant objects, but in order to do this, by narrowing the horizontal and vertical directivity width and increasing the directivity gain. , attempts have been made to increase the ratio of target signal to underwater noise.

かかる指向幅を狭め指向性利得を高めることは、受波器
の寸法対波長を大きくすること、すなわち、周波数が決
まり波長が決まっている場合は、受波器の寸法を大きく
することにより実現される。しかし、ヘリコプタに搭載
するソーナーでは、受波器の容積,重量が大幅に制限さ
れるので、受波器の寸法,周波数は所望の性能と搭載で
きる容積,重量の兼ね合いから決定されていた。
Narrowing the directivity width and increasing the directivity gain can be achieved by increasing the size of the receiver versus the wavelength, that is, when the frequency is determined and the wavelength is determined, the size of the receiver is increased. Ru. However, for sonar mounted on helicopters, the volume and weight of the receiver are significantly limited, so the dimensions and frequency of the receiver have been determined based on the balance between the desired performance and the volume and weight that can be mounted.

このように従来のヘリコプタ用ソーナーの受波器はでき
るだけ遠距離の水中物体を探知できるようにするために
、搭載可能な範囲で受波器を大きくし、水平,垂直の指
向性の幅を狭めている。
In order to detect underwater objects as far away as possible, conventional helicopter sonar receivers are made as large as possible and narrow in horizontal and vertical directivity. ing.

しかし、このような鋭い指向性、特に垂直面での鋭い指
向性を持つ受波器は、指向幅が狭いために近距離におい
て探知できない範囲が発生し、それを補う方法としては
、受波器の吊下深度を変化させるという煩雑な操作が必
要となる。
However, receivers with such sharp directivity, especially sharp directivity in the vertical plane, have a narrow directivity width, resulting in a range that cannot be detected at short distances. This requires a complicated operation of changing the suspension depth.

この対策として各水平ビーム毎に複数の垂直ビームを持
つという方法があるが、この場合、受信回路のチャネル
数が増え、受信回路の規模重量が増えるという欠点があ
る。
As a countermeasure to this problem, there is a method of providing a plurality of vertical beams for each horizontal beam, but in this case, the disadvantage is that the number of channels in the receiving circuit increases and the scale and weight of the receiving circuit increases.

本発明は大幅な規模重量を伴わず、しかも遠距離の探知
性能を損なうことなく近距離の探知性能を向上させたソ
ーナー用指向性受信装置を提供せんとするものである。
It is an object of the present invention to provide a directional receiving device for sonar that does not involve a large scale and weight and has improved short-range detection performance without impairing long-range detection performance.

[問題点を解決するための手段] 本発明に係る可変深度ソーナー用指向性受信装置は、円
筒状に複数の受波素子を配列した受波器と、各受波素子
の出力を増幅する前置増幅器と受波器の深度を計測する
深度計を有する可変深度ソーナー用受信装置において、
深度計の出力信号と送信タイミング信号を入力し処理す
る処理回路を付加し、処理回路の出力に依って前置増幅
器の増幅度を変更することにより受波器の垂直指向性の
指向幅を可変にすることを要旨としている。
[Means for Solving the Problems] A directional receiving device for a variable depth sonar according to the present invention includes a receiver in which a plurality of receiving elements are arranged in a cylindrical shape, and a receiver in which the output of each receiving element is amplified. In a receiving device for a variable depth sonar that has a depth gauge that measures the depth of a stationary amplifier and a receiver,
By adding a processing circuit that inputs and processes the depth gauge output signal and transmission timing signal, and changing the amplification degree of the preamplifier depending on the output of the processing circuit, the vertical directivity width of the receiver can be varied. The main purpose is to

[発明の作用コ 上記構成に係る受信装置を水中に吊下すると、深度計が
水面からの深度を測定し、該測定結果と音波信号のタイ
ミング信号に基づき前置増幅器の増幅度を変更する。受
波器の指向幅は深度と音波の往復時間とにより変化する
ので、前置増幅器の増幅度の変更で近距離から遠距離ま
で深度調整することなく探知できる。
[Operation of the Invention] When the receiving device having the above configuration is suspended underwater, the depth meter measures the depth from the water surface, and changes the amplification degree of the preamplifier based on the measurement result and the timing signal of the sound wave signal. Since the directivity width of the receiver changes depending on the depth and the round trip time of the sound wave, detection can be made from short distances to long distances without adjusting the depth by changing the amplification degree of the preamplifier.

[実施例] 次に、本発明の実施例について図面を参照して説明する
。第1図はへりコブタソーナ一等可変深度ソーナーの受
波器の一実施例を示しており、複数個の受波素子が円筒
状に配列ざれている。図中の斜線部分の受波素子(II
〜17)は、本発明の作動原理を示すもので、受波器の
中心軸と11〜17受波素子を含む平面Pの指向性、す
なわち垂直指向性は、この受波素子の配列から決定ざれ
る。
[Example] Next, an example of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of a wave receiver for a piggyback sonar and a variable depth sonar, in which a plurality of wave receiving elements are arranged in a cylindrical shape. The receiving element (II
-17) show the operating principle of the present invention, and the directivity of the plane P containing the central axis of the receiver and the receiving elements 11 to 17, that is, the vertical directivity, is determined from the arrangement of the receiving elements. Zareru.

第2図は一実施例のブロック図であり、11〜17は第
1図の斜線を付された受波素子であり、2lから27は
各受波素子の出力信号を増幅する可変利得前置増幅器で
あり、3は受波器の吊下深度を計測する深度計である。
FIG. 2 is a block diagram of one embodiment, in which 11 to 17 are wave receiving elements shown with diagonal lines in FIG. It is an amplifier, and 3 is a depth meter that measures the suspension depth of the receiver.

4は深度信号と端子5の送信タイミング信号を入力し、
これらの信号を処理演算して各可変利得前置増幅器21
から27の増幅度を制御する信号を出力する処理回路で
ある。6は各可変利得前置増幅器21〜27の出力を加
算合成する加算器であり、7はその出カ端子である。
4 inputs the depth signal and the transmission timing signal of terminal 5,
These signals are processed and operated by each variable gain preamplifier 21.
This is a processing circuit that outputs a signal for controlling the amplification degree of . 6 is an adder that adds and synthesizes the outputs of the variable gain preamplifiers 21 to 27, and 7 is its output terminal.

第3図は第1図の平面Pについて本実施例の特性を示す
グラフであり、横軸は受波器の吊下点からの探知距離R
であり、縦軸は受波器の吊下深度であり、図中の斜線を
付した範囲は、垂直指向幅が200である受波器を深度
Doに吊下した時の探知可能範囲を示す。
FIG. 3 is a graph showing the characteristics of this embodiment on the plane P in FIG. 1, and the horizontal axis is the detection distance R from the hanging point of the receiver.
The vertical axis is the suspension depth of the receiver, and the shaded range in the figure indicates the detectable range when a receiver with a vertical directivity width of 200 is suspended at depth Do. .

第4図はソーナーの送信からの時間(横軸)と指向幅の
1/2(縦軸)の関係を受波器の吊下深度をパラメータ
として示したものである。第3図の海面上のB点の信号
を受信するためには指向幅の172のθは θ= s i n− ’ (2DO/at)・・・・・
・・・・・・・・・・・・・(1)て表せる。尚、Do
は受波器の深度、C:水中音速(1500m/s)であ
り、tは受波器の点から発射した音波が海面Bで反射し
受波器まで戻るに要する時間である。
FIG. 4 shows the relationship between the time from sonar transmission (horizontal axis) and 1/2 of the directivity width (vertical axis) using the suspension depth of the receiver as a parameter. In order to receive the signal at point B on the sea surface in Figure 3, the directivity width 172 θ is θ= sin-' (2DO/at)...
・・・・・・・・・・・・(1) It can be expressed as follows. Furthermore, Do
is the depth of the receiver, C: underwater sound speed (1500 m/s), and t is the time required for the sound wave emitted from the receiver to reflect at the sea surface B and return to the receiver.

〔発明の効果] 以上説明したように本発明は第1図に示す円筒状配列の
受波器において第2図に示すブロック構成で第4図に示
すように受波器の指向幅を深度データと送信からの時間
により(1)式の関係に制御することにより、受波器付
近の近距離から遠距離まで吊下深度を調整することなし
に捜索探知することができる。
[Effects of the Invention] As explained above, the present invention uses the block configuration shown in FIG. 2 in the cylindrical array of receivers shown in FIG. 1, and the directivity width of the receiver as shown in FIG. By controlling the relationship expressed by equation (1) based on the time and the time from transmission, search and detection can be performed from a short distance near the receiver to a long distance without adjusting the suspension depth.

また、上述の説明では割愛したが可変深度のアクティブ
ソーナーでは海面からの残響が水中物体の探知には妨害
となるが上述の本発明に係る受波器では海面からの残響
を抑圧する効果もあり、優れた探知性能が実現できる。
Furthermore, although omitted in the above explanation, with variable depth active sonar, reverberations from the sea surface interfere with the detection of underwater objects, but the receiver according to the present invention described above also has the effect of suppressing reverberations from the sea surface. , excellent detection performance can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る円筒配列受波器の斜視
図、第2図は第1図において斜線の付された受波素子の
垂直指向性を可変にする回路を示すブロック図、第3図
は受波器の吊下深度および垂直指向幅と探知範囲を示す
グラフ、第4図は垂直指向幅と送信からの時間(1)、
受波器の深度(DO)の関係を示すグラフである。 1 1〜l 7 ● ・ ・ 21〜27 ● ● ・ 3 ・ ◆ ● ・ ・ ・ ◆ 4 ・ ・ ● ・ ・ ・ ● 5 ・ ● ・ ・ ・ ・ ・ 6 ● ◆ ● ● ● ● ◆ 7 ● ◆ ・ ● ・ ● ● ・・・・受波素子、 ・・・・可変利得前置増幅器、 ・・・・深度計、 ・・・・処理器、 送信タイミング信号人力端子、 加算器、 加算器出力端子。 第1図 ) 第2図
FIG. 1 is a perspective view of a cylindrical array receiver according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a circuit for varying the vertical directivity of the wave receiving element indicated by diagonal lines in FIG. 1. , Figure 3 is a graph showing the receiver hanging depth, vertical pointing width, and detection range, Figure 4 is the vertical pointing width and time from transmission (1),
It is a graph which shows the relationship of the depth (DO) of a receiver. 1 1~l 7 ● ・ ・ 21~27 ● ● ・ 3 ・ ◆ ● ・ ・ ・ ◆ 4 ・ ・ ● ・ ・ ・ ● 5 ・ ● ・ ・ ・ ・ ・ 6 ● ◆ ● ● ● ● ◆ 7 ● ◆ ・● ・ ● ● ... Wave receiving element, ... Variable gain preamplifier, ... Depth gauge, ... Processor, Transmission timing signal manual terminal, Adder, Adder output terminal. Figure 1) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 円筒状に複数の受波素子を配列した受波器と、各受波素
子の出力を増幅する前置増幅器と受波器の深度を計測す
る深度計を有する可変深度ソーナー用受信装置において
、深度計の出力信号と送信タイミング信号を入力し処理
する処理回路を付加し、処理回路の出力によって前置増
幅器の増幅度を変更することにより受波器の垂直指向性
の指向幅を可変にすることを特徴とする可変深度ソーナ
ー用指向性受信装置。
In a receiving device for a variable depth sonar, which has a receiver having a plurality of receiver elements arranged in a cylindrical shape, a preamplifier that amplifies the output of each receiver element, and a depth gauge that measures the depth of the receiver, By adding a processing circuit that inputs and processes the output signal of the meter and the transmission timing signal, and changing the amplification degree of the preamplifier according to the output of the processing circuit, the directivity width of the vertical directivity of the receiver can be made variable. A directional receiving device for variable depth sonar featuring:
JP1194798A 1989-07-27 1989-07-27 Directional receiving device for variable-depth sonar Pending JPH0357982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1194798A JPH0357982A (en) 1989-07-27 1989-07-27 Directional receiving device for variable-depth sonar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1194798A JPH0357982A (en) 1989-07-27 1989-07-27 Directional receiving device for variable-depth sonar

Publications (1)

Publication Number Publication Date
JPH0357982A true JPH0357982A (en) 1991-03-13

Family

ID=16330436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1194798A Pending JPH0357982A (en) 1989-07-27 1989-07-27 Directional receiving device for variable-depth sonar

Country Status (1)

Country Link
JP (1) JPH0357982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105850A (en) * 2004-10-07 2006-04-20 Furuno Electric Co Ltd Scanning sonar
JP2015059787A (en) * 2013-09-18 2015-03-30 Necネットワーク・センサ株式会社 Underwater sailing body detector and method of detecting underwater sailing body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367978A (en) * 1976-11-29 1978-06-16 Hitachi Medical Corp Electron scan ultrasonic camera
JPS60158367A (en) * 1984-01-30 1985-08-19 Nec Corp Active sonar
JPS6144382A (en) * 1984-08-07 1986-03-04 Nec Corp Active sonar apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367978A (en) * 1976-11-29 1978-06-16 Hitachi Medical Corp Electron scan ultrasonic camera
JPS60158367A (en) * 1984-01-30 1985-08-19 Nec Corp Active sonar
JPS6144382A (en) * 1984-08-07 1986-03-04 Nec Corp Active sonar apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105850A (en) * 2004-10-07 2006-04-20 Furuno Electric Co Ltd Scanning sonar
JP2015059787A (en) * 2013-09-18 2015-03-30 Necネットワーク・センサ株式会社 Underwater sailing body detector and method of detecting underwater sailing body

Similar Documents

Publication Publication Date Title
US10114119B2 (en) Sonar systems and methods using interferometry and/or beamforming for 3D imaging
US7193930B2 (en) Quantitative echo sounder and method of quantitative sounding of fish
US7136012B2 (en) Approach radar with array antenna having rows and columns skewed relative to the horizontal
Cochrane et al. Quantification of a multibeam sonar for fisheries assessment applications
JPH10186030A (en) Direction detectable fish finder
US4319348A (en) Method and apparatus of surveying nodular targets on the sea floor
JP6179973B2 (en) Signal processing device, underwater detection device, signal processing method, and program
JPH0357982A (en) Directional receiving device for variable-depth sonar
US7215598B2 (en) Imaging sonar and detection system using such a sonar
US4173748A (en) Acoustic transducing system
JP4075472B2 (en) Ship detecting method and ship detecting device using cross fan beam
JP2948092B2 (en) Fish frequency response measuring device
JPS5836752B2 (en) Sonic exploration method
JPS6144382A (en) Active sonar apparatus
JP2558637B2 (en) Sound source position measurement method
RU2740334C1 (en) Method of receiving seismic-acoustic and hydroacoustic waves at the bottom of a water reservoir and device for its implementation
RU2793149C1 (en) Small-sized direction finder of hydroacoustic signals
JP7447513B2 (en) Sonar device and target direction calculation method and program
CN112740073B (en) Acoustic dual frequency phased array with common beam angle
JP2620983B2 (en) Fish finder and transducer for weighing
JPS60158367A (en) Active sonar
JPH0648453Y2 (en) Fish finder for fish length discrimination
JPH0989917A (en) Phased array and doppler sodar
RU2146844C1 (en) Method and device for shaping controlled-width pattern of radar slotted-waveguide antenna
SU1088513A1 (en) Method of bistatic acoustic atmospheric sounding