JPH0357919A - Mass flowmeter - Google Patents

Mass flowmeter

Info

Publication number
JPH0357919A
JPH0357919A JP19376989A JP19376989A JPH0357919A JP H0357919 A JPH0357919 A JP H0357919A JP 19376989 A JP19376989 A JP 19376989A JP 19376989 A JP19376989 A JP 19376989A JP H0357919 A JPH0357919 A JP H0357919A
Authority
JP
Japan
Prior art keywords
sensor
vibration
coil
pipe
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19376989A
Other languages
Japanese (ja)
Inventor
Akira Nakamura
明 中村
Koyata Sugimoto
小弥太 杉本
Yasushi Miyata
康司 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP19376989A priority Critical patent/JPH0357919A/en
Publication of JPH0357919A publication Critical patent/JPH0357919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To detect abnormality in occurrence of an abnormal vibration of a sensor tube thereby to prevent said sensor tube from breaking by stopping the vibration of a tube line when it is detected that the amplitude of said tube line exceeds a predetermined value. CONSTITUTION:A switching means 1 consists of a touch switch 3 and an FF4. There are four touch switches 3 respectively to detect the amplitude of a straight pipe portion of sensor tubes 9,10. When even one of the four switches is turned ON, a corresponding signal is supplied to the FF4. A switching means 2 consists of a coil 5 and a contact point 6. An output of the FF4 is supplied to the coil 5. When a current runs in the coil 5, the contact point 6 is connected, whereas, when a current comes not to run in the coil 5, the contact point 6 is turned OFF. Therefore, if the switch 3 is turned ON as the amplitude of the sensor tubes 9,10 is larger than a predetermined value, a current is not supplied to coil parts 18a,19a of vibrators 18,19 from a driving circuit 8, thereby stopping the vibration of the sensor tubes 9,10.

Description

【発明の詳細な説明】 fr業上の利用分野 本発明は質邑流潰計に係り、特にコリオリの力を利用し
て流体の質量流量を測定する質最流fli 葺1に関す
る。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF FR INDUSTRIAL APPLICATION The present invention relates to a fluid flow meter, and more particularly to a fluid flowmeter 1 that measures the mass flow rate of a fluid using the Coriolis force.

流体の流量は流体の種類、物性(!度、粘度など)、プ
ロセス条件(温度、圧力〉によって影響を受けない質量
で表わされることが望ましい。流体の質量流量を計測す
る質量流情剖としては例えば流体の体積流量を4測し、
この計測1直を質看流量に換算するいわゆる間接型質母
流品計と流体の質量流量を直接計測し、間接型質量流゛
#J1より高精度に計測できる直接型質吊流量計があっ
た.,この直接型質!l流悉計としては振動ケるセンサ
チューブ内に流体を流し、このときに生ずるjリオリの
力を利用して、質量流量を直接計測するものがあった。
It is desirable that the flow rate of a fluid be expressed as a mass that is not affected by the type of fluid, physical properties (degrees, viscosity, etc.), and process conditions (temperature, pressure). For example, measure the volumetric flow rate of the fluid 4 times,
There is a so-called indirect type mass flow meter that converts this one shift of measurement into a measured flow rate, and a direct type suspended flow meter that directly measures the mass flow rate of the fluid and can measure it with higher accuracy than the indirect type mass flow #J1. Ta. ,This direct type quality! Some flow meters directly measure the mass flow rate by flowing fluid through a vibrating sensor tube and utilizing the J Rioli force generated at this time.

従来の技術 コリオリの力を利用して、質最流吊を到測するvi量流
邑計としては従来、U字状に形成された一対のセンサチ
ューブに流体を流し、この一対のセンザチューブを互い
に近接、離間するh向に振動させ、質量流量に比例する
コリオリ力の発生に伴うセンザチューブの変位を検出す
ることにより質量流量を得るものがあった。
Conventional technology A conventional flow meter that uses the Coriolis force to measure the maximum flow rate has been designed to flow fluid through a pair of sensor tubes formed in a U-shape. There are some devices that obtain the mass flow rate by vibrating the sensor tubes in the h direction toward and away from each other and detecting the displacement of the sensor tube due to the generation of Coriolis force proportional to the mass flow rate.

また、U字状の一対のセンサチューブを2組用意して、
2組のセンサチューブが平11になるように配・防し;
一方の一対のセンサチューブが近接したときに他の一対
のセンザチューブは離間するように、また、一方の一対
のセンサチ1−ブが離間したときには他の一対のセンサ
チューブは近接するように振勤させ、2組のセンサチ1
−ブ間に設けたピックアップによりその相対的な変位を
検出する構成のものがあった,, 発明が解決しようとする課題 しかるに、従来の質量流量計は21I1のセンサチュー
ブを共振状態で使用しており、2組のセンサチ1−ブの
一方が、つまって流体が流れなくなったり、破屓等によ
り流体の流れに異常が生じることにより一方の一対のセ
ンサチューブが振動しなくなると他方の一対のヂューブ
の振動の振幅が2倍になる等の異常振動が発生してしま
うため、これらの振動により他方の一対のセンリチュー
ブが破旧してしまう等の問題点があった。
Also, prepare two pairs of U-shaped sensor tubes,
Arrange and prevent the two sets of sensor tubes so that they are flat 11;
When one pair of sensor tubes approaches each other, the other pair of sensor tubes move apart, and when one pair of sensor tubes moves apart, the other pair of sensor tubes move closer together. Let's work, 2 sets of sensor search 1
However, conventional mass flowmeters use a 21I1 sensor tube in a resonant state. If one of the two sensor tubes stops vibrating due to blockage in one of the sensor tubes and the fluid stops flowing, or an abnormality in the fluid flow due to breakage, etc., the other pair of sensor tubes will stop vibrating. Since abnormal vibrations occur, such as doubling the amplitude of the vibrations, there are problems such as the other pair of sensor tubes being damaged due to these vibrations.

本発明は上記の点に鑑みてなされたものでセンサチュー
ブに異常振動が発生したときに異常を検知してセンザチ
ューブの破損を防ぐ質屋流間計を提供することを目的と
する。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a pawn shop flowmeter that detects an abnormality when abnormal vibration occurs in the sensor tube and prevents the sensor tube from being damaged.

課題を解決するための手段 本発明は振動する管路に流体を流すことにより発生する
コリオリの力により該管路を変形させ、該管路の流入側
と流出側とに生ずる振動の僚相差より該流体の質量流量
を測定する質量流量51において、前記管路の振動の振
幅が所定の値を越えたことを検出する検出手段と、前記
検出手段が+fO記管路の振幅が所定の値を越えたこと
を検出したときに前記管路の振動を停止ずる振動停止手
段とを具備してなる。
Means for Solving the Problems The present invention deforms the pipe by the Coriolis force generated by flowing fluid through the vibrating pipe, and eliminates the difference in phase between vibrations occurring between the inflow and outflow sides of the pipe. The mass flow rate 51 for measuring the mass flow rate of the fluid includes a detection means for detecting that the vibration amplitude of the pipe line exceeds a predetermined value, and a detection means for detecting that the amplitude of the vibration of the pipe line exceeds a predetermined value. vibration stopping means for stopping the vibration of the pipe line when it is detected that the vibration has exceeded the limit.

作用 管路の振動の振幅があるf+1より大きくなると検出手
段がこれを検出し、管路の振動を停止させる。
When the amplitude of the vibration of the working conduit becomes larger than a certain f+1, the detection means detects this and stops the vibration of the conduit.

このため、管路を異常に大きな振幅で長時間振動させる
ことがなくなる。
Therefore, the pipe line is not vibrated with abnormally large amplitude for a long period of time.

実施例 第1図は本発明の一実施例のブロック図を示ず1,図中
、1lよスイッチ手段、2は停止手段を示す。
Embodiment FIG. 1 does not show a block diagram of an embodiment of the present invention. In the figure, 1l indicates a switch means, and 2 indicates a stop means.

第1図について説明する前に、質量流量訂の構造につい
て第2図〜第6図を用いて説明する。第2図は本発明の
一実施例の斜視図、第3図は本発明の一実施例の平面図
及び正面図、第4図は本発明の一実施例のx−x’及び
Y−Y’断面図、第5図、第6図は本発明の一実施例の
動作を説明するための図を示す。
Before explaining FIG. 1, the structure of the mass flow correction will be explained using FIGS. 2 to 6. FIG. 2 is a perspective view of one embodiment of the present invention, FIG. 3 is a plan view and front view of one embodiment of the present invention, and FIG. 4 is xx' and Y-Y of one embodiment of the present invention. The sectional view, FIG. 5, and FIG. 6 are diagrams for explaining the operation of an embodiment of the present invention.

質量流量計は一対のセンサチューブ9.10がマ二ホー
ルド11に組伺けられてなる。第3図〈Δ).(B)に
示す如く?二心一ルド11は流入管12と流出管13と
の間に設けられ、流入管12に接続された流入路11a
と、流出管13に接続された流出路11bとを有する。
The mass flow meter consists of a pair of sensor tubes 9 and 10 assembled into a manifold 11. Figure 3 (∆). As shown in (B)? The two-core single lead 11 is provided between the inflow pipe 12 and the outflow pipe 13, and is connected to the inflow pipe 12 through an inflow path 11a.
and an outflow path 11b connected to the outflow pipe 13.

又、第5図に示す如く、流入路11aは上、下に分岐す
る接続口1 1a,,11a2に連通している。
Further, as shown in FIG. 5, the inflow passage 11a communicates with connection ports 11a, 11a2 which branch upward and downward.

なお、第3図及び第4図に示すように、流出路11bも
流入路11aと同様に分岐した接続口11b1,11b
2と連通している。
Note that, as shown in FIGS. 3 and 4, the outflow path 11b also has connection ports 11b1 and 11b that are branched similarly to the inflow path 11a.
It communicates with 2.

上側のセンサチ1−ア9は、流入路11aの接続口11
,1に接続され、配管方向に延在する直管部9aと・、
流出路1lbの接続口11b1に接続され、直管部9a
と平行に延存する直管部9bと、直管部9a ,9bの
先端で折り返すように曲げられた曲部9c,9dと、こ
の曲部9Cと9dとを接続するU字状の接続部9eとよ
りなる5,又、下側のセン勺ブユーブ10は士記センリ
ーチューブ9と同一形状に形或され、直管部10a,1
0bが流出管13及び直管部9a .9bと平行となる
ようにセンサチ1−ブ9ど上、下対称に配設されている
。なお、センリチューブ9.10の接続部9e.10e
は流出管13の周囲に流出管13との間に空隙を有する
リング14cに固定ざれたT字状のブラケット14a,
14bに固定されている。
The upper sensor 1-a 9 connects to the connection port 11 of the inflow path 11a.
, 1 and extending in the piping direction.
It is connected to the connection port 11b1 of the outflow path 1lb, and the straight pipe part 9a
a straight pipe section 9b extending parallel to the straight pipe sections 9b, curved sections 9c and 9d bent back at the tips of the straight pipe sections 9a and 9b, and a U-shaped connecting section 9e connecting the curved sections 9C and 9d. 5, and the lower sensor tube 10 is shaped in the same shape as the sensor tube 9, and the straight tube portions 10a, 1
0b is the outflow pipe 13 and the straight pipe part 9a. The upper and lower sensor probes 9 are arranged symmetrically so as to be parallel to the sensor probes 9b. In addition, the connection part 9e. of the sensor tube 9.10. 10e
is a T-shaped bracket 14a fixed to a ring 14c having a gap between the outflow pipe 13 and the outflow pipe 13;
14b.

一対のセンサf l−ブ9,10の直管部9E1,9b
,10a,10bは支持板15を貫通し、支持板15に
溶接で固定されるとともに、その喘部はマニホールド1
1の各接続口11  11a1−a2・ 1 lb1.  1 1b2に接続固定されている。
Straight pipe portions 9E1, 9b of a pair of sensors f l-busses 9, 10
, 10a, 10b pass through the support plate 15 and are fixed to the support plate 15 by welding, and their pant portions are connected to the manifold 1.
Each connection port 11 11a1-a2・1 lb1. 1 Fixed connection to 1b2.

従って、一方のセンサヂューブ9は流出管13の上方で
配管方向に延存して設けられ、他方のセンサチューブ1
0は流出管13の下方で配管方向に延在して設けられて
いるので、質吊流1ffiは一対のセンリチューブ9.
10を有するにもかかわらf設置スペースが小さくて済
み、コンパクトな構成となっている。
Therefore, one sensor tube 9 is provided extending in the piping direction above the outflow pipe 13, and the other sensor tube 1
0 is provided extending in the piping direction below the outflow pipe 13, so that the suspended flow 1ffi is connected to the pair of sensor tubes 9.
10, it requires only a small installation space and has a compact configuration.

さらに、質吊劃01ではセンサチ1−19,10が流出
管13の近傍で配管方向に延在するよう設けられている
ので、配管振動の影響を受けにくい構成となっていて、
流吊をより粘度良く剖測しつる。
Furthermore, in the quality suspension 01, the sensor searches 1-19 and 10 are provided near the outflow pipe 13 so as to extend in the pipe direction, so that the structure is not easily affected by pipe vibration.
Anatomy of flow suspension with better viscosity.

なお、支持板15の中央には孔15aがg設されており
、流出管13はこの孔15aを貫通する。
Note that a hole 15a is provided in the center of the support plate 15, and the outflow pipe 13 passes through this hole 15a.

第3図,第4図に示す如く、流入側の直管部9aと10
aとの間、及び流出側の直管部9bと10bとの間には
ビックアップ16.17が配設されている。コイル部が
下側の直管部10a,10bに固定され、コイル部の上
、下面に対向するマグネット部が上側の直管部9a ,
9bに固定されている。
As shown in FIGS. 3 and 4, straight pipe sections 9a and 10 on the inflow side
Bick-ups 16 and 17 are arranged between the straight pipe portions 9b and 10b on the outflow side. The coil parts are fixed to the lower straight pipe parts 10a, 10b, and the magnet parts facing the upper and lower surfaces of the coil parts are fixed to the upper straight pipe parts 9a, 10b.
It is fixed at 9b.

18.19は加振器で、直管部9a ,9bとの先端間
、直管部10aと10bとの先端間に設けられている。
Reference numeral 18 and 19 denote a vibrator, which is provided between the tips of the straight tube sections 9a and 9b and between the tips of the straight tube sections 10a and 10b.

加振器18.19は電磁ソレノイドと同様な構成で、コ
イル部18a,19a.及び、マグネット部18b.1
9bとよりなり、コイル部18aにはマグネット部18
bが嵌入され、コイル部19bにはマグネット部19b
が嵌入される。コイル部18a.19aに通電を行なう
ことによりコイル部18a.19aと7グネット部18
b,19bとの間に吸引又は反発力を発牛させ、加振を
行なう。
The vibrator 18, 19 has a configuration similar to that of an electromagnetic solenoid, and includes coil portions 18a, 19a . and magnet part 18b. 1
9b, and the coil part 18a has a magnet part 18.
b is inserted into the coil portion 19b, and the magnet portion 19b is inserted into the coil portion 19b.
is inserted. Coil portion 18a. 19a, the coil portion 18a. 19a and 7 gnets part 18
b, 19b to generate an attraction or repulsion force to perform vibration.

加振器18はセンサチ1−ブ9の流入側の直管i!l9
aにコイル部18aが固定され、流出側の直管部9bに
マグネット部18bが固定され、直管部9aと直管部9
bとを近接、離間する1ノ向Aに振動を与える。また、
加振器19【よセンサチ1−プ10の流入側の直管部1
0aにマグネット部19aが固定され、流出測の直管部
10bにコイル部19aが固定され、直管部10aと直
管部10bとを近接、離間する方向Aに振動を与える.
なお、このとき、センサチューブ9とセンサチューブ1
0とはセンリチューブ9が近接しているときにはセンサ
チューブ10G.tll間し、センサチューブ9が離間
しているときにはセンサチュープ10は近接するように
振動が行なわれる。
The vibrator 18 is a straight pipe i! on the inflow side of the sensor probe 1-9. l9
The coil part 18a is fixed to a, the magnet part 18b is fixed to the straight pipe part 9b on the outflow side, and the straight pipe part 9a and the straight pipe part 9 are fixed to each other.
Vibration is applied in one direction A, which brings the two parts closer to each other and moves them further apart. Also,
Vibrator 19 [straight pipe section 1 on the inflow side of sensor probe 10]
A magnet part 19a is fixed to 0a, a coil part 19a is fixed to a straight pipe part 10b for measuring outflow, and vibration is applied in a direction A to bring the straight pipe parts 10a and 10b closer to each other and to separate them.
In addition, at this time, sensor tube 9 and sensor tube 1
0 means that when the sensor tube 9 is close to the sensor tube 10G. tll, and when the sensor tubes 9 are apart, the sensor tubes 10 are vibrated so as to approach each other.

検出千段1であるタッチスイッチ3は直管部9a ,9
b ,10a ,10bと夫々別々に接触するように4
ヶ設けられ、保持部材7により保持されている。タッチ
スイッチ3はセンサチ1−19,10の振幅が所定の範
囲内(定常時の振幅の範囲内〉ではセン勺チ1−ブ9.
10とは接触せず、所定の値以上となったときに接触す
る付置に設けられている。
The touch switch 3, which is the detection stage 1, has straight pipe parts 9a, 9.
b , 10a , 10b respectively so as to contact them separately.
, and is held by a holding member 7. When the amplitude of the sensor searches 1-19, 10 is within a predetermined range (within the normal amplitude range), the touch switch 3 selects the sensor search 1-1-9.
10, but is provided in an attached position that comes into contact when the temperature exceeds a predetermined value.

流ffiil測時、一対のセンサチューブ9,10は内
部に流体が流れている状態で加振される。流入管12よ
り?二ホールド11の流入路11aに流入した被測流体
は、分流してセンザチューブ9,10の直管部9a,1
0aに流入し、曲部9c,10c,接続部9e.10e
.曲部96.10dを通過して直管部9b,10bに至
り、マニホールド11の流出路11bで合流して流出管
13より流出する。又、センサチューブ9,10は加振
器18,19により加振され、センサチューブ9,10
のばね定数とセンリチューブ9,10内の流体の質量に
よって決まる固有振動数で振動する。
During flow measurement, the pair of sensor tubes 9 and 10 are vibrated with fluid flowing inside them. From inflow pipe 12? The fluid to be measured that has flowed into the inflow path 11a of the second hold 11 is divided into straight pipe portions 9a and 1 of the sensor tubes 9 and 10.
0a, curved portions 9c, 10c, connecting portion 9e. 10e
.. It passes through the curved portion 96.10d, reaches the straight pipe portions 9b and 10b, merges at the outflow path 11b of the manifold 11, and flows out from the outflow pipe 13. Furthermore, the sensor tubes 9 and 10 are excited by vibrators 18 and 19, and the sensor tubes 9 and 10 are vibrated by vibrators 18 and 19.
It vibrates at a natural frequency determined by the spring constant of and the mass of the fluid in the sensor tubes 9 and 10.

従って、振動するセンザチューブ9,10内を流体が通
過すると、コリオリの力が発生し直餘・部9a .9b
 .10a ,10bにコリオリ力により変位が生ずる
。一対のセンサチューブ9,1oは夫々180゜の位相
差でもって加振されており、例えば上側のセンサチュー
ブ9の直管部9a,9b間が離間するとき、下側のセン
シチューブ10の直管部10a,10b間が近接する。
Therefore, when fluid passes through the vibrating sensor tubes 9 and 10, a Coriolis force is generated and the direct portions 9a . 9b
.. Displacement occurs in 10a and 10b due to the Coriolis force. The pair of sensor tubes 9 and 1o are each excited with a phase difference of 180°. For example, when the straight tube portions 9a and 9b of the upper sensor tube 9 are separated, the straight tube portions of the lower sensor tube 10 are excited. The portions 10a and 10b are close to each other.

即ち、センザチューブ9が第5図(A),(B)に示す
ように変位するとぎ、センサチューブ1oが第5図(C
),(D)に示すように変僚する。
That is, when the sensor tube 9 is displaced as shown in FIGS. 5(A) and 5(B), the sensor tube 1o is displaced as shown in FIG. 5(C).
), change staff as shown in (D).

よって、上側のセンサチューブ9の直管部9a,9bで
は第6図(A).(B)に示すようにコリオリ力が発生
し、下側のセンサチ1−ブ1oの直管部10a.10b
rは第6図(C).(D)に示すようなコリオリカが生
ずる。
Therefore, the straight pipe portions 9a and 9b of the upper sensor tube 9 are as shown in FIG. 6(A). As shown in (B), Coriolis force is generated, and the straight pipe portion 10a of the lower sensor probe 1o. 10b
r is shown in Figure 6(C). Coriolis as shown in (D) is produced.

ピックアップ16.17は夫々上記の如く振動するセン
リチューブ9.10の相対的な変位を検出する。そして
、ピックアップ16.17の信弓に』jづき、センリチ
ューブ9.10内を流れる流体の質量流拐が求まる1.
質量流(71計ではセンサチューブ9,10に生ずるコ
リオリ力による直管部9a.10a及び9b,10bの
相対変位が2倍となって検出でき、流吊を粘度良く計測
でぎる。
Pick-ups 16, 17 detect the relative displacement of the vibrating sensor tubes 9, 10, respectively, as described above. Then, based on the pickup 16.17, the mass flux of the fluid flowing in the sensor tube 9.10 is determined.1.
With the mass flow (71 meter), the relative displacement of the straight pipe sections 9a, 10a and 9b, 10b due to the Coriolis force generated in the sensor tubes 9, 10 can be detected twice, and the flow suspension can be measured with good viscosity.

また、上記コリオリカの発生に伴うセンサチューブ9.
10の位相差を検出する際、外部振e(振動ノイズ)が
入力されても相殺され外部振動の影響を受けることなく
安定に流通を計測できる。
In addition, the sensor tube 9 due to the occurrence of Coriolica.
When detecting a phase difference of 10, even if external vibration e (vibration noise) is input, it is canceled out and the flow can be stably measured without being affected by external vibration.

次に第1図について説明する。スイッチ手段1はタッチ
スイッヂ3と、フリップ7ロツブ4とよりなる。タッチ
スイッヂ3はセンザチ1−ブ9.10の直管部9a ,
9b ,10a ,10bの振幅を夫々検出するように
4つ設けられている。これらのうちの1つでもオンとな
るとこれに応じて信号がフリップフロツブ4に供給され
る。この信lに応じノリップフロツブ4の出力はローレ
ベルとなる。フリップフロツブ4の出力はスrツチ手段
2に供給される。スイッチ手段2はコイル5と揉点6と
よりなり、フリツブ7ロツブ4からの出力はコイル5に
供給される。コイル5に1R流が流れると接点6が接続
され、コイル5に電流が流れなくなると接点6はオフと
なる。
Next, FIG. 1 will be explained. The switch means 1 consists of a touch switch 3 and a flip 7 lobe 4. The touch switch 3 is connected to the straight pipe part 9a of the Senzachi 1-bu 9.10,
Four are provided so as to detect the amplitudes of 9b, 10a, and 10b, respectively. If even one of these turns on, a signal is supplied to the flip-flop 4 in response. In response to this signal I, the output of the Noripflop 4 becomes low level. The output of the flip-flop 4 is supplied to switch means 2. The switch means 2 consists of a coil 5 and a rubbing point 6, and the output from the flip 7 and lobe 4 is supplied to the coil 5. When a 1R current flows through the coil 5, the contact 6 is connected, and when the current no longer flows through the coil 5, the contact 6 is turned off.

このため、通常の勤引時にはフリツプフロツプからはハ
イレベルの出力信号がコイル5に供給されていて、接点
6はオンとなりタッチスイッチ3がオンになるとフリッ
プフロツプ4の出力が「コレベルとなり接点6がオフと
なる。
Therefore, during normal working hours, a high-level output signal is supplied from the flip-flop to the coil 5, and the contact 6 is turned on, and when the touch switch 3 is turned on, the output of the flip-flop 4 becomes "low level" and the contact 6 is turned off. Become.

つまり、タッチスイッチ3がオンに4cると、接点6が
オフとなり加振S18.19の二]イル部18a,19
aにドライブ回路8から市流が供給されなくなり、セン
勺チューブ9.10の振仙tよ停止する。
In other words, when the touch switch 3 is turned on 4c, the contact 6 is turned off and the vibration S18.
Commercial flow is no longer supplied from the drive circuit 8 to a, and the flow of the flow tube 9 and 10 stops.

このため、センサヂューブ9,10の振幅が一定の値よ
り大きくなるとその振動が停止する構成である・ため、
センリチューブ9,10が異常に大きな振幅で長時間振
動することがなくなり、セン勺チューブ9.10が異常
な振動により破損してしまうことがなくなる。また、こ
れらの異常な振動を検出することによりセンリチューブ
9.10の異常を検出でき、流量計に異常があることが
わかる。
For this reason, the configuration is such that when the amplitude of the sensor tubes 9 and 10 becomes larger than a certain value, the vibration stops.
The sensor tubes 9, 10 will not vibrate with abnormally large amplitude for a long time, and the sensor tubes 9, 10 will not be damaged due to abnormal vibrations. Further, by detecting these abnormal vibrations, it is possible to detect an abnormality in the sensor tube 9 or 10, which indicates that there is an abnormality in the flow meter.

なお、本実施例では検出手段1としてタッチスイッチ3
を用いたがこれに限ることはなく、センサチューブ9.
10の振幅が所定の値より大きくなったことを検出でき
るセンリであればよい。例えばDEL(発光ダイオード
)とノオトトランジスタからなるフォトインタラブタを
用いて、チューブ9.10の振幅が所定の碩より大きく
なったときに、l. E Dからフォトトランジスタへ
の光がillされることにより検出する構成でもよい。
In this embodiment, the touch switch 3 is used as the detection means 1.
However, the sensor tube 9. is not limited to this.
Any sensor that can detect that the amplitude of 10 has become larger than a predetermined value may be used. For example, when the amplitude of the tube 9.10 becomes larger than a predetermined value using a photointerrupter consisting of a DEL (light emitting diode) and a phototransistor, l. The detection may be performed by illuminating light from the ED to the phototransistor.

また、本実施例では4つのタッチスイッチ3を用いてい
るが、4つに限ることはない。
Further, although four touch switches 3 are used in this embodiment, the number is not limited to four.

発明の効果 上述の如く、本允明によれば、管路の振幅が所定の船を
越えたことを検出手段により検出して、振幅が所定の値
を越えると振動停止f段により管路の振動を停止する構
成としたため、管路に異常が生じ、管路の振動の振幅が
増大しても、長時間振動することがなくなるため、管路
が破損してしまうことがなくなり、また、異常に振動し
た状態の計測協を読み取ることもなくなる等の特長を有
する。
Effects of the Invention As mentioned above, according to Masaaki Moto, the detecting means detects that the amplitude of the pipeline exceeds a predetermined value, and when the amplitude exceeds a predetermined value, the vibration stop stage f causes the vibration of the pipeline to be stopped. Since the structure is designed to stop vibration, even if an abnormality occurs in the pipe line and the amplitude of vibration in the pipe line increases, the pipe line will not vibrate for a long time, so the pipe line will not be damaged. It has the advantage of eliminating the need to read a measuring instrument that is in a state of vibration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図〜第6
図は本発明の一実m例の計洞部分を説明するための図で
ある。
Figure 1 is a block diagram of one embodiment of the present invention, Figures 2 to 6
The figure is a diagram for explaining a cavity portion of an example of the present invention.

Claims (1)

【特許請求の範囲】 振動する管路に流体を流すことにより発生するコリオリ
の力により該管路を変形させ、該管路の流入側と流出側
とに生じる振動の位相差より該流体の質量流量を測定す
る質量流量計において、前記管路の振動の振幅が所定の
値を越えたことを検出する検出手段と、 前記検出手段の検出出力に基づいて前記管路の振動を停
止する停止手段とを具備したことを特徴とする質量流量
計。
[Claims] The Coriolis force generated by flowing a fluid through a vibrating pipe causes the pipe to deform, and the mass of the fluid is determined by the phase difference between the vibrations occurring between the inflow and outflow sides of the pipe. In a mass flowmeter that measures a flow rate, a detection means for detecting that the amplitude of vibration in the conduit exceeds a predetermined value, and a stop means for stopping the vibration in the conduit based on a detection output of the detection means. A mass flowmeter characterized by comprising:
JP19376989A 1989-07-26 1989-07-26 Mass flowmeter Pending JPH0357919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19376989A JPH0357919A (en) 1989-07-26 1989-07-26 Mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19376989A JPH0357919A (en) 1989-07-26 1989-07-26 Mass flowmeter

Publications (1)

Publication Number Publication Date
JPH0357919A true JPH0357919A (en) 1991-03-13

Family

ID=16313503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19376989A Pending JPH0357919A (en) 1989-07-26 1989-07-26 Mass flowmeter

Country Status (1)

Country Link
JP (1) JPH0357919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101587040B1 (en) * 2015-08-27 2016-01-20 주식회사 복원달인 Autombile paint coating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165718A (en) * 1986-12-26 1988-07-09 Oval Eng Co Ltd Detector for abnormality in mass flowmeter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165718A (en) * 1986-12-26 1988-07-09 Oval Eng Co Ltd Detector for abnormality in mass flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101587040B1 (en) * 2015-08-27 2016-01-20 주식회사 복원달인 Autombile paint coating method

Similar Documents

Publication Publication Date Title
US9995612B2 (en) Coriolis mass flow meter
CA2895647C (en) A method and apparatus for separating a driver and a pick-off of a vibrating sensor assembly
JP3782421B2 (en) Coriolis flow meter
JPH0357919A (en) Mass flowmeter
JP2793699B2 (en) Mass flow meter
JPH11230804A (en) Corioli's flowmeter
JPH0341319A (en) Coriolis mass flowmeter
US6553845B2 (en) Coriolis flowmeter utilizing three-forked plate vibrator mode
JP2008209223A (en) Coriolis mass flow meter
JP2801826B2 (en) Mass flow meter
KR20240003520A (en) Coriolismass flowmeter device and method for detecting resonance frequency
JPH067324Y2 (en) Mass flow meter
JPH0835872A (en) Vibrating measuring device
JPH03199922A (en) Coriolis mass flowmeter
JP2012013648A (en) Coriolis mass flowmeter
JPH0499919A (en) Mass flowmeter
JPH04157328A (en) Mass flowmeter
JP5922293B1 (en) Coriolis mass flow meter
JP2012026776A (en) Coriolis-type mass flowmeter
JP2003177048A (en) Coriolis flowmeter
AU2013200990B2 (en) A flow meter including a balanced reference member
JPH04220530A (en) Mass flow meter
JP2001289683A (en) Coriolis flowmeter
JPH04130224A (en) Mass flowmeter
JP2004061125A (en) Vibration type measurement device