JPH0357226A - Insulated-gate transistor - Google Patents

Insulated-gate transistor

Info

Publication number
JPH0357226A
JPH0357226A JP1193534A JP19353489A JPH0357226A JP H0357226 A JPH0357226 A JP H0357226A JP 1193534 A JP1193534 A JP 1193534A JP 19353489 A JP19353489 A JP 19353489A JP H0357226 A JPH0357226 A JP H0357226A
Authority
JP
Japan
Prior art keywords
region
emitter
electrode
semiconductor
igbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1193534A
Other languages
Japanese (ja)
Inventor
Hideki Takahashi
英樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1193534A priority Critical patent/JPH0357226A/en
Publication of JPH0357226A publication Critical patent/JPH0357226A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To increase a suppression effect of an activation of a parasitic transistor by a method wherein a first main electrode of an IGBT is formed so as to be extended from the surface of a first semiconductor region to at least one part of the bottom of a second semiconductor region. CONSTITUTION:An emitter electrode 9' in an N-channel type IGBT is formed so as to be buried in an upper-layer part of a P-base region 4 in addition to a conventional formation region. That is to say, it is formed from the P-base region 4 between N<+> emitter regions 5 up to the whole bottom of the N<+> emitter region 5. By this constitution, a hole current flowing in the P-base region 4 cannot become a base current of an NPN parasitic transistor which is composed of the N<+> emitter regions 5, the P-base region 4 and an N<-> body layer 3; as a result, the NPN parasitic transistor is not turned on. Consequently, a latch-up phenomenon by a parasitic thyristor is extremely hard to cause.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は絶縁ゲート型トランジスタに関し、特に通電
能力の向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insulated gate transistor, and particularly relates to an improvement in current carrying capacity.

〔従来の技術〕[Conventional technology]

絶縁ゲート型トランジスタの1つである、絶縁ゲート型
バイボーラトランジスタ(InsulaLed Gat
e Bipolar Transistor ;以下I
GBTという)は一般に多数のIGET素子(以下rG
BTセルという)が並列接続された構造を有している。
The insulated gate bibolar transistor (InsulaLed Gat) is one of the insulated gate transistors.
e Bipolar Transistor; hereinafter referred to as I
Generally, a large number of IGET elements (hereinafter referred to as rG
It has a structure in which BT cells (referred to as BT cells) are connected in parallel.

第3図は従来のIGBTを示す断面図である。FIG. 3 is a sectional view showing a conventional IGBT.

同図において、1はP+コレクタ層であり、その一方主
面上にはN+バッファ層2が形戊されている。N ハッ
ファ層2はP コレクタ層1からのホールの注入を抑制
する働きがある。
In the figure, 1 is a P+ collector layer, and an N+ buffer layer 2 is formed on one main surface thereof. The N huffer layer 2 has the function of suppressing the injection of holes from the P collector layer 1.

このN+バッファ層2上にN−ボディ層3が形成されて
おり、N ボディ層3の表面の一部領域上には、P型の
不純物を所定のパターンに従って選択的に拡散すること
によりPベース領域4が形成されており、さらに、この
Pベース領域4の表面の一部領域には、高濃度のN型の
不純物を選択的に拡散することによりN+エミッタ領域
5が形成されている。N ボディ層3の表面とN エミ
ッタ領域5の表面とて挟まれたPベース領域4の表面が
チャネル領域6となり、このチャネル領域6上にゲート
絶縁膜7が形成されている。このゲー1・絶縁膜7上に
ゲート電極8が形成され、また、Pベース領域4の中央
部表面及びN+エミッタ領域5の一部表面とに電気的接
触をして、ラッチアップ防止のためにエミッタ短路構造
をとるN+エミッタ電極9か形成されている。なお、ゲ
ート電険8およびエミッタ電極9は、層間絶縁膜10に
より絶縁分離された多層構造となっている。このように
、ゲート電極8とエミッタ電極9を多層構造にして、全
IGBTセルに対してそれぞれの電極8.9が共通に電
気的につながった構造になっている。また、P+コレク
タ層1の裏面にはコレクタ電極11か全IGBTセルに
対し一体に形成されている。このようなNチャネル型I
GBTは基本的にはパワーMOSFETのドレイン側に
P型領域を設けた構造となっている。言いかえれば第3
図のIGBTにおいて、P+コレクタ層1とN+バッフ
ァ層2がN+ドレイン層に置き代ったものがパワーMO
SFETとなる。
An N- body layer 3 is formed on this N+ buffer layer 2, and a P-type impurity is selectively diffused on a part of the surface of the N-body layer 3 according to a predetermined pattern. A region 4 is formed, and an N+ emitter region 5 is further formed in a part of the surface of the P base region 4 by selectively diffusing highly concentrated N type impurities. The surface of the P base region 4 sandwiched between the surface of the N 2 body layer 3 and the surface of the N 2 emitter region 5 becomes a channel region 6 , and a gate insulating film 7 is formed on this channel region 6 . A gate electrode 8 is formed on this gate 1 insulating film 7, and is electrically contacted with the central surface of the P base region 4 and a part of the surface of the N+ emitter region 5 to prevent latch-up. An N+ emitter electrode 9 having an emitter short circuit structure is also formed. Note that the gate electrode 8 and the emitter electrode 9 have a multilayer structure insulated and separated by an interlayer insulating film 10. In this way, the gate electrode 8 and the emitter electrode 9 have a multilayer structure, and each electrode 8.9 is commonly electrically connected to all IGBT cells. Further, on the back surface of the P+ collector layer 1, a collector electrode 11 is integrally formed for all IGBT cells. Such N-channel type I
GBT basically has a structure in which a P-type region is provided on the drain side of a power MOSFET. In other words, the third
In the IGBT shown in the figure, the power MO is the one in which the P+ collector layer 1 and the N+ buffer layer 2 are replaced by the N+ drain layer.
It becomes SFET.

このような構成において、エミッタ電極9とコレクタ電
極11との間に所定のコレクタ電圧V。1こ(コレクタ
側が正)を印加する。そして、ゲート電極8とエミッタ
電極9との間に所定のゲート電圧v6E(ゲート側がI
′E)を印加すると、チャネル領域6がN型に反転する
ことにより、チャネルか形成される。
In such a configuration, a predetermined collector voltage V is applied between the emitter electrode 9 and the collector electrode 11. Apply 1 (positive on the collector side). A predetermined gate voltage v6E is applied between the gate electrode 8 and the emitter electrode 9 (the gate side is I
When 'E) is applied, the channel region 6 is inverted to N type, thereby forming a channel.

このN型に反転したチャネル領域6を通して、N+エミ
ッタ領域5からN ボディ層3にかけて電子が注入され
る。この電子の注入に伴い、1・ランジスタの増幅作用
によりP+コレクタ層1からN−ボディ層3への多量な
ホールの注入が起こる。
Electrons are injected from the N+ emitter region 5 to the N2 body layer 3 through this channel region 6 which has been inverted to N type. Along with this injection of electrons, a large amount of holes are injected from the P+ collector layer 1 to the N- body layer 3 due to the amplification effect of the 1 transistor.

このようにI GBTはバイボーラ的動作をするため、
伝導度変調の効果からN−ボディ層3の抵抗が大幅に低
下する。N ボディ層3の抵抗値はIGBTあるいはパ
ワーMOSFETのオン抵抗を決定する主要因であるた
め、I GBTは従来のパワーMOSFETに比べて低
いオン電圧、大きい電流容量を実現できる利点がある。
In this way, since the IGBT operates in a bibolar manner,
The resistance of the N-body layer 3 is significantly reduced due to the effect of conductivity modulation. Since the resistance value of the N body layer 3 is the main factor determining the on-resistance of the IGBT or power MOSFET, the IGBT has the advantage of being able to realize a lower on-voltage and a larger current capacity than conventional power MOSFETs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、第3図により明らかなように、IGBT
にはN+エミッタ領域5,Pベース賄域4, N  ボ
ディ層3およびP+コレクタ層1よりI[3成される寄
生サイリスクが存花する。
However, as is clear from Figure 3, IGBT
There exists a parasitic silicon risk formed by I[3 from the N+ emitter region 5, the P base covering region 4, the N body layer 3, and the P+ collector layer 1.

IGBTを流れる主電流である、コレクタ電流■cが増
大するに伴い、N ボディ層3からPベース領域4に流
れるホール電流も増大する。そしで、コレクタ電流■ 
がラッチアップ電流I1、をC 越えると、N+エミッタ領域5直下のPベース領域4を
流れるホール電流がPベース領域4の抵抗分のために生
じる電圧降下により、N+エミッタ領域5,Pベース領
域4, N  ボディ層3から成るNPN寄生トランジ
スタがオンし、前述した寄lLサイリスタがオンする。
As the collector current (c), which is the main current flowing through the IGBT, increases, the hole current flowing from the N body layer 3 to the P base region 4 also increases. Then, the collector current■
When C exceeds the latch-up current I1, the Hall current flowing through the P base region 4 directly below the N+ emitter region 5 causes a voltage drop caused by the resistance of the P base region 4, causing the N+ emitter region 5 and the P base region 4 to , N The NPN parasitic transistor consisting of the body layer 3 is turned on, and the aforementioned parasitic 1L thyristor is turned on.

こうしてI GBTはラッチアップ状態となる。一度、
寄生サイリスクがオンすると、ゲート電極8に与えるゲ
ート電圧V では、最早コレクタ電流I。を制御できな
くGE なるため、素子破壊につながる。
In this way, the IGBT enters a latch-up state. one time,
When the parasitic silicon risk is turned on, the gate voltage V applied to the gate electrode 8 no longer causes the collector current I. GE becomes uncontrollable, leading to element destruction.

第4図に種々のゲート電圧V6E(矢印に示すように上
方ほど大)の印加状態下におけるIGBTの出力特性を
示す。同図に示すように、一定のゲート電圧V。,のち
とでは、チャネル領域6を流れる電流量に制限があるた
め、MOSFETと同{7lに自己電流制限がかかり、
コレクタ電流■。は所定値で飽和してしまい、それ以上
は上昇しない。
FIG. 4 shows the output characteristics of the IGBT under application of various gate voltages V6E (larger as shown by the arrow). As shown in the figure, a constant gate voltage V. , later, since there is a limit to the amount of current flowing through the channel region 6, a self-current limit is applied to the same as the MOSFET,
Collector current■. is saturated at a predetermined value and does not rise any further.

したがって、N+バッファ層2を厚くする、N+エミッ
タ領域5を減らす等の方法を用いて[GBTを設=1す
ることにより、通常用いるゲート電圧VGEではコレク
タ電流ICの飽和電流I c (sat)が、ラッチア
ンプ電流ILを越えないようにして、寄生サイリスタが
オンしないようにしていた。
Therefore, by thickening the N+ buffer layer 2, reducing the N+ emitter region 5, etc., by setting GBT to 1, the saturation current I c (sat) of the collector current IC can be reduced at the normally used gate voltage VGE. , the latch amplifier current IL was not exceeded to prevent the parasitic thyristor from turning on.

このように、従来のIGBTは、寄生サイリス夕かオン
することによるラッチアップ現象を回避するために、そ
の通電能力か制限されてしまうという問題点があった。
As described above, the conventional IGBT has a problem in that its current carrying capacity is limited in order to avoid the latch-up phenomenon caused by the parasitic thyristor turning on.

また、NチャネルバワーMOSFETにおいても、N1
エミッタ領域5,Pベース領域4,  Nボディ層3に
相当する領域より形成されるNPN寄生トランジスタが
存在し、オン/オフ切換時に逆方向電流がN+エミッタ
領域5に相当する領域直下のPベース領域4に相当する
領域に流れ寄生トランジスタがオンすることによる素子
破壊等の弊害を回避するため、通電能力か制限されてし
まうという問題点かあった。
Also, in N-channel power MOSFET, N1
There is an NPN parasitic transistor formed from a region corresponding to the emitter region 5, P base region 4, and N body layer 3, and when switching on/off, a reverse current flows to the P base region immediately below the region corresponding to the N+ emitter region 5. In order to avoid problems such as element destruction due to the parasitic transistor turning on in the region corresponding to No. 4, there was a problem in that the current carrying capacity was limited.

この発明は上記のような問題点を解決するためになされ
たもので、通電能力を向上させた絶縁ゲー1・型トラン
ジスタを得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain an insulated gate type 1 type transistor with improved current carrying capacity.

〔課題を躬決するための手段〕[Means for resolving issues]

この発明にかかる絶縁ゲート型トランジスタは、第1お
よび第2の主面を有する第1あるいは第2の導電型の第
1の半導体層と、前記第1の半導体層の前記第1の主面
上に形成された第2の導電型の第2の半導体層と、前記
第2の半導体層の表面に選択的に形成された第1の導電
型の第1の半導体領域と、前記第1の半導体領域の表面
に還択的に形成された第2の導電型の第2の半導体領域
と、前記第2の半導体層と前記第2の半導体領域とて挾
まれた前記第1の半導体領域の表面上に形成された絶縁
膜と、前記絶縁膜上に形成された制御電極と、前記第1
および第2の半導体領域上にまたがって形成された第1
の主電極と、前記第1の半導体層の前記第2の主面上に
形戊された第2の主電極とを備え、前記第1の主電極は
、前記第1の半導体領域の表面から前記第2の半導体領
域の底面の少なくとも一部に延びて形成されている。
The insulated gate transistor according to the present invention includes a first semiconductor layer of a first or second conductivity type having a first and a second main surface, and a first semiconductor layer on the first main surface of the first semiconductor layer. a second semiconductor layer of a second conductivity type formed on a surface of the second semiconductor layer; a first semiconductor region of a first conductivity type selectively formed on a surface of the second semiconductor layer; a second semiconductor region of a second conductivity type selectively formed on a surface of the region; and a surface of the first semiconductor region sandwiched between the second semiconductor layer and the second semiconductor region; an insulating film formed thereon, a control electrode formed on the insulating film, and the first
and a first semiconductor region formed over the second semiconductor region.
and a second main electrode formed on the second main surface of the first semiconductor layer, the first main electrode extending from the surface of the first semiconductor region. The second semiconductor region is formed so as to extend over at least a portion of the bottom surface of the second semiconductor region.

〔作用〕[Effect]

この発明における第1の主電極は、第1の半導体領域の
表面から第゛2の半導体領域の底面の少なくとも一部に
延びて形成されているため、第1の半導体領域中を流れ
るキャリアの少なくとも一部は、第2の半導体領域直下
の第1の半導体厨域を流れることなく直接に第1の主電
極に達する。
The first main electrode in this invention is formed to extend from the surface of the first semiconductor region to at least a part of the bottom surface of the second semiconductor region, so that at least one of the carriers flowing in the first semiconductor region is A portion directly reaches the first main electrode without flowing through the first semiconductor region directly under the second semiconductor region.

〔実施例〕〔Example〕

第1図はこの発明の一実施例であるNチャネル型r G
BTを示す断面図である。同図に示すように、エミッタ
電極9′が第3図で示した従来の形成領域に加え、さら
に、Pベース領域4の上層部にも埋めれ込まれて形戊さ
れている。すなわち、N+エミッタ領域5間のPベース
領域4から、N1エミッタ領域5の底面全面にかけて形
成されている。なお、他のtM 15.SEは従来と同
様であるため説明は省略する。
FIG. 1 shows an N-channel type r G which is an embodiment of the present invention.
It is a sectional view showing BT. As shown in the figure, an emitter electrode 9' is formed not only in the conventional formation region shown in FIG. 3 but also embedded in the upper layer of the P base region 4. That is, it is formed from the P base region 4 between the N+ emitter regions 5 to the entire bottom surface of the N1 emitter region 5. In addition, other tM 15. Since the SE is the same as the conventional one, the explanation will be omitted.

このようなtM b5.において、コレクタ電極11と
エミッタ電極9′ との間に所定のコレクタ電圧VCU
Eを、ゲート電極8とエミッタ電極9′ との間に、所
定のゲートyi圧V。,を従来同様に印加すると、IG
BTかオンし伝導度変調効果により、N ボディ層3の
抵抗値か低下する。エミッタ電極9′はN+エミッタ領
域5〜チャネル領域6〜N ボディ層3間の電子電流■
 が流れる経路中e には形戊されていないため、I GBTの動作に何ら悪
影響を与えない。
Such tM b5. , a predetermined collector voltage VCU is applied between the collector electrode 11 and the emitter electrode 9'.
E and a predetermined gate yi pressure V between the gate electrode 8 and the emitter electrode 9'. , is applied in the same way as before, IG
BT is turned on and the resistance value of the N body layer 3 decreases due to the conductivity modulation effect. The emitter electrode 9' is an electron current between the N+ emitter region 5, the channel region 6, and the N body layer 3.
Since it is not shaped in the path through which the IGBT flows, it does not have any adverse effect on the operation of the IGBT.

ここで、コレクタ電流ICが第4図で示したラッチアッ
プ電流It,より大きく流れ、N ボディ層3からPベ
ース領域4へ流れるホール電流が臨界値を越えて増大し
た場合を考える。この場合、エミッタ電極9′がN+エ
ミッタ領域5の底部にも形成されているため、Pベース
領域4に流れ込んだホール電流は従来のようにN+エミ
ッタ領域5直下のPベース領域4を流れることなく直接
にエミッタ電極9′に到達してしまい、このエミッタ電
極9′から外部に流れる。
Here, consider a case where the collector current IC flows larger than the latch-up current It shown in FIG. 4, and the hole current flowing from the N body layer 3 to the P base region 4 increases beyond a critical value. In this case, since the emitter electrode 9' is also formed at the bottom of the N+ emitter region 5, the hole current flowing into the P base region 4 does not flow through the P base region 4 directly under the N+ emitter region 5 as in the conventional case. It directly reaches the emitter electrode 9' and flows to the outside from this emitter electrode 9'.

その結果、Pベース領域4に流れるホール電流は、N+
エミッタ領域5,Pベース領域4,  Nボディ層3か
ら戒るNPN寄生トランジスタのへ一ス電流とはなりえ
ないため、大量のホール電流がPベース領域4に流れ込
んでも、前述したNPN寄生トランジスタがオンするこ
とはなくなり、寄生サイリスクによるラッチアップ現象
は極めて起こりにくくなる。
As a result, the hole current flowing through the P base region 4 is N+
Since the emitter region 5, P base region 4, and N body layer 3 cannot serve as a path current for the NPN parasitic transistor, even if a large amount of hole current flows into the P base region 4, the aforementioned NPN parasitic transistor It will no longer turn on, and the latch-up phenomenon due to parasitic silicon risk will be extremely unlikely to occur.

したがって、この実施例によるIGBTではラッチアッ
プ電流ILが従来と比べて格段に高くなり、従来のよう
に、通常のゲート電圧V。0を印加した時にIGBTを
流れるコレクタ電流■。の飽和値を、従来の比較的低い
ラッチアップ電流! +,以下にするようにIGBTを
設計しなければならないという制限がなくなるため、従
来に比べ通電できるコレクタ電流ffil。を大幅に増
大することができる。さらに、従来から行われていた種
々のラッチアップ防止対策を行う必要もなくなる。
Therefore, in the IGBT according to this embodiment, the latch-up current IL is much higher than that of the conventional one, and the normal gate voltage V is lower than that of the conventional one. Collector current ■ that flows through the IGBT when 0 is applied. Saturation value of conventional relatively low latch-up current! Since there is no longer a restriction that the IGBT must be designed to have a value of +, or less, the collector current ffil that can be passed is lower than that of the conventional method. can be significantly increased. Furthermore, there is no need to take various latch-up prevention measures that have been conventionally taken.

また、エミッタ電極9′がN+エミッタ領域5の底部全
面に形成されているため、エミッタ電極9′とN+エミ
ッタ領域5との電気的接触而積効率が向上する。したが
って、N+エミッタ領域5の水平方向の形成幅を、多少
短くしても、従来と同レベルのエミッタ電極9′とN+
エミッタ領域5との電気的接触面積を保つことができる
Furthermore, since the emitter electrode 9' is formed on the entire bottom of the N+ emitter region 5, the electrical contact volume efficiency between the emitter electrode 9' and the N+ emitter region 5 is improved. Therefore, even if the width of the N+ emitter region 5 in the horizontal direction is somewhat reduced, the emitter electrode 9' and the N+
The electrical contact area with the emitter region 5 can be maintained.

第2図は、この発明の他の実施例であるNチャネルバワ
ーMOSFETを示す断面図である。同図に示すように
、第1図で示したI GBTのN+バッファ層2及びP
+コレクタ層1が、N+ドレイン層12に置き代った構
造となっており、他の構造は第1図のIGBTと全く同
一である。ただし、IGBTとMOSFETの性質の違
いにより、N+エミソタ領域5はN+ソース領域15と
してエミッタ電極9′はソース電極19′ として、コ
レクタ電極11はドレイン電極21として説明する。
FIG. 2 is a sectional view showing an N-channel power MOSFET according to another embodiment of the invention. As shown in the figure, the N+ buffer layer 2 and P of the IGBT shown in FIG.
The structure is such that the + collector layer 1 replaces the N+ drain layer 12, and the other structures are exactly the same as the IGBT shown in FIG. However, due to the difference in properties between an IGBT and a MOSFET, the N+ emitter region 5 will be explained as an N+ source region 15, the emitter electrode 9' will be explained as a source electrode 19', and the collector electrode 11 will be explained as a drain electrode 21.

第2図に示すように構成すると、オン/オフ切換時に逆
方向電流がN+ソース領域15直下のPベース領域4を
流れることなく直接にソース電極19′に流れ込んでし
まうため、N+ソース項域15,Pベース領域4,N−
ボディ層3から成るNPN寄生トランジスタがオンする
可能性はなくなり、従来のように、寄生トランジスタが
オンすることを抑制するための設計上の制限がなくなる
ため、第1図のrGBT同様、パワーMOSFETの通
電できるソース電流量を大幅に1曽加することができる
With the configuration shown in FIG. 2, during on/off switching, the reverse current flows directly into the source electrode 19' without flowing through the P base region 4 directly below the N+ source region 15. , P base region 4, N-
There is no longer a possibility that the NPN parasitic transistor consisting of the body layer 3 will turn on, and there is no longer a design restriction to suppress the parasitic transistor from turning on, as in the past. The amount of source current that can be supplied can be significantly increased by 1.

なお、第1図,第2図で示した実施例では、N エミッ
タ領域5 (N+ソース領域15)の底面全面に、エミ
ッタ電極9′ (ソース電極19′)を形成した例を示
したが、少なくともN+エミツタ領域5 (N+ソース
領域15)の底面の一部に、エミッタ電極9′ (ソー
ス電極19′)を形戊すれば、寄生トランジスタの活性
化を抑制する機能を果たす効果がある。
In the embodiment shown in FIGS. 1 and 2, an example was shown in which the emitter electrode 9' (source electrode 19') was formed on the entire bottom surface of the N emitter region 5 (N+ source region 15). Forming an emitter electrode 9' (source electrode 19') on at least a part of the bottom surface of the N+ emitter region 5 (N+ source region 15) has the effect of suppressing activation of the parasitic transistor.

しかしながら、より完全な寄生トランジスタの活性化の
抑制を果たし、通電能力を大幅に向上させるためには、
第1図(第2図)で示したように、N+エミッタ領域5
 (N+ソース領域15)の底面全面にエミッタ電極9
′ (ソース電極19′)を形1戊する方が望ましい。
However, in order to more completely suppress the activation of parasitic transistors and significantly improve the current carrying capacity,
As shown in FIG. 1 (FIG. 2), the N+ emitter region 5
The emitter electrode 9 is located on the entire bottom surface of the (N+ source region 15).
It is preferable to form the source electrode 19' (source electrode 19') into a single shape.

また、上記実施例では、NチャネルのIGBT及びパワ
ーMOSFETについて説明したが、PチャネルのI 
GBT及びパワーMOSFETについてもこの発明を適
用できることは勿論である。
Furthermore, in the above embodiment, an N-channel IGBT and a power MOSFET have been described, but a P-channel IGBT and a power MOSFET have been described.
Of course, the present invention can also be applied to GBTs and power MOSFETs.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、第1の主電極
は、第1の半導体領域の表面から第2の1i導体領域の
底面の少なくとも一部に延びて形成されているため、第
1の半導体領域中を流れるキャリアの少なくとも一部は
、第2の半導体領域に達することなく第1の主電極に流
れる。
As explained above, according to the present invention, the first main electrode is formed extending from the surface of the first semiconductor region to at least a part of the bottom surface of the second 1i conductor region. At least a portion of the carriers flowing through the semiconductor region flow to the first main electrode without reaching the second semiconductor region.

したがって、第2の半導体領域に大量のキャリアが流れ
る場合においても、第2の半導体領域をベース領域とし
、第1の半導体領域をエミッタ領域とし、第2の半導体
層をコレクタ領域とした寄坐トランジスタのベース電流
を大幅に削減できるため、寄生トランジスタの活性化の
抑制効果が向上する。
Therefore, even when a large amount of carriers flow into the second semiconductor region, the parasitic transistor with the second semiconductor region as the base region, the first semiconductor region as the emitter region, and the second semiconductor layer as the collector region Since the base current of the transistor can be significantly reduced, the effect of suppressing the activation of parasitic transistors is improved.

その桔果、寄生トランジスタの活性化を回避するための
主電流の制限が大幅に緩和されるため、通電能力が向上
した絶縁ゲート型トランジスタを得ることができる効果
がある。
As a result, the restriction on the main current for avoiding activation of parasitic transistors is significantly relaxed, so that it is possible to obtain an insulated gate transistor with improved current carrying capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例であるI GBTを示す断
而図、第2図はこの発明の他の実施例であるパワーMO
SFETを示す断面図、第3図は従来のIGBTを示す
断面図、第4図はI GBTの出力特性図である。 図において、1はP+コレクタ層、3はN ボディ層、
4はPヘース領域、5はN+エミ・ソタ領域、6はチャ
ネル領域、7はゲート絶縁膜、8はゲート電極、9′は
エミツタ電極、11はコレクタ電極、12はN+ドレイ
ン領域、15はN+ソース領域、19′ はソース電極
、2lはドレイン電極である。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is a diagram showing an IGBT which is an embodiment of the present invention, and Fig. 2 is a diagram showing a power MO which is another embodiment of the invention.
FIG. 3 is a cross-sectional view of the SFET, FIG. 3 is a cross-sectional view of a conventional IGBT, and FIG. 4 is an output characteristic diagram of the IGBT. In the figure, 1 is a P+ collector layer, 3 is an N body layer,
4 is a P heath region, 5 is an N+ emitter/soter region, 6 is a channel region, 7 is a gate insulating film, 8 is a gate electrode, 9' is an emitter electrode, 11 is a collector electrode, 12 is an N+ drain region, 15 is an N+ In the source region, 19' is a source electrode, and 2l is a drain electrode. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)第1および第2の主面を有する第1あるいは第2
の導電型の第1の半導体層と、 前記第1の半導体層の前記第1の主面上に形成された第
2の導電型の第2の半導体層と、 前記第2の半導体層の表面に選択的に形成された第1の
導電型の第1の半導体領域と、 前記第1の半導体領域の表面に選択的に形成された第2
の導電型の第2の半導体領域と、 前記第2の半導体層と前記第2の半導体領域とで挟まれ
た前記第1の半導体領域の表面上に形成された絶縁膜と
、 前記絶縁膜上に形成された制御電極と、 前記第1および第2の半導体領域上にまたがって形成さ
れた第1の主電極と、 前記第1の半導体層の前記第2の主面上に形成された第
2の主電極とを備え、 前記第1の主電極は、前記第1の半導体領域の表面から
前記第2の半導体領域の底面の少なくとも一部に延びて
形成されていることを特徴とする絶縁ゲート型トランジ
スタ。
(1) A first or second surface having a first and second main surface.
a first semiconductor layer of a conductivity type; a second semiconductor layer of a second conductivity type formed on the first main surface of the first semiconductor layer; and a surface of the second semiconductor layer. a first semiconductor region of a first conductivity type selectively formed on a surface of the first semiconductor region; and a second semiconductor region selectively formed on a surface of the first semiconductor region.
a second semiconductor region of a conductivity type; an insulating film formed on the surface of the first semiconductor region sandwiched between the second semiconductor layer and the second semiconductor region; and on the insulating film. a control electrode formed on the second main surface of the first semiconductor layer; a first main electrode formed on the first and second semiconductor regions; and a first main electrode formed on the second main surface of the first semiconductor layer. 2 main electrodes, wherein the first main electrode is formed to extend from the surface of the first semiconductor region to at least a part of the bottom surface of the second semiconductor region. Gate type transistor.
JP1193534A 1989-07-25 1989-07-25 Insulated-gate transistor Pending JPH0357226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1193534A JPH0357226A (en) 1989-07-25 1989-07-25 Insulated-gate transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1193534A JPH0357226A (en) 1989-07-25 1989-07-25 Insulated-gate transistor

Publications (1)

Publication Number Publication Date
JPH0357226A true JPH0357226A (en) 1991-03-12

Family

ID=16309678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193534A Pending JPH0357226A (en) 1989-07-25 1989-07-25 Insulated-gate transistor

Country Status (1)

Country Link
JP (1) JPH0357226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834202A (en) * 2010-04-13 2010-09-15 东南大学 N-type lateral insulated gate bipolar device capable of reducing hot carrier effect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834202A (en) * 2010-04-13 2010-09-15 东南大学 N-type lateral insulated gate bipolar device capable of reducing hot carrier effect

Similar Documents

Publication Publication Date Title
JP5357370B2 (en) Semiconductor device
US5801420A (en) Lateral semiconductor arrangement for power ICS
US6133607A (en) Semiconductor device
JPH0883897A (en) Mos control type thyristor
JPH09260665A (en) Short-circuit anode horizontal insulated gate bipolar transistor
US5889310A (en) Semiconductor device with high breakdown voltage island region
JP3149773B2 (en) Insulated gate bipolar transistor with current limiting circuit
JP2001077357A (en) Semiconductor device
US5923055A (en) Controllable semiconductor component
US5874767A (en) Semiconductor device including a lateral power device
JPH03194974A (en) Mos type semiconductor device
US5336907A (en) MOS gate controlled thyristor having improved turn on/turn off characteristics
JP2001168324A (en) Semiconductor device
JPH1065018A (en) Semiconductor device
JP3249891B2 (en) Semiconductor device and method of using the same
JP7363429B2 (en) Driving method of semiconductor device
JPH0357226A (en) Insulated-gate transistor
JP2581233B2 (en) Horizontal conductivity modulation MOSFET
JPH08130312A (en) Lateral semiconductor device and its use
JP7387562B2 (en) Semiconductor elements and semiconductor devices
JPH06232392A (en) Dual gate semiconductor device
JPH047592B2 (en)
JPH11330453A (en) Horizontal insulating gate-type transistor
JP3196575B2 (en) Composite semiconductor device and power conversion device using the same
JP4407172B2 (en) Horizontal insulated gate bipolar transistor