JPH0357074B2 - - Google Patents

Info

Publication number
JPH0357074B2
JPH0357074B2 JP24886989A JP24886989A JPH0357074B2 JP H0357074 B2 JPH0357074 B2 JP H0357074B2 JP 24886989 A JP24886989 A JP 24886989A JP 24886989 A JP24886989 A JP 24886989A JP H0357074 B2 JPH0357074 B2 JP H0357074B2
Authority
JP
Japan
Prior art keywords
silicon nitride
temperature
type
gas
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24886989A
Other languages
Japanese (ja)
Other versions
JPH02217394A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP55121690A external-priority patent/JPS5747706A/en
Application filed filed Critical
Priority to JP24886989A priority Critical patent/JPH02217394A/en
Publication of JPH02217394A publication Critical patent/JPH02217394A/en
Publication of JPH0357074B2 publication Critical patent/JPH0357074B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、化学気相析出法により生成される結
晶質窒化珪素塊状体に関するものである。 (従来の技術及び発明が解決しようとする課題) 従来化学気相析出法によつて窒化珪素を製造す
る方法が知られている。その際前記方法において
使用される原料ガスとしてケイ素を含有し、かつ
気相析出するケイ素沈積源ガス、例えば、SiCl4
SiH4、SiBr4,SiF4などと、窒素を含有し、かつ
気相析出する窒素沈積源ガス、例えば、NH3
N2H4などとが使用されており、上記2種類のガ
スを減圧下で、かつ高温度で反応させると窒化珪
素が析出し、その際例えば炭素板が存在するとそ
の上に窒化珪素が板状に沈積して非晶質あるいは
結晶質からなる窒化珪素塊状体を得ることができ
ることが知られている。 なお、窒化珪素塊状体のほかに、析出条件を変
えることにより、非晶質窒化珪素粉末体を生成さ
せることができることも知られている。 ところで、Tiを含む窒化珪素については、米
国特許第4145224号公報により化学気相析出法を
用いて粉末体が得られることが開示されている。
すなわち同公報によれば、1100〜1350℃の反応領
域にSiCl4,TiCl4、NH3を導入することにより
TiNを含んだ非晶質窒化珪素粉末体が得られ、
TiNを含まない非晶質窒化珪素粉末体の結晶化
には1500〜1600℃の熱処理温度が必要であるのに
対し、TiNを含む非晶質窒化珪素粉末体は1400
℃とより低い温度で、N2中、2時間の熱処理に
より60重量%が結晶化し、この結晶は97重量%の
α型窒化珪素と3重量%のβ型窒化珪素から成
る。なお、Tiの含有量は1.5〜5重量%が好まし
いが、0.01重量%のTiの含有でも1400℃で非晶質
窒化珪素が結晶化されることが記載されている。 さらに前記米国特許公報によれば、析出生成さ
れるTiを含む窒化珪素は粉末体であり、これを
塊状体とするためには前記粉体状析出生成物を成
形して焼結する必要があると記載されている。 本発明は、従来知られていない。窒化珪素結晶
中に粒状に析出したTiNを含み、この窒化珪素
結晶がα型結晶とβ型結晶とからなり、α型結晶
の含有量がβ型結晶の含有量より大きく、かつα
型結晶の(00l)面が結晶配向してなる結晶質窒
化珪素(以下、窒化珪素をSiN4と略記すること
がある。)塊状体を提供することを目的とする。 (課題を解決するための手段) 次に、本発明を詳細に説明する。 本発明は、窒化珪素結晶中に粒状に析出した
TiNを含み、この窒化珪素結晶がα型結晶とβ
型結晶とからなり、α型結晶の含有量がβ型結晶
の含有量より大きく、かつα型結晶の(00l)面
が結晶配向してなる結晶質窒化珪素塊状体に関す
るものである。 前述の如く、主として非晶質からなるTiを含
む窒化珪素粉末体は知られており、また結晶質か
らなりTiを含む窒化珪素焼結成形体も知られて
いるが、本発明のように、窒化珪素結晶がα型結
晶とβ型結晶とからなり、α型結晶の含有量がβ
型結晶の含有量より大きく、かつTiを含む窒化
珪素塊状体は従来全く知られていない。米国特許
第4145224号公報によれば、非晶質のTiを含む窒
化珪素粉末体が得られ、一方この粉末体を成形
し、焼成するとTi含む結晶質の窒化珪素焼結成
形体が得られることが開示されている。しかし、
前記外国特許公報によれば、成形体中に含まれる
Si3N4の結晶型は不明である。本発明の塊状体
は、窒化珪素結晶中に粒状に析出したTiNを含
み、この窒化珪素結晶がα型結晶とβ型結晶とか
らなり、α型結晶の含有量がβ型結晶の含有量よ
り大きく、かつα型結晶の(00l)面が結晶配向
してなる結晶質窒化珪素塊状体であつて、かかる
塊状体は全く新規なものである。 次に本発明のTiを含むSi3N4塊状体の組織、性
状ならびに性質について説明する。 本発明の塊状体においては、窒化珪素結晶がα
型結晶とβ型結晶とからなり、α型結晶の含有量
がβ型結晶の含有量より大きく、結晶中に析出し
た数+Å径の微細粒のTiNを含み、第1図のX
線回折図に示すように前記α型結晶の(00l)面
が極めて良く結晶配向しており、この結晶配向は
第2図の走査型電子顕微鏡写真においてα型
Si3N4の成長形態とよく一致している。 本発明の塊状体中のTiはTiNとして存在する
ことが透過電子顕微鏡によつて確認された。
TiNの塊状体中の含有量は後述する如くこの塊
状体が製造される条件、ながでも製造温度によつ
て異なり、4〜10重量%の範囲内である。 本発明の塊状体の密度は製造条件によつて異な
るが、3.24〜3.35g/cm3の範囲内である。ところ
でα型Si3N4の理論密度は3.18g/cm3、β型Si3N4
のそれは3.19g/cm3、TiNのそれは5.43g/cm2
あるのでTiNの含有量の上昇と共に密度は上昇
する。 本発明の塊状体の室温における硬度(荷重100
g)は1900〜2900Kg/mm2の範囲内にあり、後述す
る如く、この硬度は塊状体が製造されるときの温
度によつて異なる。前記硬度を有する本発明の塊
状体は切削工具として充分使用することができ
る。 なお、Tiを含むSi3N4の塊状体は、純粋の
Si3N4塊状体より電気伝導度が高い。例えば第3
図に示すように、Tiを含む非晶質Si3N4の300
℃における電気伝導度は、同温度のTiを含まな
いα型Si3N4のそれより7桁も高く、しかもそ
の電気伝導度の温度係数が小さいという特徴を有
する。上記電気伝導度ならびに特異な電気伝導度
の温度計数を有することから、これらの性質を利
用する電気材料としての応用が予測される。 次に本発明の塊状体を製造する方法を第4図に
ついて説明する。 この製造方法では後述の500〜1900℃の温度範
囲内に加熱した基体2上に窒素沈積源ガス、珪素
沈積源ガスおよびチタン沈積源ガスとを組合せ管
4を用いてそれぞれ吹付け、その際前記基体2上
に吹付けられる窒素沈積ガス流束の周囲を珪素沈
積源ガスとチタン沈積源ガスの混合ガスにより包
囲し、前記両ガスの気相分解反応を基体2上ある
いは基体2付近で生起させてTiを含むSi3N4を生
成させ、かつ前記生成Tiを含むSi3N4塊状体とし
て基体上に沈積させることができる。 なお、前記組合せ管の少なくとも先端部ならび
に基体は共に雰囲気ならびに圧力を調製すること
のできる密閉容器内に設置することは有利であ
る。 本発明のTiを含むSi3N4製造用出発原料の1つ
である珪素沈積源化合物としては、珪素のハロゲ
ン化物(SiCl4,SiF4,SiBr4,SiI4,Si2Cl6
Si2Br6,Si2I6,SiBrCl3,SiBr3Cl,SiBr2Cl,
SiICl3)、水素化物(SiH4,Si4H10,Si3H8
Si2H6)、水素ハロゲン化物(SiHCl3,SiHBr3
SiHF3,SiHI3)のうちから選ばれる何れか1種
または2種以上を用いることができ、好適には室
温でガス状であるSiH4、あるいは室温における
蒸気圧が高いSiHCl3,SiCl4を有利に使用するこ
とができる。また窒素沈積源化合物としては窒素
の水素化合物(HN3,NH3,N2H4)、アンモニ
ウムハロゲン化物(NH4Cl,NH4F,NH4HF2
NH4I)のうちから選ばれる何れか1種または2
種以上を用いることができ、NH3,N2H4は比較
的安価でありまた入手が容易である為に好適に使
用することができる。また、チタン沈積源化合物
としてはチタンのハロゲン化物(TiCl4,TiBr4
TiF4,TiI4)のうちから選ばれる何れか1種ま
たは2種以上を用いることができ、TiCl4は比較
的安価でありまた入手が容易である為に好適に使
用することができる。 珪素沈積源化合物、チタン沈積源化合物、窒素
沈積源化合物からTiを含むSi3N4を得る基体の温
度は500〜1900℃の範囲内にあるが、このうち、
本発明の結晶質窒化珪素塊状体を得るための基体
温度は1180〜1500℃である。ただし、この温度条
件は容器内ガス圧力と関係があり、その最適範囲
(5〜100mmHg)では第8図のD(α型結晶+β型
結晶、α>β)に示した範囲となる。即ち、50mm
Hg付近のガス圧力では、製造温度域が最も低い
温度範囲(1180℃〜1280℃)となり、ガス圧力が
これより高くとも低くとも、本発明の結晶質窒化
珪素塊状体が得られる温度範囲が高くなる。 なお前記窒素沈積源化合物、珪素沈積源化合物
およびチタン沈積源化合物の1種または2種を搬
送するためN2,Ar,He,H2の何れか1種また
は2種以上をキヤリアーガスとして必要により使
用することができる。このうちN2は窒素の沈積
源原料にもなり得るし、H2は珪素およびチタン
沈積源化合物の気相分解の際反応に関与すること
がある。キヤリアーガスは基体を収容する容器内
の全ガス圧力の調節、珪素、チタンおよび窒素沈
積源原料の蒸気の混合比の調節、容器内における
ガスの流束形状の調節、およびまたはN2,H2
ように一部反応に関与させるために用いることが
でき、またキヤリアーガスを使用しなくともTi
を含むSi3N4を生成させることができる。 次にSiCl4,TiCl4とNH3を原料とし、かつキヤ
リアーガスとしてH2を用いる場合について、Ti
を含むSi3N4の製造方法を説明する。 前記SiCl4,TiCl4とNH3を、例えば第4図に示
す如き組合せ管4を用いてそれぞれ容器内に導入
するがNH3は前記組合せ管4の内管8を経て、
SiCl4とTiCl4の混合ガスは外管9を経て導入し、
NH3の流束の周囲をSiCl4とTiCl4の混合ガスで包
囲しつつ容器内基体2上に前記両ガスを吹付け
る。この際キヤリアーガスであるH2は外管9を
経て吹付けられSiCl4およびTiCl4と予め混合させ
ておくことは有利である。 H2の流量は100〜7000c.c./minの範囲内が良
く、1000〜4000c.c./minが最も適当である。
SiCl4の流量(蒸気状態)は20〜1000c.c./minの
範囲内が良く、50〜500c.c./minの範囲内が最も
適当である。TiCl4の流量(蒸気状態)は0.1〜
100c.c./minの範囲内が良く、1〜50c.c./minの
範囲内が最も適当である。NH3の流量は50〜500
c.c./minの範囲内が良く、80〜400c.c./minの範
囲内が最も適当である。 基体2を収容する容器内の全ガス圧力は1〜
760mmHgの範囲内が良く、5〜100mmHgが最適で
ある。なお1気圧以上のガス圧力でもTiを含む
Si3N4は製造することができる。 (実施例) 次に製造条件と製造される塊状体との関係につ
いて説明する。 第1表はTiを含むSi3N4塊状体とTiを含まない
Si3N4塊状体を製造するときの製造温度がSi3N4
の結晶状態に及ぼす影響の1例を示す表である。
ここで製造温度以外の製造条件として、Tiを含
む場合には容器内のガス圧力を30mmHg,SiCl4
量を136c.c./min(蒸気状態)、TiCl4流量を18c.c./
min(蒸気状態)、NH3流量を120c.c./min、H2
量を2720c.c./minとし、Tiを含まない場合には容
器内のガス圧力を30mmHg,SiCl4流量を136c.c./
min(蒸気状態)、NH3流量を120c.c./min、H2
量を2720c.c./minとした。
(Industrial Application Field) The present invention relates to a crystalline silicon nitride block produced by a chemical vapor deposition method. (Prior Art and Problems to be Solved by the Invention) Conventionally, a method of manufacturing silicon nitride using a chemical vapor deposition method is known. At that time, the raw material gas used in the above method is a silicon deposition source gas that contains silicon and is deposited in a vapor phase, such as SiCl 4 ,
SiH 4 , SiBr 4 , SiF 4 , etc., and a nitrogen deposition source gas that contains nitrogen and precipitates in the vapor phase, such as NH 3 ,
N 2 H 4 etc. are used, and when the above two types of gases are reacted under reduced pressure and high temperature, silicon nitride is precipitated. At this time, if a carbon plate is present, silicon nitride is deposited on top of it. It is known that amorphous or crystalline silicon nitride lumps can be obtained by depositing silicon nitride in the form of amorphous or crystalline silicon nitride. It is also known that in addition to silicon nitride lumps, amorphous silicon nitride powder can be produced by changing the precipitation conditions. By the way, regarding silicon nitride containing Ti, US Pat. No. 4,145,224 discloses that a powder can be obtained using a chemical vapor deposition method.
In other words, according to the same publication, by introducing SiCl 4 , TiCl 4 , and NH 3 into the reaction region at 1100 to 1350°C,
Amorphous silicon nitride powder containing TiN is obtained,
Crystallization of amorphous silicon nitride powder that does not contain TiN requires a heat treatment temperature of 1500 to 1600°C, whereas amorphous silicon nitride powder containing TiN requires a heat treatment temperature of 1400°C.
C. and lower by heat treatment in N2 for 2 hours, 60% by weight crystallizes, consisting of 97% by weight of alpha silicon nitride and 3% by weight of beta silicon nitride. Note that the Ti content is preferably 1.5 to 5% by weight, but it is described that amorphous silicon nitride can be crystallized at 1400°C even with a Ti content of 0.01% by weight. Further, according to the above-mentioned US patent publication, silicon nitride containing Ti that is produced by precipitation is a powder, and in order to form it into a lump, it is necessary to mold and sinter the powder-like precipitation product. It is stated that. The present invention is hitherto unknown. The silicon nitride crystal contains TiN precipitated in granular form, and the silicon nitride crystal consists of α-type crystals and β-type crystals, and the content of α-type crystals is larger than the content of β-type crystals, and
The object of the present invention is to provide a crystalline silicon nitride (hereinafter, silicon nitride may be abbreviated as SiN 4 ) mass formed by crystal orientation of the (00l) plane of a type crystal. (Means for Solving the Problems) Next, the present invention will be explained in detail. In the present invention, granular precipitates are formed in silicon nitride crystals.
Contains TiN, and this silicon nitride crystal is an α-type crystal and a β-type crystal.
The present invention relates to a crystalline silicon nitride block consisting of a type crystal, in which the content of α type crystal is larger than the content of β type crystal, and the (00l) plane of the α type crystal is crystal oriented. As mentioned above, silicon nitride powder bodies that are mainly amorphous and contain Ti are known, and silicon nitride sintered bodies that are crystalline and contain Ti are also known. Silicon crystals consist of α-type crystals and β-type crystals, and the content of α-type crystals is β.
A silicon nitride block containing Ti that is larger than the content of the type crystal has not been known in the past. According to US Pat. No. 4,145,224, a silicon nitride powder body containing amorphous Ti is obtained, and when this powder body is molded and fired, a crystalline silicon nitride sintered body containing Ti can be obtained. Disclosed. but,
According to the foreign patent publication, contained in the molded article
The crystal type of Si 3 N 4 is unknown. The lump of the present invention contains TiN precipitated in granular form in a silicon nitride crystal, and the silicon nitride crystal is composed of α-type crystals and β-type crystals, and the content of α-type crystals is higher than the content of β-type crystals. This is a large crystalline silicon nitride lump formed by the crystal orientation of the (00l) plane of an α-type crystal, and such a lump is completely new. Next, the structure, properties, and properties of the Ti-containing Si 3 N 4 lump of the present invention will be explained. In the lump of the present invention, the silicon nitride crystal is α
It consists of type crystals and β-type crystals, the content of α-type crystals is larger than the content of β-type crystals, and contains fine grains of TiN with a diameter of number + Å precipitated in the crystals,
As shown in the ray diffraction diagram, the (00l) plane of the α-type crystal is extremely well oriented, and this crystal orientation is similar to the α-type crystal in the scanning electron micrograph shown in Figure 2.
This agrees well with the growth morphology of Si 3 N 4 . It was confirmed by transmission electron microscopy that Ti in the agglomerates of the present invention exists as TiN.
The content of TiN in the agglomerate varies depending on the conditions under which the agglomerate is produced, especially the production temperature, as will be described later, and is within the range of 4 to 10% by weight. The density of the agglomerates of the present invention varies depending on manufacturing conditions, but is within the range of 3.24 to 3.35 g/cm 3 . By the way, the theoretical density of α-type Si 3 N 4 is 3.18 g/cm 3 , and that of β-type Si 3 N 4
The density of TiN is 3.19 g/cm 3 , and that of TiN is 5.43 g/cm 2 , so the density increases as the TiN content increases. Hardness of the mass of the present invention at room temperature (load 100
g) is in the range of 1900 to 2900 Kg/mm 2 and, as explained below, this hardness varies depending on the temperature at which the mass is produced. The block of the present invention having the above-mentioned hardness can be satisfactorily used as a cutting tool. Note that Si 3 N 4 lumps containing Ti are pure
Higher electrical conductivity than Si 3 N 4 lumps. For example, the third
300 of amorphous Si3N4 containing Ti as shown in the figure.
Its electrical conductivity at °C is seven orders of magnitude higher than that of α-type Si 3 N 4 that does not contain Ti at the same temperature, and is characterized by a small temperature coefficient of electrical conductivity. Since it has the above electrical conductivity and a unique temperature coefficient of electrical conductivity, it is expected that it will be applied as an electrical material utilizing these properties. Next, the method for manufacturing the block of the present invention will be explained with reference to FIG. In this manufacturing method, a nitrogen deposition source gas, a silicon deposition source gas, and a titanium deposition source gas are each sprayed onto a substrate 2 heated within a temperature range of 500 to 1900° C. using a combination tube 4, which will be described later. A nitrogen deposition gas flux blown onto the substrate 2 is surrounded by a mixed gas of a silicon deposition source gas and a titanium deposition source gas, and a gas phase decomposition reaction of both gases is caused on or near the substrate 2. Si 3 N 4 containing Ti can be produced and deposited on the substrate as a Si 3 N 4 agglomerate containing the produced Ti. Note that it is advantageous that at least the tip end and the base of the combination tube are placed in a closed container where the atmosphere and pressure can be adjusted. The silicon deposition source compound, which is one of the starting materials for producing Si 3 N 4 containing Ti in the present invention, includes silicon halides (SiCl 4 , SiF 4 , SiBr 4 , SiI 4 , Si 2 Cl 6 ,
Si 2 Br 6 , Si 2 I 6 , SiBrCl 3 , SiBr 3 Cl, SiBr 2 Cl,
SiICl 3 ), hydrides (SiH 4 , Si 4 H 10 , Si 3 H 8 ,
Si 2 H 6 ), hydrogen halides (SiHCl 3 , SiHBr 3 ,
SiHF 3 , SiHI 3 ) can be used, preferably SiH 4 which is gaseous at room temperature, or SiHCl 3 or SiCl 4 which has a high vapor pressure at room temperature. can be used to advantage. Nitrogen deposition source compounds include hydrogen compounds of nitrogen (HN 3 , NH 3 , N 2 H 4 ), ammonium halides (NH 4 Cl, NH 4 F, NH 4 HF 2 ,
Any one or two selected from NH 4 I)
More than one species can be used, and NH 3 and N 2 H 4 are preferably used because they are relatively inexpensive and easily available. In addition, titanium halides (TiCl 4 , TiBr 4 , TiBr 4 ,
One or more selected from TiF 4 , TiI 4 ) can be used, and TiCl 4 is preferably used because it is relatively inexpensive and easily available. The temperature of the substrate from which Si 3 N 4 containing Ti is obtained from the silicon deposition source compound, titanium deposition source compound, and nitrogen deposition source compound is within the range of 500 to 1900 ° C.
The substrate temperature for obtaining the crystalline silicon nitride bulk of the present invention is 1180 to 1500°C. However, this temperature condition is related to the gas pressure inside the container, and its optimum range (5 to 100 mmHg) is the range shown in D (α-type crystal + β-type crystal, α>β) in FIG. 8. i.e. 50mm
At a gas pressure near Hg, the production temperature range is the lowest (1180°C to 1280°C), and whether the gas pressure is higher or lower than this, the temperature range in which the crystalline silicon nitride bulk of the present invention can be obtained is high. Become. If necessary, one or more of N 2 , Ar, He, and H 2 may be used as a carrier gas to transport one or more of the nitrogen deposition source compound, silicon deposition source compound, and titanium deposition source compound. can be used. Of these, N 2 can also be a nitrogen deposition source material, and H 2 can participate in the reaction during gas phase decomposition of silicon and titanium deposition source compounds. The carrier gas is used to adjust the total gas pressure in the container containing the substrate, to adjust the mixing ratio of the vapors of the silicon, titanium, and nitrogen deposition source materials, to adjust the gas flux shape in the container, and / or to control the gas flux shape in the container . It can be used to partially participate in the reaction, as in
It is possible to generate Si 3 N 4 containing. Next, regarding the case where SiCl 4 , TiCl 4 and NH 3 are used as raw materials and H 2 is used as a carrier gas, Ti
A method for producing Si 3 N 4 containing Si 3 N 4 will be explained. The SiCl 4 , TiCl 4 and NH 3 are each introduced into a container using, for example , a combination tube 4 as shown in FIG.
A mixed gas of SiCl 4 and TiCl 4 is introduced through the outer tube 9,
While surrounding the NH 3 flux with a mixed gas of SiCl 4 and TiCl 4 , both gases are sprayed onto the substrate 2 in the container. It is advantageous here for the carrier gas H 2 to be blown in via the outer tube 9 and premixed with the SiCl 4 and TiCl 4 . The flow rate of H 2 is preferably within the range of 100 to 7000 c.c./min, most preferably 1000 to 4000 c.c./min.
The flow rate (vapor state) of SiCl 4 is preferably within the range of 20 to 1000 c.c./min, most suitably within the range of 50 to 500 c.c./min. The flow rate (vapor state) of TiCl 4 is 0.1~
A range of 100 c.c./min is preferable, and a range of 1 to 50 c.c./min is most appropriate. NH3 flow rate is 50-500
The range of cc/min is good, and the range of 80 to 400 c.c./min is most suitable. The total gas pressure in the container housing the substrate 2 is 1~
A range of 760 mmHg is good, and a range of 5 to 100 mmHg is optimal. Note that even gas pressures of 1 atm or higher contain Ti.
Si 3 N 4 can be produced. (Example) Next, the relationship between the manufacturing conditions and the manufactured lumps will be explained. Table 1 shows Si 3 N 4 lumps containing Ti and without Ti.
The manufacturing temperature when manufacturing Si 3 N 4 lumps is
2 is a table showing an example of the influence on the crystal state of .
Here, as the manufacturing conditions other than the manufacturing temperature, if Ti is included, the gas pressure in the container is 30 mmHg, the SiCl 4 flow rate is 136 c.c./min (vapor state), and the TiCl 4 flow rate is 18 c.c./min.
min (vapor state), the NH 3 flow rate is 120 c.c./min, the H 2 flow rate is 2720 c.c./min, and when Ti is not included, the gas pressure in the container is 30 mmHg, and the SiCl 4 flow rate is 136 c.c. c./
min (vapor state), the NH 3 flow rate was 120 c.c./min, and the H 2 flow rate was 2720 c.c./min.

【表】 第1表から明らかなように、Tiを含む場合は
Tiを含まない場合と比較してα型結晶の生成す
る温度が300℃低くなり、かつ従来から化学気相
析出法によつては製造が困難とされたβ型結晶が
容易に生成することが判る。 塊状体中のTiN含有量は、第5図にその1例
を示すように、製造温度が1100℃のときは28重量
%であるが、温度がさらに上がり1500℃になると
4.2重量%へ減少する。 Tiを含むSi3N4の密度は、第6図にその1例を
示すように、製造温度1100度における3.33g/cm3
から製造温度1500℃における3.24g/cm3へと製造
温度の上昇とともに減少するが、これらの密度値
は、TiN(理論密度:5.43g/cm3)を含むために
α型Si3N4の理論密度3.18g/cm3、β型Si3N4の理
論密度3.19g/cm3よりも高い。 次に、塊状体を製造する際の製造温度とマイク
ロビツカース硬度の関係を第7図について説明す
る。製造温度が1300℃までは、温度が高いほど前
記硬度は大であるが、1300℃を越えると硬度は減
少する。 次に、Tiを含むSi3N4塊状体ならびにTiを含ま
ないSi3N4塊状体の製造温度と容器内ガス圧力が
塊状体の結晶状態に及ぼす影響を第8図に比較し
て示す。同図により、本発明のTiを含むSi3N4
状体では、非晶質からなるものA、主として非晶
質と小量のα型結晶からなるものB、α型結晶の
含有量がβ型結晶の含有量よりも多いものD、β
型結晶の含有量がα型結晶の含有量よりも多いも
のEの何れも、Tiを含まないSi3N4塊状体に比
し、より低い温度で製造することができることが
判る。 次に、本発明を実施例によつて説明する。 実施例 第9図に示す装置を用いて銅製電極3の間に人
造黒鉛から成る板状基体2をはさみ、炉内を予め
10-3mmHgに減圧し、基体に通電して基体を500℃
以上に加熱し、基体の脱ガスを行なつた。次いで
基体を1300℃に保熱した。これにアンモニアガス
を120c.c./minで内管より流出させ、同時に0℃
の四塩化珪素(蒸気圧76mmHg)中を通過させた
水素ガス(流量1360c.c./min)と、20℃の四塩化
チタン(蒸気圧10mmHg)中を通過させた水素ガ
ス(流量1360c.c./min)の混合ガスを外管より流
出させた。この条件における四塩化珪素ガスの流
量は136c.c./min、四塩化チタンガスの流量は18
c.c./minであつた。また、その時の容器内の圧力
を30mmHgとした。8時間ガスを流した後、電流
を切り、冷却し、中の基体2を取り出したとこ
ろ、基体2の表面上に1.7mm厚さのTiを含む黒色
Si3N4を得た。Tiの存在状態は、Ti含有量が低い
ためX線回折では確認できなかつたが、高分解能
電子顕微鏡により、径約100Åの粒状の析出物が
分散しているのが観察され、電子線回折により、
この分散した粒子がTiNであることが確認され
た。このTiを含むSi3N4の他の特性は次のようで
あつた。結晶構造:X線回折によつて測定したと
ころ92重量%のα型と8重量%のβ型の混在物で
あつた(窒化珪素結晶の重量を100重量%として
計算した)。結晶配向:α型の(00l)面が基体と
平行に配向していた。密度3.25g/cm3、TiN含有
量5.4重量%、室温硬度:2900Kg/mm2(荷重100
g)、直流電気伝導度:8×10-7Ω-1cm-1(700℃)。 以上のような優れた特性を利用して、本発明の
Tiを含むSi3N4は下記の方面に利用できる。 1 被覆材として (イ) バイト、ダイス、ドリル、カツター等の工
具材の表面に被覆することによつて工具の寿
命を延ばし、自動加工システムの管理を容易
ならしめる。 (ロ) ベアリング、歯車、回転軸等の耐摩耗性を
要する機械部品の表面に被覆することによつ
て摩耗及び高温焼付を防止する。 (ハ) 金属、化合物、セラミツクス、黒鉛等の諸
材料の表面に被覆することによつて、高硬度
の表面をもたせ、さらに高温における機械的
性質を向上させる(エンジン部品、タービン
部品等)。 (ニ) 任意材料の基体の表面に被覆することによ
り、絶縁性物質からなる基体にも導電性を附
与する。 (ホ) 絶縁体の表面に被覆することにより、静電
気の発生を防止する。 2 ブロツク材として (ヘ) 超硬バイト、超硬ダイス等の工具材として
有用である。 (ト) 高い硬度が要求される硬質理化学器具に用
いられる。 (チ) 高い硬度が要求され、しかも高温度でその
硬度を保持する必要のあるベアリング、回転
軸、軸受、シール材に有用である。 (リ) 高温で用いられる構造材として、エンジン
部品、タービン部品として利用できる。 (ヌ) 軽量で高い温度が要求される発熱体、例え
ば記録用熱ペンに利用できる。 (ル) 静電印刷装置の記録計に利用できる。 (ヲ) 高温用フイラメントとして用いられる。 (ワ) 高温用発熱体として用いられる。
[Table] As is clear from Table 1, when Ti is included,
The temperature at which α-type crystals are formed is 300°C lower than when Ti is not included, and β-type crystals, which have traditionally been difficult to produce using chemical vapor deposition, can be easily formed. I understand. The TiN content in the agglomerates is 28% by weight when the manufacturing temperature is 1100°C, as shown in Figure 5, but as the temperature rises further to 1500°C.
It decreases to 4.2% by weight. The density of Si 3 N 4 containing Ti is 3.33 g/cm 3 at a manufacturing temperature of 1100 degrees, as shown in Figure 6.
The density value decreases with increasing manufacturing temperature from 3.24 g/cm 3 at 1500°C, but these density values are due to the concentration of α-type Si 3 N 4 due to the inclusion of TiN (theoretical density: 5.43 g/cm 3 ). The theoretical density is 3.18 g/cm 3 , which is higher than the theoretical density of β-type Si 3 N 4 which is 3.19 g/cm 3 . Next, the relationship between the manufacturing temperature and the micro-Vickers hardness when manufacturing a lump will be explained with reference to FIG. When the manufacturing temperature is up to 1300°C, the higher the temperature, the higher the hardness, but when it exceeds 1300°C, the hardness decreases. Next, FIG. 8 shows a comparison of the effects of the production temperature and the gas pressure in the container on the crystalline state of the Si 3 N 4 lumps containing Ti and the Si 3 N 4 lumps not containing Ti. According to the same figure, in the Ti-containing Si 3 N 4 lumps of the present invention, A is composed of amorphous material, B is mainly composed of amorphous material and a small amount of α-type crystals, and B is composed of α-type crystals with a content of β-type crystals. D, β which is larger than the content of type crystals
It can be seen that all of the samples E in which the content of type crystals is higher than the content of α-type crystals can be produced at a lower temperature than the Si 3 N 4 lumps that do not contain Ti. Next, the present invention will be explained with reference to examples. Example Using the apparatus shown in FIG. 9, a plate-shaped substrate 2 made of artificial graphite is sandwiched between copper electrodes 3, and the inside of the furnace is
Reduce the pressure to 10 -3 mmHg, apply electricity to the substrate and heat it to 500℃.
The substrate was heated to the above temperature to degas the substrate. The substrate was then kept at 1300°C. Ammonia gas is flowed out from the inner tube at 120c.c./min to this, and at the same time it is brought to 0°C.
Hydrogen gas (flow rate 1360 c.c./min) passed through silicon tetrachloride (vapor pressure 76 mmHg) at 20℃ and hydrogen gas (flow rate 1360 c.c./min) passed through titanium tetrachloride (vapor pressure 10 mmHg) at 20℃. ./min) of mixed gas was flowed out from the outer tube. Under these conditions, the flow rate of silicon tetrachloride gas is 136 c.c./min, and the flow rate of titanium tetrachloride gas is 18 c.c./min.
It was cc/min. Moreover, the pressure inside the container at that time was 30 mmHg. After flowing gas for 8 hours, the current was cut off, the substrate 2 was cooled, and the substrate 2 inside was taken out, and a black layer containing 1.7 mm of Ti was found on the surface of the substrate 2.
Si 3 N 4 was obtained. Although the presence of Ti could not be confirmed by X-ray diffraction due to the low Ti content, dispersed granular precipitates with a diameter of approximately 100 Å were observed using a high-resolution electron microscope, and electron beam diffraction revealed that ,
It was confirmed that these dispersed particles were TiN. Other properties of this Ti-containing Si 3 N 4 were as follows. Crystal structure: As measured by X-ray diffraction, it was found to be a mixture of 92% by weight α type and 8% by weight β type (calculated assuming the weight of silicon nitride crystal as 100% by weight). Crystal orientation: The (00l) plane of the α type was oriented parallel to the substrate. Density 3.25g/cm 3 , TiN content 5.4% by weight, room temperature hardness: 2900Kg/mm 2 (load 100
g), DC electrical conductivity: 8×10 -7 Ω -1 cm -1 (700°C). Utilizing the above-mentioned excellent characteristics, the present invention
Si 3 N 4 containing Ti can be used in the following areas. 1. As a coating material (a) By coating the surface of tools such as bits, dies, drills, cutters, etc., it extends the tool life and facilitates the management of automatic processing systems. (b) Prevent wear and high-temperature seizure by coating the surfaces of mechanical parts that require wear resistance, such as bearings, gears, and rotating shafts. (c) By coating the surface of various materials such as metals, compounds, ceramics, graphite, etc., it provides a highly hard surface and further improves mechanical properties at high temperatures (engine parts, turbine parts, etc.). (d) By coating the surface of a substrate made of an arbitrary material, conductivity is imparted to the substrate made of an insulating substance. (e) Prevent the generation of static electricity by coating the surface of the insulator. 2. As a block material (f) It is useful as a tool material for carbide bits, carbide dies, etc. (g) Used in hard physical and chemical instruments that require high hardness. (h) It is useful for bearings, rotating shafts, bearings, and sealing materials that require high hardness and need to maintain that hardness at high temperatures. (li) It can be used as a structural material used at high temperatures, such as engine parts and turbine parts. (N) It can be used in heating elements that are lightweight and require high temperatures, such as thermal recording pens. (l) Can be used as a recorder for electrostatic printing equipment. (wo) Used as a filament for high temperatures. (W) Used as a heating element for high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のTiを含むSi3N4の沈積面のX
線回折図形であり、(00l)面が基体と平行に配向
した主にα型からなるSi3N4に関する図、第2図
は本発明のTiを含むSi3N4の結晶構造を示す表面
走査型電子顕微鏡写真であり、(00l)面が基体と
平行に配向した主にα型から成るSi3N4に関する
図、第3図はTiを含むSi3N4とTiを含まない
Si3N4の直流電気伝導度と温度との関係を比較し
た図、第4図は吹付け管の斜視図、第5図はTi
を含むSi3N4中のTiN含有量と製造温度との関係
を示す図、第6図はTiを含むSi3N4の密度と製造
温度の関係を示す図、第7図は本発明のTiを含
むSi3N4沈積面の室温における硬度と製造温度の
関係を示す図、第8図は製造温度と容器内ガス圧
力がSi3N4の結晶状態に及ぼす影響を示す図、第
9図は本発明によるTiを含むSi3N4の製造装置の
1例を示す破砕断面図である。 1……容器、2……基体、3……把持棒、4…
…吹付け管、5……真空計配置口、6……扉、7
……排出口、8……内管、9……外管。
Figure 1 shows the X of the deposition surface of Si 3 N 4 containing Ti according to the present invention.
This is a line diffraction pattern of Si 3 N 4 mainly composed of α type with the (00l) plane oriented parallel to the substrate. Figure 2 is a surface showing the crystal structure of Si 3 N 4 containing Ti according to the present invention. This is a scanning electron micrograph of Si 3 N 4 mainly composed of α type with the (00l) plane oriented parallel to the substrate. Figure 3 shows Si 3 N 4 containing Ti and Si 3 N 4 without Ti.
A diagram comparing the relationship between the DC electrical conductivity and temperature of Si 3 N 4 , Figure 4 is a perspective view of the spray tube, and Figure 5 is a comparison of the relationship between the DC electrical conductivity and temperature of Si 3 N 4.
Fig. 6 is a diagram showing the relationship between the density of Si 3 N 4 containing Ti and production temperature, and Fig. 7 is a diagram showing the relationship between the TiN content in Si 3 N 4 containing Ti and the production temperature. Figure 8 shows the relationship between the hardness at room temperature of the Si 3 N 4 deposition surface containing Ti and the manufacturing temperature. Figure 8 shows the influence of the manufacturing temperature and gas pressure in the container on the crystalline state of Si 3 N 4 . The figure is a fragmented cross-sectional view showing an example of an apparatus for producing Si 3 N 4 containing Ti according to the present invention. 1... Container, 2... Base, 3... Gripping rod, 4...
...Blow tube, 5...Vacuum gauge placement port, 6...Door, 7
...Discharge port, 8...Inner pipe, 9...Outer pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化珪素結晶中に粒状に析出したTiNを含
み、この窒化珪素結晶がα型結晶とβ型結晶とか
らなり、α型結晶の含有量がβ型結晶の含有量よ
り大きく、かつα型結晶の(00l)面が結晶配向
してなる結晶質窒化珪素塊状体。
1 Contains TiN precipitated in granular form in a silicon nitride crystal, and this silicon nitride crystal consists of α-type crystals and β-type crystals, and the content of α-type crystals is larger than the content of β-type crystals, and the content of α-type crystals is A crystalline silicon nitride block whose (00l) plane is crystal oriented.
JP24886989A 1980-09-04 1989-09-25 Massive body of crystalline silicon nitride Granted JPH02217394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24886989A JPH02217394A (en) 1980-09-04 1989-09-25 Massive body of crystalline silicon nitride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP55121690A JPS5747706A (en) 1980-09-04 1980-09-04 Lump of silicon nitride containing ti and its manufacture
JP24886989A JPH02217394A (en) 1980-09-04 1989-09-25 Massive body of crystalline silicon nitride

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55121690A Division JPS5747706A (en) 1980-09-04 1980-09-04 Lump of silicon nitride containing ti and its manufacture

Publications (2)

Publication Number Publication Date
JPH02217394A JPH02217394A (en) 1990-08-30
JPH0357074B2 true JPH0357074B2 (en) 1991-08-30

Family

ID=26458983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24886989A Granted JPH02217394A (en) 1980-09-04 1989-09-25 Massive body of crystalline silicon nitride

Country Status (1)

Country Link
JP (1) JPH02217394A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL182741A (en) * 2007-04-23 2012-03-29 Iscar Ltd Coatings

Also Published As

Publication number Publication date
JPH02217394A (en) 1990-08-30

Similar Documents

Publication Publication Date Title
US4469801A (en) Titanium-containing silicon nitride film bodies and a method of producing the same
US4312924A (en) Super hard highly pure silicon nitrides
EP0899358B1 (en) Silicon carbide fabrication
US4594330A (en) Fine amorphous powder and process for preparing fine powdery mixture of silicon nitride and silicon carbide
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPH0476924B2 (en)
JPS5855316A (en) Manufacture of silicon nitride powder
JPH0357074B2 (en)
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JPH0357043B2 (en)
JPH0357075B2 (en)
US4770830A (en) Process for preparation of high α-type silicon nitride powder
JPS6111885B2 (en)
JPH02258677A (en) Sic powder, preparation thereof and use thereof
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
US20020071803A1 (en) Method of producing silicon carbide power
JPS631280B2 (en)
WO2023171270A1 (en) Polycrystalline sic molded article and method for producing same
JPS58199707A (en) Manufacture of crystalline silicon nitride powder
JPS6132244B2 (en)
JPS59184792A (en) Vapor phase synthesis of diamond
JPH03247506A (en) Polycrystal silicon carbide
JPH0454610B2 (en)
JPS6048592B2 (en) Manufacturing method of ultra-hard high-purity silicon nitride
JPH0448722B2 (en)