JPH0356907A - Production of polarization maintaining type optical fiber coupler - Google Patents

Production of polarization maintaining type optical fiber coupler

Info

Publication number
JPH0356907A
JPH0356907A JP19315689A JP19315689A JPH0356907A JP H0356907 A JPH0356907 A JP H0356907A JP 19315689 A JP19315689 A JP 19315689A JP 19315689 A JP19315689 A JP 19315689A JP H0356907 A JPH0356907 A JP H0356907A
Authority
JP
Japan
Prior art keywords
diameter
fiber
polarization
small
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19315689A
Other languages
Japanese (ja)
Other versions
JP2828276B2 (en
Inventor
Ryozo Yamauchi
良三 山内
Kenji Nishide
西出 研二
Toru Arikawa
徹 有川
Noboru Kawakami
川上 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1193156A priority Critical patent/JP2828276B2/en
Publication of JPH0356907A publication Critical patent/JPH0356907A/en
Application granted granted Critical
Publication of JP2828276B2 publication Critical patent/JP2828276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To prevent the leakage of light from cores and to attain a lower coupler loss by juxtaposing small-diameter fibers thinned by etching clads to a smaller diameter, then welding and stretching the small-diameter parts. CONSTITUTION:A fiber 2 is partly etched and the clad 6 is removed near to a stress imparting part 5 to produce the small-diameter fiber 8 formed with the small-diameter part 7. The small-diameter fibers 8 are then juxtaposed to bring the respective small-diameter parts 7 thereof into a contact state. the polarization directions of the respective fibers are so finely adjusted that the x-polarization axis is in parallel and the y-polarization axis is arrayed on the same straight line. The welded part 10 is stretched after heating and welding to form the welded and stretched part 11. Since the distance between the two cores 4 before the welding and stretching is short, the amt. of the stretching necessary for obtaining a prescribed branching ratio is decreased. The troubles, such as the transfer of the light leaking from the cores 4 to the stress imparting part 5 and the generation of a nonreversible coupling by coupling of this light to the outer clads 6 are prevented. Thus, the lower coupler loss is obtd..

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、高性能の偏波保持形光ファイノくカプラに
係わり、特に低損失の偏波保持形光ファイバカプラの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-performance polarization-maintaining optical fiber coupler, and more particularly to a method for manufacturing a low-loss polarization-maintaining optical fiber coupler.

「従来の技術」 従来、光信号を結合または分岐する際などに使用される
光ファイバカプラの1つとして、融着延仲形光ファイバ
カプラが知られている。この融着通仲形光ファイバカプ
ラは、複数本の光ファイノくを接触状態で並列させ、一
部を加熱融着し、更に延伸を行って融着延伸部を形成し
て作製されろ。
"Prior Art" Conventionally, a fused and stretched optical fiber coupler has been known as one type of optical fiber coupler used for coupling or branching optical signals. This fused through-type optical fiber coupler is produced by arranging a plurality of optical fibers in parallel in contact with each other, heating and fusing some of them, and then stretching them to form a fused and drawn portion.

この融着延伸形光ファイバカプラは、使用する光ファイ
バの種類によって、単一モード光ファイバカプラ、偏波
保持形光ファイノくカブラ等を構成することができる。
This fusion-stretched optical fiber coupler can be configured as a single-mode optical fiber coupler, a polarization-maintaining optical fiber coupler, or the like, depending on the type of optical fiber used.

第11図は、従来の偏波保持形光ファイノ゛<カプラ(
以下、カブラという)の一例を示す図である。
Figure 11 shows a conventional polarization-maintaining optical fiber < coupler (
FIG. 2 is a diagram illustrating an example of an example (hereinafter referred to as a "cabra").

このカプラlは、2本の偏波保持形光ファイノ<2の一
部に融着延伸部3を形成して構成されている。
This coupler 1 is constructed by forming a fused and stretched portion 3 on a part of two polarization-maintaining optical fins <2.

ところで、上記カプラlを作製する場合に使用される偏
波保持形光ファイバ2は、一種の単一モード光ファイバ
であるが、厳密には伝搬する二つのモードの縮退が解け
ているので、伝搬定数の異なる二つの直交モードが存在
する。第12図は、偏波保持形光ファイバの一例を示す
図であって、この偏波保持形光ファイバ2は、中心部の
コア3と、コア両側部に配された応力付与部5と、それ
らを囲むクラッド6とから構成されている。この応力付
与部5はファイバ内に不均一の応力を発生させるための
ものであり、コア4およびその周辺領域には、いわゆる
異方性の応力がかかり、主としてコア4を伝搬する光は
、直交する2つのモード(x,y)に分かれて伝搬する
ようになっている。このような偏波保持形光ファイバ2
は、偏波面を一定に保持したままで光を伝送することか
できるため、コヒーレント光通信や、ファイバ型の光干
渉計を原理とするファイバセンサ、光ファイバジャイロ
スコープなどに応用されている。
By the way, the polarization-maintaining optical fiber 2 used in manufacturing the above-mentioned coupler l is a kind of single-mode optical fiber, but strictly speaking, the two propagating modes are degenerated, so the propagation There are two orthogonal modes with different constants. FIG. 12 is a diagram showing an example of a polarization-maintaining optical fiber, and this polarization-maintaining optical fiber 2 includes a core 3 at the center, stress applying portions 5 arranged on both sides of the core, It is composed of a cladding 6 surrounding them. This stress applying section 5 is for generating non-uniform stress within the fiber, so-called anisotropic stress is applied to the core 4 and its surrounding area, and the light propagating mainly through the core 4 is orthogonal to each other. The signal is split into two modes (x, y) and propagated. Such a polarization maintaining optical fiber 2
Since it is possible to transmit light while keeping the plane of polarization constant, it is applied to coherent optical communications, fiber sensors based on fiber-type optical interferometers, and optical fiber gyroscopes.

上記偏波保持形光ファイバ2の材料としては、通常はコ
ア材料としてG e O 2添加石英ガラス、クラソド
材料として石英ガラスが使用され、また応力付与部の材
料としては石英にB,03のような石英の熱膨張係数を
高めるような材料を添加した材料が使用される。モして
B ! 0 3を添加した石英ガラスからなる応力付与
部5の屈折率は、第13図に示すように、クラッド部6
の屈折率よりも低くなる。また応力付与部のドーバント
としてGeOt、A LO 3を使用した場合には、第
14図に示すように応力付与部の屈折率がコアよりも高
くなる場合もある。
As for the material of the polarization maintaining optical fiber 2, silica glass doped with G e O 2 is usually used as the core material, quartz glass is used as the cladding material, and quartz with B,03 or the like is used as the material for the stress applying part. A material with added material that increases the coefficient of thermal expansion of quartz is used. Mote B! As shown in FIG. 13, the refractive index of the stress applying portion 5 made of quartz glass doped with
is lower than the refractive index of Furthermore, when GeOt or A LO 3 is used as a dopant in the stress-applying portion, the refractive index of the stress-applying portion may be higher than that of the core, as shown in FIG. 14.

「発明が解決しようとする課題」 しかしながら、応力付与部5の屈折率がクラッド6の屈
折率と異なる偏波保持形光ファイバ2を用いてカプラl
を構成する場合、次の問題があった。
``Problems to be Solved by the Invention'' However, it is difficult to connect a coupler using a polarization-maintaining optical fiber 2 in which the refractive index of the stress applying portion 5 is different from that of the cladding 6.
When configuring , I had the following problem.

応力付与部5の屈折率がクラッド6の屈折率よりも低い
場合には、2本の偏波保持形光ファイバ2を融着延伸す
る際、融着が進むにつれてコア4径が細くなり、モード
のパワーはコア4から太きくはみ出して隣接するファイ
バのモードと結合するようになるが、この時、応カ付与
部5の屈折率がクラッド6よりも低いとすると、コア4
の光パワーは、この応力付与郎5が一種のポテンシャル
障壁となってその外側には余り広がらない。しかし、カ
ブラlのモードのパワーの広がりはかなり大きいので、
いくらかの光はポテンシャル障壁を乗り越えてその外側
に到達する。またカブラlでは、ファイバが太い状態か
ら一旦細められ2本のファイバ間で結合した後、再び元
の太さに戻ってゆくが、この「一旦細められた」状態で
応力付与部を越えてその外則に結合した光パワーは、「
再び太くなる」ときに必ずしもすべて元のファイバのコ
アに戻ってこない。すなわち応力付与部5かこの場合に
もポテンシャル障壁として働き、ファイバ径が再び太く
なったときにクラッド6外周部にまで達した光パワーが
コアに再び戻ってくるのを妨げるしのと考えられる。
If the refractive index of the stress applying part 5 is lower than the refractive index of the cladding 6, when the two polarization-maintaining optical fibers 2 are fused and drawn, the diameter of the core 4 becomes thinner as the fusion progresses, and the mode The power of the core 4 thickly protrudes from the core 4 and becomes coupled with the mode of the adjacent fiber, but at this time, if the refractive index of the stress imparting part 5 is lower than that of the cladding 6, the power of the core 4
The optical power does not spread much outside the stress applying layer 5, which acts as a kind of potential barrier. However, the power spread of Kabra l's mode is quite large, so
Some light crosses the potential barrier and reaches the outside. In addition, in Cobra l, the fiber is thinned from a thick state, and after being coupled between two fibers, it returns to its original thickness again, but in this "once thinned" state, it crosses the stress applying part and The optical power combined externally is ``
When it becomes thick again, it doesn't necessarily all come back to the original fiber core. In other words, it is considered that the stress applying portion 5 acts as a potential barrier in this case as well, and prevents the optical power that has reached the outer peripheral portion of the cladding 6 from returning to the core when the fiber diameter increases again.

また応力付与部5の屈折率をコア4よりも高くした場合
にも、それと同様の現象が起こる。すなわち延伸前の光
パワーは、コア4に十分に閉じ込められているが、延伸
されるとコア4から外に大きくはみ出すようになる。コ
ア4からはみ出した光は、今度はこの屈折率の高い応力
付与部5に結合して応力付与部5中を伝搬するようにな
る。しかし、融着延伸部3から離れて再び元のファイバ
径に戻ったとき、応力付与部5に結合した光パワーが再
びコア4に再結合しないことか普通である。
A similar phenomenon also occurs when the refractive index of the stress applying portion 5 is made higher than that of the core 4. In other words, the optical power is sufficiently confined in the core 4 before stretching, but after stretching, the optical power protrudes outward from the core 4 to a large extent. The light that has protruded from the core 4 is now coupled to the stress applying section 5 having a high refractive index and propagates through the stress applying section 5. However, when the fiber is separated from the fusion-stretching section 3 and returns to its original diameter, it is normal that the optical power coupled to the stress-applying section 5 is not re-coupled to the core 4.

なぜなら、屈折率の高い応力付与部5をtつのコアとみ
なすと、このコアを伝搬する光の伝搬定算は、ファイバ
中心部の真のコアを伝搬する光の伝搬モードの伝搬定数
とは一般に等しくなく、一旦応力付与部のモードに結合
すると100%元のコアに戻ってくることがないからで
ある。
This is because, if the stress applying section 5 with a high refractive index is regarded as t cores, the propagation calculation of light propagating through these cores is generally different from the propagation constant of the propagation mode of light propagating through the true core at the center of the fiber. This is because they are not equal, and once coupled to the mode of the stress-applying part, it does not return 100% to the original core.

本発明は、上記事情に鑑みてなされたもので、融着延伸
量を少なくし不必要にコアからの光の漏出を防止して、
カブラの低損失化を図ることのできる製造方法の提供を
目的としている。
The present invention has been made in view of the above circumstances, and reduces the amount of fusion stretching to prevent unnecessary leakage of light from the core.
The purpose of this invention is to provide a manufacturing method that can reduce the loss of Kabra.

「課題を解決するための手段」 上記課題を解決するための手段として、本発明は、{夏
数の偏波保持形光ファイバを各々接触状態で並列し、次
いてその一部を加熱融着し、更に延伸を行って融着延伸
部を形成する扁波保持形光ファイバカプラの製造方法に
おいて、上記扁波保持形光ファイバの一部をエソチング
処理し、細径化して細径ファイバを作製し、次いでこの
細径ファイバどうしあるいは細径ファイバと細径化しな
い扁波保持形光ファイバとを並列させ、次いで該細径部
分を融着延伸することを特徴とする偏波保持形先ファイ
バカプラの製造方法である。
"Means for Solving the Problems" As a means for solving the above problems, the present invention provides a method for arranging a number of polarization-maintaining optical fibers in parallel in contact with each other, and then heating and fusing some of them. In the manufacturing method of a flattened wave-retaining optical fiber coupler in which a fused and stretched portion is formed by further drawing, a part of the flattened wave-retaining optical fiber is subjected to etoching treatment to reduce its diameter to produce a small-diameter fiber. A polarization-maintaining tip fiber coupler characterized in that the small-diameter fibers or the small-diameter fiber and a flattened wave-maintaining optical fiber whose diameter is not reduced are arranged in parallel, and then the small-diameter portions are fused and drawn. This is a manufacturing method.

また請求項l記・戟の偏波保持形光ファイバカプラの製
造方法において、上記細径ファイバの代わりに、偏波保
持形光ファイバの一部を、そのコア近傍まで研摩した研
摩ファイバを用いてら良い。
Further, in the method for manufacturing a polarization-maintaining optical fiber coupler according to claim 1, a polished fiber obtained by polishing a part of the polarization-maintaining optical fiber to the vicinity of its core is used instead of the above-mentioned small diameter fiber. good.

以下、図面を参照して本発明方法を詳細に説明する。Hereinafter, the method of the present invention will be explained in detail with reference to the drawings.

第1図ないし第7図は、本発明によるカブラの製造方法
の一例を示す図である。なおこの例では、第2図に示す
ようにコア4と、その両叫に配された応力付与部5と、
それらを囲んだクラッド6とからムる偏波保持形光ファ
イバ2(以下、ファイバという)を用いてカプラを作製
する例を示すものてある。
FIGS. 1 to 7 are diagrams showing an example of a method for manufacturing a turnip according to the present invention. In this example, as shown in FIG. 2, the core 4 and the stress applying parts 5 arranged on both sides thereof,
An example is shown in which a coupler is manufactured using a polarization-maintaining optical fiber 2 (hereinafter referred to as fiber) which is comprised of a cladding 6 surrounding them.

この例では、まずファイバ2の一部をエッチング処理し
て細径化し、第1図に示すように一部に細径部分7が形
成された細径ファイバ8を作製する。この細径部分7は
、第2図に示すように2つの応力付与部5の近傍までク
ラッド6を除去して形岐されろ。なお、このエソチング
処理に使用されるエッチング剤としては、クラッド6を
構戊する石英ガラスを腐食させろフノ酸などのエッチン
グ液が好適に使用される。また細径部分7の長さ{よ特
に限定されないが、通常lO〜50mm程度とするのが
望ましい。
In this example, first, a part of the fiber 2 is etched to reduce its diameter, thereby producing a small-diameter fiber 8 in which a part of the fiber 2 has a small-diameter portion 7, as shown in FIG. This narrow diameter portion 7 is shaped by removing the cladding 6 up to the vicinity of the two stress applying portions 5, as shown in FIG. As the etching agent used in this etching process, an etching solution such as a hydrofluoric acid which corrodes the quartz glass constituting the cladding 6 is preferably used. Further, the length of the narrow diameter portion 7 is not particularly limited, but it is usually desirable to set it to about 10 to 50 mm.

次に、第3図に示すように、2本の細径ファイバ8を並
列させ、各々の細径部分7を接触状態とし、好ましくは
接触状態とした細径部分7の両側を固定治具で固定する
。またこのときの各ファイバの偏波方向は、第4図に示
すように各々のX偏波軸が平行に、y偏波軸が同一直線
上に並ぶように各々のファイバの位置微調整を行う。次
に、第5図に示すように、接触状態とした細径郎分7を
酸水素バーナ9で加熱融着させ、更に融着部分10を廷
伸して融着延伸部1lを形成する。以上の各操作によっ
て第6図に示すカブラl2が作製される。
Next, as shown in FIG. 3, two small-diameter fibers 8 are arranged in parallel, and the small-diameter portions 7 of each fiber are brought into contact with each other. Fix it. At this time, the polarization direction of each fiber is adjusted by finely adjusting the position of each fiber so that the X polarization axes are parallel and the Y polarization axes are aligned on the same straight line, as shown in Figure 4. . Next, as shown in FIG. 5, the thin diameter sections 7 brought into contact are heated and fused using an oxyhydrogen burner 9, and the fused portion 10 is further stretched to form a fused and stretched portion 1l. Through each of the above operations, the cover l2 shown in FIG. 6 is manufactured.

この融着延伸部1lでは、第7図に示すように各々のフ
ァイバ2のコア4が接近して光パワーの結合がなされる
ようになっている。例えばこのカブラl2の4つのボー
トA.B  C.Dのうち、ボートAにX偏波或いはy
偏波の光を入射させると、ボートCとボートDか与所定
の分岐比で分岐された偏波光が出射されるようになって
いる。
In this fusion-stretching section 1l, as shown in FIG. 7, the cores 4 of the respective fibers 2 are brought close to each other so that optical power is coupled. For example, this Cabra l2's four boats A. B C. Of D, boat A has X polarization or y polarization.
When polarized light is input, polarized light is split from boat C and boat D at a predetermined splitting ratio and output.

ところで、上記カプラl2は、2本の細径ファイバ8の
各々の細径部分7を融着延仲して融着延伸部l1を形成
するので、融着廷伸前の2つのコア4間の距離が小さい
ために、所定の分岐比を得るために必要な延伸量を少な
くすることができる。
By the way, since the above-mentioned coupler l2 fuses and stretches the narrow diameter portions 7 of each of the two small diameter fibers 8 to form the fused and stretched portion l1, the distance between the two cores 4 before the fusion and stretching is Because of the small distance, the amount of stretching required to obtain a given branching ratio can be reduced.

その結果、融着延伸部1lにおいてコア4から漏出した
光が応力付与部5に乗り移ったり、応力付与部5を乗り
越えてその外側のクラッド6に結合して非可逆的な結合
を生じる不具合を防止することができ、カブラの挿入損
失の低下を抑制して低損失のカブラを作製することがて
きる。
As a result, light leaking from the core 4 in the fused and stretched portion 1l is prevented from transferring to the stress applying portion 5, or from overcoming the stress applying portion 5 and bonding to the cladding 6 on the outside, resulting in irreversible bonding. This makes it possible to suppress the reduction in the insertion loss of the coupler and produce a coupler with low loss.

なお、先の例ではファイバ2外周を湿式エッチング法に
より細径化したが、エソチング法はこれに限定されるこ
となく、例えばフッ素ガスなどの石英ガラス腐食性ガス
を含むバーナ炎でエッチングすべき部分を乾式エッチン
グする方法なども好適に使用される。
In the previous example, the outer periphery of the fiber 2 was reduced in diameter by a wet etching method, but the etching method is not limited to this. A method of dry etching is also suitably used.

第8図および第10図は本発明方法の他の例を説明する
ための図である。
FIG. 8 and FIG. 10 are diagrams for explaining other examples of the method of the present invention.

この例では、まず、第8図に示すように、ファイバ2の
一部のクラッド6部分を、そのX偏波軸と平行に、コア
4近傍部まで研摩して研摩而l3を形成する。この研摩
面l3の形或長さは特に限定されないが、通常lO〜5
0mm程度が望ましい。
In this example, first, as shown in FIG. 8, a portion of the cladding 6 of the fiber 2 is polished parallel to its X polarization axis to a portion near the core 4 to form a polished portion 13. The shape or length of this polishing surface l3 is not particularly limited, but is usually lO~5.
Approximately 0 mm is desirable.

またファイバ2の軸方向を一定方向に揃えた状態て、コ
ア4近傍まで研摩する方法としては、ファイバ2埋設用
の溝が形収された基板の溝内にファイバ2を挿入し、袖
方向を揃え、冫:’V内に接若剤を注入して固化させて
、この基板にファイハ金塊設固定し、次に、この基板の
溝側の而を研摩して、ファイバ2のコア・1近傍まで研
摩が進行した段11粁で研摩を中止し、基仮からファイ
バを取り外すことによって容易に行うことができる。
In addition, as a method of polishing the fiber 2 to the vicinity of the core 4 while aligning the axial direction of the fiber 2 in a certain direction, insert the fiber 2 into a groove of a substrate in which a groove for embedding the fiber 2 is formed, and then align the fiber 2 in the sleeve direction. Alignment: Inject the adhesive into the V and let it solidify, fix the fifer gold ingot to this substrate, and then polish the groove side of this substrate to align the area near the core 1 of fiber 2. This can be easily done by stopping the polishing at step 11, when the polishing has progressed up to the point 11, and removing the fiber from the base.

次に、第9図に示すように、研摩面l3を形成した2本
の研摩ファイバl4を並列させ、各々の研摩面13を第
10図に示すような状態で接触させる。このとき、接触
させた研摩面13の両側のファイバを固定治具で固定し
ておくのが望ましい。
Next, as shown in FIG. 9, two polished fibers 14 having polished surfaces 13 formed thereon are arranged in parallel, and their respective polished surfaces 13 are brought into contact as shown in FIG. 10. At this time, it is desirable to fix the fibers on both sides of the polished surface 13 that are in contact with each other using a fixing jig.

次に、各ファイバの研摩而13か接触した部分を醗水素
バーナで加熱融着させ、更に融着部分を延伸して融着延
伸部を形成する。これらの各操作によってカブラが作製
される。
Next, the portion of each fiber in contact with the polishing member 13 is heated and fused using a hydrogen burner, and the fused portion is further stretched to form a fused and stretched portion. Each of these operations produces a turnip.

この例による製造方法では、ファイバ2の一部のクラッ
ド6部分をコア4近傍部まで研摩して研摩面l3を形成
して研摩ファイバl4とし、2本の研摩ファイバ14を
並列させて各々の研摩面13を接触させ、この研摩部分
を融着延伸して融着廷仲部を形成ずるので、融看延仲1
171の2つのコア間の距離が小さく、所定の分岐比を
得ろために必要な通仲量を少なくすることかてきる。そ
の結果、1七石延伸部においてコア・1から漏出した光
が応力付与部5に乗り移ったり、応力付与部5を乗り越
えてその外側のクラノト6に結合して非可逆的な結合を
生じる不具合を防止することができ、カブラの仲人損失
の低下を抑制して低損失のカブラを作製することができ
ろ。
In the manufacturing method according to this example, a part of the cladding 6 of the fiber 2 is polished to the vicinity of the core 4 to form a polished surface l3 to form a polished fiber l4, and two polished fibers 14 are arranged in parallel and each polished Since the surfaces 13 are brought into contact and this polished part is fused and stretched to form the fused middle part, the fused middle part 1
Since the distance between the two cores of 171 is small, the amount of communication necessary to obtain a predetermined branching ratio can be reduced. As a result, light leaking from the core 1 in the 17-stone extension part transfers to the stress-applying part 5, or crosses over the stress-applying part 5 and combines with the outer part of the core 1, causing an irreversible bond. It would be possible to prevent this, suppress the decline in Kabra matchmaker losses, and create a Kabra with low losses.

まf二研摩法によって融着延伸すへき部分のコア間の距
離を少なくするので、コア間の距離を極めて正確に制御
することができる。
Since the distance between the cores in the fusion-stretched part is reduced by the second polishing method, the distance between the cores can be controlled extremely accurately.

「実施例 1」 第2図に示すものと同じ断而構逍を有し、コア径IOμ
m、応力付与部径33μm、クラソド外径125μmの
偏波保持形光ファイバを用い、このファイバの一部をフ
ッ酸エソチング液中に浸漬してエゾチング処理を行った
。このエッチング処理によって上記ファイバの一部に長
さ30mmの細径部分を形成した。この細径部分の外径
(第2図の図中符号I7の長さ)は90μmであった。
"Example 1" It has the same cutting structure as shown in Fig. 2, and has a core diameter of IOμ.
Using a polarization-maintaining optical fiber with a stress applying part diameter of 33 μm and a Clathod outer diameter of 125 μm, a part of this fiber was immersed in a hydrofluoric acid ethosing solution to perform an etching treatment. Through this etching process, a narrow diameter portion with a length of 30 mm was formed in a part of the fiber. The outer diameter of this narrow diameter portion (length of reference numeral I7 in FIG. 2) was 90 μm.

次に、2本の細径ファイバを並列させ、各々の細径部分
を接触させ、酸水素バーナで細径部分を融着し、更に延
伸して融着延伸部を形成してカブラを作製した。この実
際の延伸部の長さは約15mmであった。
Next, two small-diameter fibers were arranged in parallel, their small-diameter parts were brought into contact, and the small-diameter parts were fused using an oxyhydrogen burner, and further stretched to form a fused and stretched part to produce a turncoat. . The actual length of this stretch was approximately 15 mm.

得られたカプラの挿入損失を測定した結果、損失は0.
05dBと非常に低く、また偏波モード間の′ノ口スト
ークは−30dB以上と良好であった。
As a result of measuring the insertion loss of the obtained coupler, the loss was 0.
It was very low at 0.05 dB, and the 'noguchi stalk between polarization modes was good at -30 dB or more.

「実施例2 」 先の実施例lで使用したものと同じファイバを用い、こ
のファイバを溝付き基板の溝内に埋設固后′シ、次にこ
の基阪の溝側の面を研摩して、ファイバのクラッド部分
をコア近傍まで研摩して研摩iiijを形威した。なお
、研摩面からコアまでの距離は5μmとした。次に、研
摩面を形成した2木の研摩ファイバを並列させ、各々の
研摩面を接触させ、その両側を固定治具で固定した。次
に、研摩面部分を酸水素バーナで加熱融着し、更にその
一部を延伸した。このときの延伸量は、研摩を施さない
ファイバを用いて融着延伸する場合の約1/3の8mm
で済んだ。
"Example 2" Using the same fiber as that used in the previous Example 1, this fiber was embedded in the groove of a grooved substrate, and then the groove side surface of this base plate was polished. , the cladding portion of the fiber was polished to the vicinity of the core to perform polishing III. Note that the distance from the polished surface to the core was 5 μm. Next, the two abrasive fibers with abrasive surfaces formed thereon were arranged in parallel, their respective abrasive surfaces were brought into contact, and both sides of the abrasive fibers were fixed using a fixing jig. Next, the polished surface portion was heated and fused using an oxyhydrogen burner, and a portion thereof was further stretched. The amount of stretching at this time is 8 mm, which is about 1/3 of that in the case of fusion stretching using unpolished fibers.
I got away with it.

得られたカプラの特性は次の通りであった。The characteristics of the obtained coupler were as follows.

結合比・・・・・l,1 使用波長・・・・i3μm 仲人損失・・・・O . l dB クロストーク・・・・32(IB 温度安定性・・・・結合比変化0 1%以下(−20〜
+70°C) 「発明の効果」 以上説明したように、本発明方法では次のような効果を
奏する。
Coupling ratio...l,1 Wavelength used...i3μm Matchmaker loss...O. l dB Crosstalk...32 (IB Temperature stability... Coupling ratio change 0 1% or less (-20~
+70°C) "Effects of the Invention" As explained above, the method of the present invention has the following effects.

クラゾドをエッヂングして創径化しIこ細径ファイバあ
るいはクラッドを研摩した研摩ファイバを用い、2本の
ファイバを・止列させて、それらの細径郎分あるいは研
摩部分を融4延仲して融着延伸部を形成するのて、融着
延伸前の2つのコア間の距離が小さく、所定の分岐比を
得ろために必要な廷伸量を少なくすることができる。そ
の結果、融着埋(llI部においてコアから漏出しfこ
光が応カ付与部に乗り移ったり、応力付与部を乗り越え
てその外側のタラットに結合して非可逆的な結合を生じ
ろ不具合を防止することがてき、カプラの柿入1員失の
低丁を抑制して低損失のカプラを作製ずることがてきる
Using a fine-diameter fiber whose diameter has been created by edging cladding or a polished fiber whose cladding has been polished, two fibers are lined up and the fine-diameter portion or polished portion is fused and stretched. By forming the fusion-stretched portion, the distance between the two cores before fusion-stretching is small, and the amount of stretching necessary to obtain a predetermined branching ratio can be reduced. As a result, light leaking from the core at the IlI portion may transfer to the stress-applying portion, or may cross over the stress-applying portion and bond to the outer turrets, resulting in irreversible bonding. It is possible to prevent the loss of one member of the coupler, and to manufacture a coupler with low loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第7図は本発明方法の一例を示す図であっ
て、第l図は細径ファイバの斜視図、第2図は細径ファ
イバの正面図、第3図は2本の細径ファイバを並列させ
“た状態を示す叫面図、第4図は並列させfコ2本のフ
ァイバの配置状態を示す正面図、第5図は融?’F延伸
の状態を示す側面図、第6図はカブラの斜視図、第7図
はカプラの融着延伸部の正面断面図、第8図ないし第1
0図は本発明方法の池の例を説明するための図であって
、第8図は研摩ファイバの正面断面図、第9図は2本の
研摩ファイバを並列させた状態を示す側面図、第10図
は第9図のX−X線断面図、第11図は従来の融着延仲
形光ファイバカプラの一例を示す側面図、第12図は偏
波保持形光ファイバの一例を示す正面図、第13図およ
び第14図は偏波保持形光ファイバの脇折率分布の同を
示す図である。 1 I ・・・ファイバ(偏波保持形光ファイバ)・・・コア ・・・1κ力付与部 ・・・クラソト ・・・細径部分、 ・・・細径ファイバ l・・・融着延伸部 2・・・カブラ(偏波保持形光ファイバカプラ)3・・
・研摩而 ,1・・・研;qフfイバ。
1 to 7 are diagrams showing an example of the method of the present invention, in which FIG. 1 is a perspective view of a small diameter fiber, FIG. 2 is a front view of a small diameter fiber, and FIG. FIG. 4 is a front view showing the arrangement of two fibers in parallel, FIG. 5 is a side view showing the state of fusion-stretching, FIG. 6 is a perspective view of the coupler, FIG. 7 is a front sectional view of the fused and stretched portion of the coupler, and FIGS.
Fig. 0 is a diagram for explaining an example of the pond of the method of the present invention, Fig. 8 is a front sectional view of the abrasive fiber, Fig. 9 is a side view showing a state in which two abrasive fibers are arranged in parallel, Fig. 10 is a cross-sectional view taken along the line X-X of Fig. 9, Fig. 11 is a side view showing an example of a conventional fused and rolled optical fiber coupler, and Fig. 12 is an example of a polarization-maintaining optical fiber. The front view, FIG. 13, and FIG. 14 are diagrams showing the side refractive index distribution of the polarization-maintaining optical fiber. 1 I...Fiber (polarization-maintaining optical fiber)...Core...1κ force applying part...Kurasoto...Small diameter part...Small diameter fiber l...Fusion and stretching part 2...Coupler (polarization maintaining optical fiber coupler) 3...
・Kenmaji, 1...Ken; qfu f iba.

Claims (2)

【特許請求の範囲】[Claims] (1)複数の偏波保持形光ファイバを各々接触状態で並
列し、次いでその一部を加熱融着し、更に延伸を行って
融着延伸部を形成する偏波保持形光ファイバカプラの製
造方法において、 上記偏波保持形光ファイバの一部をエッチング処理し、
細径化して細径ファイバを作製し、次いでこの細径ファ
イバどうしあるいは細径ファイバと細径化しない偏波保
持形光ファイバとを並列させ、次いで該細径部分を融着
延伸することを特徴とする偏波保持形光ファイバカプラ
の製造方法。
(1) Manufacture of a polarization-maintaining optical fiber coupler in which a plurality of polarization-maintaining optical fibers are arranged in parallel in contact with each other, then a part of the fibers is heated and fused, and further stretched to form a fused and stretched portion. In the method, a part of the polarization maintaining optical fiber is etched,
The method is characterized in that the diameter is reduced to produce a small diameter fiber, then the small diameter fibers or the small diameter fiber and a polarization maintaining optical fiber that is not reduced in diameter are arranged in parallel, and then the small diameter portion is fused and drawn. A method for manufacturing a polarization-maintaining optical fiber coupler.
(2)請求項1記載の偏波保持形光ファイバカプラの製
造方法において、上記細径ファイバの代わりに、偏波保
持形光ファイバの一部を、そのコア近傍まで研摩した研
摩ファイバを用いたことを特徴とする偏波保持形光ファ
イバカプラの製造方法。
(2) In the method for manufacturing a polarization-maintaining optical fiber coupler according to claim 1, a polished fiber obtained by polishing a part of the polarization-maintaining optical fiber to the vicinity of its core is used instead of the small diameter fiber. A method for manufacturing a polarization-maintaining optical fiber coupler, characterized in that:
JP1193156A 1989-07-26 1989-07-26 Manufacturing method of polarization maintaining optical fiber coupler Expired - Lifetime JP2828276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1193156A JP2828276B2 (en) 1989-07-26 1989-07-26 Manufacturing method of polarization maintaining optical fiber coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1193156A JP2828276B2 (en) 1989-07-26 1989-07-26 Manufacturing method of polarization maintaining optical fiber coupler

Publications (2)

Publication Number Publication Date
JPH0356907A true JPH0356907A (en) 1991-03-12
JP2828276B2 JP2828276B2 (en) 1998-11-25

Family

ID=16303215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193156A Expired - Lifetime JP2828276B2 (en) 1989-07-26 1989-07-26 Manufacturing method of polarization maintaining optical fiber coupler

Country Status (1)

Country Link
JP (1) JP2828276B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315108A (en) * 1991-04-12 1992-11-06 Nikko Kyodo Co Ltd Production of polarization maintaining optical fiber coupler
US7203397B2 (en) 2002-08-12 2007-04-10 Fujikura Ltd. Polarization maintaining optical fiber coupler and method of manufacturing same
WO2009035104A1 (en) * 2007-09-14 2009-03-19 Tatsuta Electric Wire & Cable Co., Ltd. Optical fiber for optical fiber coupler and optical fiber coupler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203904A (en) * 1984-03-28 1985-10-15 Hitachi Cable Ltd Manufacture of directional coupler for polarization plane maintaining optical fiber
JPS6165205A (en) * 1984-09-06 1986-04-03 Furukawa Electric Co Ltd:The Manufacture of optical branching device
JPS62116903A (en) * 1985-11-16 1987-05-28 Sumitomo Electric Ind Ltd Polarized wave separation type single mode optical fiber coupler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203904A (en) * 1984-03-28 1985-10-15 Hitachi Cable Ltd Manufacture of directional coupler for polarization plane maintaining optical fiber
JPS6165205A (en) * 1984-09-06 1986-04-03 Furukawa Electric Co Ltd:The Manufacture of optical branching device
JPS62116903A (en) * 1985-11-16 1987-05-28 Sumitomo Electric Ind Ltd Polarized wave separation type single mode optical fiber coupler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315108A (en) * 1991-04-12 1992-11-06 Nikko Kyodo Co Ltd Production of polarization maintaining optical fiber coupler
US7203397B2 (en) 2002-08-12 2007-04-10 Fujikura Ltd. Polarization maintaining optical fiber coupler and method of manufacturing same
WO2009035104A1 (en) * 2007-09-14 2009-03-19 Tatsuta Electric Wire & Cable Co., Ltd. Optical fiber for optical fiber coupler and optical fiber coupler

Also Published As

Publication number Publication date
JP2828276B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
JPS60238801A (en) Polarization locked optical fiber and making thereof
AU2020100483A4 (en) An improved 1 × N single-mode optical fiber and multi-core optical fiber coupler and preparation method
JPH0752249B2 (en) Directional coupler
KR100646265B1 (en) Polarization-maintaining optical fiber and polarization-maintaining optical fiber component
KR100786617B1 (en) Method of manufacturing polarization-maintaining optical fiber coupler
KR20010084624A (en) Method of fabricating fused-type mode selective coupler
JPH0356907A (en) Production of polarization maintaining type optical fiber coupler
JP2961057B2 (en) Optical branching device
JPS60154215A (en) Fiber type directional coupler
JPH02168208A (en) Optical fiber coupler and its production
JP3095511B2 (en) Polarization-maintaining optical fiber coupler
JPS5929218A (en) Production of optical coupler
JPH02166409A (en) Optical fiber coupler and production thereof
JPS60242406A (en) Single polarization optical fiber
JP2805533B2 (en) Fiber fusion type optical branch coupler
JP2828251B2 (en) Optical fiber coupler
JP2001051150A (en) Manufacture of polarization retaining optical fiber coupler
JP2848832B2 (en) Broadband optical fiber coupler
JPH0350505A (en) Single polarization optical fiber
JPH01287603A (en) Absolute single mode polarization optical fiber
JP2902800B2 (en) Optical fiber for optical coupler
JPH02129609A (en) Structure for connection part of mode converting element and optical fiber
JPS63206710A (en) Absolute single polarization optical fiber and its production
JP2002023001A (en) Polarization maintaining optical fiber coupler and its manufacturing method
KR102080301B1 (en) Mode selective coupler, method for coupling optic fiber by using the same and communication means comprising a plurality of mode selective couplers

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

EXPY Cancellation because of completion of term