JPH0356668A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPH0356668A
JPH0356668A JP19080189A JP19080189A JPH0356668A JP H0356668 A JPH0356668 A JP H0356668A JP 19080189 A JP19080189 A JP 19080189A JP 19080189 A JP19080189 A JP 19080189A JP H0356668 A JPH0356668 A JP H0356668A
Authority
JP
Japan
Prior art keywords
substrate
target
chamber
sputtering
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19080189A
Other languages
Japanese (ja)
Inventor
Tadashi Kato
忠 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP19080189A priority Critical patent/JPH0356668A/en
Publication of JPH0356668A publication Critical patent/JPH0356668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To efficiently execute the formation of uniform films by disposing many substrates at equal intervals around a cylindrical type cylindrical target and forming the films while revolving and rotating the substrates. CONSTITUTION:The many disk substrates 1 are set on one side of the cylindrical cassettes 2a of the holding members 2 in an inlet side load locking chamber 3a and are transferred onto a cassette holding and revolving, rotating, and vertical moving mechanism 7 in a circular sputtering chamber 4, by which the holding members 2 are successively disposed at equal intervals around the cylindrical type cylindrical target 5. Sputtering is then started and the holding members 2 are revolved by the mechanism 7. The cassettes 2a are rotated and the film is formed on the substrate 1 on the outlet side. The substrate 1 on the outlet side is transferred, after the film formation, to the cassettes 2a on the lower stage from the upper stage by a mechanism 8 for transferring the cassettes between the upper and lower cassettes. The next substrate 1 is moved to the foremost part in the cassette 2a on the upper step side. The sputtering is thus continuously executed. The sputtering of all the substrates 1 is executed by repeating this operation. The holding members 2 are taken to the outside via an outlet side load locking chamber 3b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光磁気ディスクや相変化型光ディスク等の記録
膜の成膜に適したスバッター装置に関し、特に、量産性
に優れたスパッター装置に関する.〔従来の技術〕 文書ファイル用等に用いられる光磁気ディスクや相変化
型光ディスク等の記録膜の成膜を行う装置として、スバ
ッター装置が良く知られているが、一度に多数の基板に
成膜を行うスパッター装置としては、例えば、第8図,
第9図に示す通過型インライン成膜スパッター装置や、
第10図,第11図に示す回転型通過成膜スパッター装
置の2種が知られている. ここで、第8図は通過型インライン成膜スパッター装置
を上方から見た時の断面図であり、第9図は通過型イン
ライン成膜スバッター装置を前方から見た時の断面図で
ある. 第8図,第9図において、符号6lはディスク基板、符
号62はディスク基板装着用のパレット,符号63は上
記パレットがセットされる予備排気室、符号64. 7
6はロードロック室、符号65. 74は待機室、符号
66, 69. 72はスパッター室、符号67, 7
0.73はターゲット、符号68. 71はバッファ室
、符号77は威膜後の基板装着パレット62を収納する
ための収納室、符号79は搬送機構,電装,排気装置等
(図示せず)の収納部である. 第8図及び第9図に示す通過型インライン成膜スパッタ
ー装置においては、予備排気室63から口−ドロック室
64に搬送されたパレット62は、待機室65を経て第
lのスバッタ一室66に順次搬入され、例えば、SiN
等による1層目の威膜が行われる.モしてl層目の成膜
が終了したパレット62は、バッファ室68を介して第
2のスバッター室69に搬送され、例えば、TbFeC
o等による2層目の成膜が行われる.そして次のバッフ
ァ室7lを介して第3のスパッター室72に搬送され、
SiN等による3層目の成膜が行われる.そして,成膜
後のパレット62は待機室74、ロードロック室76を
経て収納室77に搬送される. このように、第8図及び第9図に示す通過型インライン
成膜スパッター装置においては、予備排気室63にセッ
トされたディスク基板装着パレット62を順次搬送し、
3つのスパッタ一室により3層の成膜を順次行うため、
多層膜の或膜を効率良く行うことができる. 次に、第lO図は回転型通過成膜スパッター装置を上方
から見た時の断面図であり、第11図は回転型通過成膜
スパッター装置を前方から見た時の断面図である. 第10図,第11図において、符号9lはディスク基板
、符号92はディスク基板装着用の自・公転パレット,
符号93は或膜前の自・公転パレット92をセットする
ストツカー、符号94, 101はロードロック室、符
号95, 97. 99はスパッタ一室、符号102は
成膜後の自・公転パレット92を収納するストッカー、
符号103は搬送機構,電装,排気装置等(図示せず)
の収納部を夫々示している.第10図及び第11図に示
す回転型通過成膜スパッター装置においては、ストッカ
−93からロードロック室94に搬送された自・公転パ
レット92は、基板91を自・公転しながら第1のスパ
ッター室95に順次搬入され、例えば、SiN等による
1層目の威膜が行われる.モしてl層目の成膜が終了し
た自公転パレット92は、第2のスパッター室97に搬
送され、例えば、TbFeCo等による2層目の成膜が
行われる。そして次に第3のスパッター室99に搬送さ
れ、SiN等による3層目の成膜が行われる。そして、
成膜後のパレット92はロード口ツタ室101を経てス
トツカー102に搬送され、収納される.このように、
第10図及び第11図に示す回転型通過成膜スバッター
装置においては、ストッヵ−93にセットされたディス
ク基板9l装着の自・公転パレット92を順次搬送し,
3つのスパッター室95,97. 99により3層の成
膜を順次行うため、多層膜の或膜を効率良く行うことが
できる.また、スパッタ一時には基板91は自・公転パ
レット92によって自・公転されているため、均一な成
膜を行うことができる. 〔発明が解決しようとする課題〕 ところで、第8図及び第9図に示す通過型インライン成
膜スパツター装置においては、通常、各ターゲット67
, 70. 73は連続放電されており、この連続放電
している各ターゲット67, 70. 73でパレット
62上の基板61に成膜し、多層膜の形成を行う構成の
ため,各層形成用のスパツタ一室66, 69.72間
の相互影響が無いように各室を通過させる必要があり、
各スバッター室66, 69. 72の手前にバッフ7
室68. 71を設ける必要が生じる.また、各ターゲ
ット67, 70. 73の前をパレット全面を通過さ
せるため、少なくともパレットの3倍幅以上の室長が必
要となる。このため,第8図及び第9図に示す通過型イ
ンライン成膜スパツター装置では、装置の全長が長くな
りすぎ、装置が大規模化するという問題が生じる. また、第8図及び第9図に示す通過型インライン或膜ス
パッター装置において、パレット62上の各基板61に
一様に成膜を行うためには、パレット62の基板配列方
向の長さより長いターゲットを設ける必要があるが、こ
のような大きなターゲットを用いた場合,現状では、そ
の使用効率は25%程度となるため、高価なレアメタル
等をターゲット材料として用いた場合には、成膜処理コ
ストが増大する原因となる.また,上述の大サイズのタ
ーゲット前を不回転で通過させながら成膜を行う方法で
は、膜貿が不均一となる虞れが多分にあり、歩留り低下
の原因となり、処理コストがより増大する. 次に、第lO図及び第11図に示す回転型通過成膜スパ
ッター装置は、上述の通過型インライン或膜スパッター
装置における問題を解決するため、スパッター室間のバ
ッファ室を廃止し、且つ、基板91を保持するパレット
92に自転機構及び公転機構を設けたものであるが、パ
レットの各スバッター室95. 97. 99間移送時
には、ターゲットへの放電を停止する必要があり、この
ため、処理時間がかかり量産性に劣るという問題がある
. また,上述の回転型通過成膜スパツター装置では、基板
91の保持に円形状のパレット92を用い、且つ自・公
転機構を設けたことにより,均質な成膜を行うことはで
きるが、複雑な回転機構からのダストの影響で、形成さ
れた膜の欠陥率の悪化を生ずるという問題がある.また
、第10図及び第11図に示す構成では、基板の冷却が
難しく、基板に熱の影響による反り等が発生しやすいと
いう問題も生ずる. 本発明は上記事情に鑑みてなされたものであって、光磁
気ディスクや相変化型光ディスク等の基板への成膜を効
率良く且つ均質に行うことができ、しかも量産性に優れ
且つ処理コストも低減し得るスパッター装置を提供する
ことを目的とする.〔課題を解決するための手段〕 上記目的を達成するため,本発明によるスバツター装置
は、円筒形シリンドリカルターゲットと、このターゲッ
トが中心に配置された円形スパツターチャンバーと,該
チャンバー内の上記ターゲットの周りに等間隔に多数配
設され基板面がターゲットと対向するように基板を保持
する基板保持部材と、該基板保持部材を上記ターゲット
を中心に公転する手段とを備えたことを特徴とする.ま
た、本発明によるスパッター装置の一構威としては,円
筒形シリンドリカルターゲットと、このターゲットが中
心に配置された円形スパッターチャンバーと、該チャン
バー内の上記ターゲットの周りに等間隔に多数配設され
基板面がターゲットと対向するよ・うに基板を保持する
基板保持部材と、該基板保持部材を上記ターゲットを中
心に公転する手段とを備え、上記基板保持部材として、
基板を一枚づつ出し入れ可能な筒状カセットを上下2段
に設け,上下何れか一方側の筒状カセットに予め収納さ
れた多数枚の基板を順次一枚づつ他方側の筒状カセット
に移送してカセットの出口に位置し上記ターゲットと対
向する基板が成膜されるように構或する. また、本発明によるスバッター装置の別構成としては、
円筒形シリンドリカルターゲットを中心に配した複数の
円形スパッターチャンバーと、各チャンバー内の上記タ
ーゲットの周りに等間隔に多数配設され基板面がターゲ
ットと対向するように基板を保持する基板保持部材と、
該基板保持部材を上記ターゲットを中心に公転する手段
と、各円形スパッターチャンバー間に配置され基板を枚
葉単位若しくは上記基板保持部材に装着された状態で順
次移送する移送路と、該移送路と円形スパッターチャン
バーとを連結し円形スパッターチャンバーに基板を出し
入れするエクスチェンジャーとを備えた構成とする. 〔作   用〕 本発明によるスパッター装置では、円筒形シリンドリカ
ルターゲットを中心に配した円形スパッターチャンバー
を設け、チャンバー内の上記ターゲットの周りに等間隔
に多数配設された基板保持部材によって基板面がターゲ
ットと対向するように基板を保持し、且つその基板保持
部材を上記ターゲットを中心に公転する手段を設けたこ
とにより,多数の基板に同時に且つ効率良く均質な成膜
を行うことができる. また、上記円形スパッターチャンバーを複数設け、各円
形スパッターチャンバー間に基板を枚葉単位若しくは上
記基板保持部材に装着された状態で順次移送する移送路
を配置し、且つ、移送路と円形スパッターチャンバーと
を連結し円形スパッターチャンバーに基板を出し入れす
るエクスチェンジャーを設け、複数の円形スパッターチ
ャンバーで順次或膜を行うことにより、多層膜の形成を
容易に且つ効率良く行うことが可能となる.〔実 施 
例〕 以下、本発明を図示の実施例に基づいて詳細に説明する
. 第1図は本発明の一実施例を示すスバッター装置を上方
から見たときの断面図、第2図は同上装置を前方から見
たときの第1図1−1線断面図である. 第1図及び第2図において、この実施例によるスパッタ
ー装置は、円筒形シリンドリカルターゲット5と、この
ターゲット5が中心に配置された円形スパッターチャン
バー4と、該チャンバー4内の上記ターゲット5の周り
に等間隔に多数配設され基板面がターゲットと対向する
ようにディスク基板lを保持する基板保持部材2と、該
基板保持部材2を上記ターゲット5を中心に公転する機
構7とを備えており、上記基板保持部材2として,基板
lを一枚づつ出し入れ可能な筒状カセット2aを上下2
段に設けると共に、上下何れか一方側の筒状カセット2
aに予め収納された多数枚の基板1を順次一枚づつ他方
側の筒状カセットに移送する機構8を設け、多数枚の基
板1を順次一枚づつ他方側の筒状カセットに移送してカ
セットの出口に位置し上記ターゲット5と対向する基板
が成膜されるように構威したものである. 尚、第1図及び第2図中、符号3a, 3bは夫々基板
保持部材2を出し入れするためのロードロック室を示し
、また、符号9はスパッター電源、符号10は真空排気
装置を示している. さて、第1図及び第2図において、ディスク基板1は基
板保持部材2の一方側の筒型カセット2aに50〜10
0枚セットされた状態で、一方側のロードロック室3a
からスパッターチャンバー4内のカセット保持自公転及
び上下動機構7上に移送される.そして、基板保持部材
2は順次シリンドリカルターゲット5の周りに等間隔に
配置され、スパッターが開始される.ここで、基板保持
部材2はスパッターの開始と共に、カセット保持自公転
及び上下動機構7によってシリンドリカルターゲット5
の周りを公転される.また、このときカセット2aの自
転も行われるため、各カセットの出口に位置した基板の
基板面には均一性の良い膜が成膜される. 各基板1に対して、所定膜厚の威膜が行われた後は、カ
セット最前部(出口部分)に位置する基板は基板上下カ
セット間移送機構8によって上段から下段のカセットに
移送され、また上段側のカセットには次の基板がカセッ
ト内の機構により最前部に移動され、連続的にスパッタ
ーされる。そして上記行程を順次繰り返してカセット内
に保持した基板の全てのスパッターが終了した基板保持
部材2は、出口側のロードロック室3bを経てスパッタ
ーチャンバー4外に取り出される.尚、基板に多層膜を
連続的に形成する場合には、第3図に示すように、複数
の円形スパッターチャンバー4を設け、各円形スパッタ
ーチャンバー4のロードロック室を連結して移送路を設
け、この移送路の途中に基板保持部材2の方向を反転す
る反転機構1lを設けて、l層目の成膜終了後の基板を
保持した基板保持部材2を次のスパッターチャンバーに
向きを変えて移送し、そのスパッターチャンバー内のシ
リンドリカルターゲットの周りに基板保持部材2を配置
して1層目の場合と同様にして2層目の成膜を行う.以
下、スパッターチャンバーの設置数分だけ上記行程を繰
り返せば、必要層数の多層膜を形威することができる.
尚,連続的に成膜を行う場合に、基板の昇温により反り
が発生することがあるが、基板保持部材2のカセット2
a外周に水冷ジャケットを有する冷却器を配することに
よって上記反りの発生を軽減することが可能である. 以上、第1図乃至第3図を参照して説明したように,本
実施例におけるスパッター装置では,基板保持部材とし
て上下2段構成の筒状カセットを用い、カセット内へ基
板を保持するようにしたことにより、自・公転機構から
の発生ダストの影響を軽減することができ、また、自公
転機構の低ダスト化を図ることもでき、低欠陥処理が可
能となる. また、本実施例では、多数枚の基板をカセットに保持し
た状態でスパッターチャンバーに出し入れする構成のた
め、ロードロックの開閉頻度が極端に低減し,スパッタ
ー室の連続放電処理においても雰囲気の乱れがなく、安
定した被膜付与が可能となる. 以上のように,本実施例におけるスパッター装置によれ
ば、第8図乃至第第11図に示した従来のスパッター装
置に比べて、低コストで且つ高品位のディスク基板の量
産が容易に実施可能となる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sputtering apparatus suitable for forming recording films for magneto-optical disks, phase change optical disks, etc., and particularly to a sputtering apparatus that is excellent in mass production. [Prior Art] Spatter equipment is well known as a device for forming recording films on magneto-optical disks, phase change optical disks, etc. used for document files, etc. For example, the sputtering equipment shown in Fig. 8,
A passing type in-line film forming sputtering apparatus shown in FIG. 9,
Two types of rotating type passing film forming sputtering apparatuses shown in FIGS. 10 and 11 are known. Here, FIG. 8 is a sectional view of the passing type in-line film forming sputtering apparatus as viewed from above, and FIG. 9 is a sectional view of the passing type in-line film forming sputtering apparatus as seen from the front. 8 and 9, reference numeral 6l denotes a disk substrate, 62 a pallet for mounting the disk substrate, 63 a pre-exhaust chamber in which the pallet is set, 64. 7
6 is a load lock chamber, code 65. 74 is a waiting room, codes 66, 69. 72 is a sputtering chamber, numerals 67, 7
0.73 is the target, code 68. Reference numeral 71 is a buffer chamber, reference numeral 77 is a storage chamber for storing the substrate mounting pallet 62 after the film has been removed, and reference numeral 79 is a storage section for the transport mechanism, electrical equipment, exhaust system, etc. (not shown). In the pass-through type in-line film forming sputtering apparatus shown in FIGS. 8 and 9, the pallet 62 is transported from the preliminary exhaust chamber 63 to the port-lock chamber 64, passes through the waiting chamber 65, and enters the first spatter chamber 66. For example, SiN
The first layer of membranes is performed by et al. The pallet 62 on which the first layer has been formed is transported to the second spatter chamber 69 via the buffer chamber 68.
A second layer is formed using a method such as . Then, it is transported to the third sputtering chamber 72 via the next buffer chamber 7l,
A third layer of SiN or the like is formed. After the film has been formed, the pallet 62 is transported to a storage chamber 77 via a waiting chamber 74 and a load lock chamber 76. In this way, in the passing type inline film forming sputtering apparatus shown in FIGS. 8 and 9, the disk substrate mounting pallet 62 set in the preliminary exhaust chamber 63 is sequentially transported,
Three layers are sequentially formed using three sputtering chambers, so
Certain multilayer films can be formed efficiently. Next, FIG. 10 is a sectional view of the rotating type passing film forming sputtering apparatus as viewed from above, and FIG. 11 is a sectional view of the rotating type passing film forming sputtering apparatus as seen from the front. In FIGS. 10 and 11, the reference numeral 9l is a disk substrate, the reference numeral 92 is an auto-revolutionary pallet for mounting the disk substrate,
Reference numeral 93 is a stocker for setting the auto-revolutionary pallet 92 in front of a film, reference numerals 94 and 101 are load lock chambers, and reference numerals 95 and 97. 99 is a sputtering chamber, 102 is a stocker for storing the auto-revolving pallet 92 after film formation;
Reference numeral 103 indicates a transport mechanism, electrical equipment, exhaust system, etc. (not shown)
The storage compartments are shown. In the rotary passing film forming sputtering apparatus shown in FIGS. 10 and 11, the auto-revolution pallet 92 transported from the stocker 93 to the load-lock chamber 94 rotates the substrate 91 while spinning the first sputter. They are sequentially transported into a chamber 95, where a first layer of film is formed using, for example, SiN. The rotating and revolving pallet 92, on which the first layer has been formed, is transported to the second sputtering chamber 97, where a second layer of, for example, TbFeCo or the like is formed. Then, it is transported to a third sputtering chamber 99, where a third layer of SiN or the like is formed. and,
After the film has been formed, the pallet 92 is conveyed to the stocker 102 via the loading port vine chamber 101 and stored therein. in this way,
In the rotary passing film forming spatter apparatus shown in FIGS. 10 and 11, the self-revolving pallet 92 with the disk substrates 9l set on the stocker 93 is sequentially conveyed,
Three sputter chambers 95, 97. Since three layers are sequentially formed using 99, certain multilayer films can be formed efficiently. Further, during sputtering, the substrate 91 is rotated on its own axis by the rotating pallet 92, so that a uniform film can be formed. [Problems to be Solved by the Invention] By the way, in the passing type in-line film forming sputtering apparatus shown in FIGS. 8 and 9, each target 67
, 70. 73 is being continuously discharged, and each target 67, 70.73 is being continuously discharged. Since the film is deposited on the substrate 61 on the pallet 62 in step 73 to form a multilayer film, it is necessary to pass through each sputter chamber 66, 69, 72 for forming each layer so that there is no mutual influence between them. can be,
Each spatter chamber 66, 69. Buff 7 before 72
Room 68. It becomes necessary to provide 71. Moreover, each target 67, 70. In order to pass the entire surface of the pallet in front of 73, a chamber length that is at least three times the width of the pallet is required. For this reason, the passing type in-line film forming sputtering apparatus shown in FIGS. 8 and 9 has a problem in that the overall length of the apparatus becomes too long and the scale of the apparatus becomes large. In addition, in the passing type inline film sputtering apparatus shown in FIGS. 8 and 9, in order to uniformly form a film on each substrate 61 on the pallet 62, it is necessary to use a target that is longer than the length of the pallet 62 in the substrate arrangement direction. However, when using such a large target, the usage efficiency is currently around 25%, so if expensive rare metals are used as the target material, the film forming process cost will increase. This causes an increase in Furthermore, in the method described above in which film formation is performed while passing in front of a large target without rotation, there is a high risk that the film distribution will become non-uniform, causing a decrease in yield and further increasing processing costs. Next, in order to solve the problems of the above-mentioned passing type in-line film sputtering apparatus, the rotating type passing film forming sputtering apparatus shown in FIGS. 10 and 11 eliminates the buffer chamber between the sputtering chambers, and The pallet 92 holding the spatter chambers 91 is equipped with an autorotation mechanism and a revolution mechanism. 97. When transferring for 99 minutes, it is necessary to stop the discharge to the target, which poses a problem in that it takes a long processing time and is poor in mass productivity. In addition, in the above-mentioned rotary type passing film forming sputtering apparatus, by using a circular pallet 92 to hold the substrate 91 and providing an auto-revolution mechanism, it is possible to form a homogeneous film, but it is difficult to perform complex film formation. There is a problem in that the defect rate of the formed film deteriorates due to the influence of dust from the rotating mechanism. Further, in the configurations shown in FIGS. 10 and 11, it is difficult to cool the substrate, and the problem arises that the substrate is likely to warp due to the influence of heat. The present invention has been made in view of the above circumstances, and allows for efficient and uniform deposition of films on substrates such as magneto-optical disks and phase change optical disks, and is excellent in mass productivity and reduces processing costs. The purpose is to provide a sputtering device that can reduce sputtering. [Means for Solving the Problems] In order to achieve the above object, a sputtering device according to the present invention includes a cylindrical cylindrical target, a circular sputtering chamber in which this target is arranged in the center, and a sputtering chamber in which the sputtering target is placed in the center. The present invention is characterized by comprising a large number of substrate holding members disposed around the circumference at equal intervals to hold the substrate so that the substrate surface faces the target, and means for rotating the substrate holding members around the target. In addition, one configuration of the sputtering apparatus according to the present invention includes a cylindrical cylindrical target, a circular sputtering chamber in which this target is placed in the center, and a large number of substrates arranged at equal intervals around the target in the chamber. The substrate holding member includes a substrate holding member that holds the substrate so that its surface faces the target, and means for rotating the substrate holding member around the target,
There are two tiers of cylindrical cassettes, upper and lower, into which substrates can be taken in and taken out one by one, and a large number of substrates pre-stored in the cylindrical cassette on either the upper or lower side are sequentially transferred one by one to the cylindrical cassette on the other side. The substrate is positioned at the exit of the cassette and faces the target on which the film is deposited. Further, as another configuration of the sputtering device according to the present invention,
a plurality of circular sputter chambers having a cylindrical cylindrical target in the center; a large number of substrate holding members arranged at equal intervals around the target in each chamber and holding the substrate so that the substrate surface faces the target;
means for revolving the substrate holding member around the target; a transfer path disposed between each circular sputter chamber for sequentially transferring the substrate in units of wafers or mounted on the substrate holding member; The configuration includes an exchanger that connects the circular sputter chamber and transports substrates into and out of the circular sputter chamber. [Function] In the sputtering apparatus according to the present invention, a circular sputtering chamber is provided in which a cylindrical cylindrical target is arranged at the center, and a large number of substrate holding members are arranged at equal intervals around the target in the chamber so that the substrate surface is fixed to the target. By holding the substrate so as to face the target and providing a means for rotating the substrate holding member around the target, uniform film formation can be performed simultaneously and efficiently on a large number of substrates. Further, a plurality of the circular sputter chambers are provided, and a transfer path for sequentially transferring the substrate in units of wafers or in a state mounted on the substrate holding member is arranged between each circular sputter chamber, and the transfer path and the circular sputter chamber are connected to each other. By connecting the two sputter chambers and providing an exchanger for loading and unloading substrates into the circular sputter chambers, it becomes possible to easily and efficiently form a multilayer film by sequentially depositing a certain film in a plurality of circular sputter chambers. 〔implementation
Example] The present invention will be explained in detail below based on illustrated embodiments. FIG. 1 is a cross-sectional view of a sputtering device according to an embodiment of the present invention when viewed from above, and FIG. 2 is a cross-sectional view taken along the line 1-1 in FIG. 1 when the same device is viewed from the front. 1 and 2, the sputtering apparatus according to this embodiment includes a cylindrical cylindrical target 5, a circular sputter chamber 4 in which this target 5 is placed in the center, and a space around the target 5 in the chamber 4. It is equipped with a large number of substrate holding members 2 arranged at equal intervals and holding disk substrates l such that the substrate surfaces face the targets, and a mechanism 7 for rotating the substrate holding members 2 around the target 5, As the substrate holding member 2, a cylindrical cassette 2a into which substrates l can be taken in and out one by one is used as the upper and lower parts.
A cylindrical cassette 2 is installed on either the upper or lower side.
A mechanism 8 is provided for sequentially transferring a large number of substrates 1 stored in advance in a to a cylindrical cassette on the other side one by one. The structure is such that a film is formed on a substrate located at the exit of the cassette and facing the target 5. In FIGS. 1 and 2, numerals 3a and 3b respectively indicate load lock chambers for loading and unloading the substrate holding member 2, numeral 9 indicates a sputtering power supply, and numeral 10 indicates a vacuum exhaust device. .. Now, in FIGS. 1 and 2, the disk substrate 1 is placed in a cylindrical cassette 2a on one side of the substrate holding member 2.
With 0 sheets set, the load lock chamber 3a on one side
The cassette is then transferred onto the cassette holding rotation/revolution and vertical movement mechanism 7 in the sputter chamber 4. Then, the substrate holding members 2 are sequentially arranged at equal intervals around the cylindrical target 5, and sputtering is started. Here, at the start of sputtering, the substrate holding member 2 is moved to the cylindrical target 5 by the cassette holding rotation/revolution and vertical movement mechanism 7.
It revolves around. Furthermore, since the cassette 2a also rotates at this time, a highly uniform film is formed on the substrate surface of the substrate located at the exit of each cassette. After each substrate 1 has been coated with a predetermined film thickness, the substrate located at the frontmost part of the cassette (exit part) is transferred from the upper cassette to the lower cassette by the substrate upper and lower cassette transfer mechanism 8, and The next substrate is moved to the forefront of the upper cassette by a mechanism within the cassette, and is continuously sputtered. Then, the substrate holding member 2 which has undergone sputtering on all the substrates held in the cassette by repeating the above steps sequentially is taken out of the sputtering chamber 4 through the load lock chamber 3b on the exit side. In addition, in the case of continuously forming a multilayer film on a substrate, as shown in FIG. 3, a plurality of circular sputter chambers 4 are provided, and the load lock chambers of each circular sputter chamber 4 are connected to provide a transfer path. A reversing mechanism 1l for reversing the direction of the substrate holding member 2 is provided in the middle of this transfer path, and the substrate holding member 2 holding the substrate after the completion of the first layer film formation is changed to the next sputtering chamber. The substrate holding member 2 is placed around the cylindrical target in the sputtering chamber, and the second layer is formed in the same manner as the first layer. By repeating the above steps as many times as the number of sputter chambers installed, a multilayer film with the required number of layers can be formed.
Note that when film formation is performed continuously, warping may occur due to the rise in temperature of the substrate.
It is possible to reduce the occurrence of the above warpage by placing a cooler with a water cooling jacket around the outer periphery. As described above with reference to FIGS. 1 to 3, in the sputtering apparatus of this embodiment, a cylindrical cassette with a two-stage structure, upper and lower, is used as the substrate holding member, and the substrate is held in the cassette. By doing so, it is possible to reduce the influence of dust generated from the rotation/revolution mechanism, and it is also possible to reduce the amount of dust in the rotation/revolution mechanism, making it possible to perform low-defect processing. In addition, in this example, since a large number of substrates are held in a cassette and taken in and out of the sputtering chamber, the frequency of opening and closing of the load lock is extremely reduced, and there is no disturbance in the atmosphere during continuous discharge processing in the sputtering chamber. This makes it possible to apply a stable coating. As described above, according to the sputtering apparatus of this embodiment, mass production of high-quality disk substrates can be easily carried out at low cost compared to the conventional sputtering apparatus shown in FIGS. 8 to 11. becomes.

次に、第4図及び第5図に本発明の別の実施例を示し、
以下説明する. 第4図は本発明の別の実施例を示すスパッター装置を上
方から見たときの断面図、第5図は同上装置を前方から
見たときの透視図である.第4図及び第5図において、
本実施例におけるスパッター装置は、円筒形シリンドリ
カルターゲット25を中心に配した複数の円形スパッタ
ーチャンバー29と、各チャンバー29内の上記ターゲ
ット25の周りに等間隔に多数配設され基板面がターゲ
ット25と対向するようにディスク基板21を保持する
基板保持部材24と、該基板保持部材24を上記ターゲ
ット25を中心に自・公転する機構と、各円形スパッタ
ーチャンバー2燗に配置され基板を一枚毎の枚葉単位で
順次移送する移送路となる直行型の空間搬送チャンバー
22と,該空間搬送チャンバー22と円形スパッターチ
ャンバー29とを連結し円形スパッターチャンバー29
に基板21を出し入れするプラットホーム型エクスチェ
ンジャー23. 26とを備えた構成となっている.尚
、第4図及び第5図において、図中符号27は水冷ジャ
ケットを有する冷却器を示している. さて,第4図及び第5図に示す構成のスパツター装置に
おいては、ディスク基板2lは搬送チャンバー22によ
り一枚毎の枚葉単位で図中矢印方向に移動し、プラット
ホーム型エクスチェンジャー23の前後移動プレートに
載せられる.そして、この直後に前後移動プレートは前
進し、円形スパッターチャンバー29のスバッター室2
9Aの入口をシールすると共に、基板自公転機構に固定
された基板保持部材24に基板21を受け渡す.この基
板の受渡しの直後に、上記プレートは後退し,次に搬送
されてきた基板をプレートに載せる.そしてこの動作を
順次繰り返して、基板21を一枚毎にチャンバー29内
に挿入し、基板自公転機構の基板保持部材24に連続し
て渡す. 以上のようにしてスパッター室内の基板保持部材24に
保持された基板21は,回転型のシリンドリカルターゲ
ット25の周りを自・公転しつつ移動し、例えばSiN
等の誘電体薄膜が付与される。
Next, another embodiment of the present invention is shown in FIGS. 4 and 5,
It will be explained below. FIG. 4 is a sectional view of a sputtering apparatus according to another embodiment of the present invention, as seen from above, and FIG. 5 is a perspective view of the same apparatus as seen from the front. In Figures 4 and 5,
The sputtering apparatus in this embodiment includes a plurality of circular sputter chambers 29 in which a cylindrical target 25 is arranged at the center, and a large number of circular sputter chambers 29 arranged at equal intervals around the target 25 in each chamber 29, so that the substrate surface is connected to the target 25. A substrate holding member 24 that holds the disk substrate 21 facing each other, a mechanism that rotates the substrate holding member 24 around the target 25, and a mechanism that rotates the substrate holding member 24 around the target 25, and is arranged in each circular sputter chamber 2 to separate the substrates one by one. An orthogonal spatial transfer chamber 22 that serves as a transfer path for sequentially transferring sheet by sheet, and a circular sputter chamber 29 that connects the spatial transfer chamber 22 and a circular sputter chamber 29.
A platform type exchanger 23 for loading and unloading the board 21. The configuration includes 26. In addition, in FIGS. 4 and 5, reference numeral 27 indicates a cooler having a water cooling jacket. Now, in the sputtering apparatus having the configuration shown in FIGS. 4 and 5, the disk substrate 2l is moved in the direction of the arrow in the figure one by one by the transfer chamber 22, and the platform type exchanger 23 is moved back and forth. It is placed on a plate. Immediately after this, the back and forth moving plate moves forward, and the spatter chamber 2 of the circular sputter chamber 29
9A is sealed, and the substrate 21 is delivered to the substrate holding member 24 fixed to the substrate rotation mechanism. Immediately after the board is delivered, the plate retreats and the next board is placed on the plate. Then, by repeating this operation one by one, the substrates 21 are inserted one by one into the chamber 29 and successively passed to the substrate holding member 24 of the substrate rotation and revolution mechanism. The substrate 21 held by the substrate holding member 24 in the sputtering chamber as described above moves while rotating and revolving around the rotating cylindrical target 25.
A dielectric thin film such as the following is applied.

そして,半周移動したところで、基板取外し側のプラッ
トホーム型エクスチェンジャー23により、基板保持部
材24から基板21が外され搬送チャンバー22に移送
され、基板21は次のスパッターチャンバーのスバッタ
一室29Bに同様の機構により送り込まれ、次の成膜が
行われる. 尚、エクスチェンジャーの作動時においてはスパッタ一
室の開閉により、スパッター室は搬送チャンバーに開放
された状態となるが、搬送チャンバー内は通常スパッタ
一室と同レベルの圧力に排気されており、開閉動作の開
閉量が基板の通過に必要な10a+m程度で且つ2秒程
度の時間で終わることから、スパッター室の雰囲気変動
は軽微で有り、スパッター放電の安定性は維持される.
また、基板21をスパッター室内に挿入する側と取り出
す側のエクスチェンジャーは、同時にスパッタ一室を開
放しないタイミングで動作するように制御されるため、
雰囲気変動は最小限に維持され、スパッター放電の安定
性は維持される. ところで、第4図及び第5図に示す構成のスパッター装
置においては、半周回転後、基板21が除去された基板
保持部材24は、自公転機構によりシリンドリカルター
ゲット25の非放電側に周り込み、水冷ジャケットを有
する冷却器27に近接して回転し冷却される.この冷却
効果により、基板を再び自・公転させる場合の基板昇温
か軽減され、基板の反りの発生を防止することができる
.尚、基板保持部材24を自公転する基板自公転機構部
を下部側で支持回転する構造とすることによりダストの
発生を軽微とすることができ、成膜時の低欠陥処理が可
能となる. ところで、第4図に示す構成のスパッター装置を、光磁
気ディスクや相変化型光ディスク用基板の成膜に用いる
場合、1層目と3層目の成膜を行うスパッター室29A
 , 29Cに設置されるシリンドリカルターゲット2
5には、SiN, SiO等の誘電体化合物を用いるか
、またはSi単独ターゲットを使用する反応性スパッタ
ーで基板へSiN, SiOなどの誘電体膜を付与し、
プラスチック基板素地へのアンダーコート及び光磁気膜
や相変化膜上の保護層とする. また、光磁気膜や相変化膜などの信号記録薄膜を付与す
るスバッタ一室29Bのターゲットは、付与膜近似の組
成で構成する場合もあるが、シリンドリカルターゲット
の表層を付与膜組威の単成分または分割成分のターゲッ
ト材を周上に分割配置し、Coスバッターすることによ
り、均一性の良好な膜組成と特性を効率良く得ることが
できる.また、使用効率もプレーナー型ターゲットの2
5%レベルに比べ、70%以上と高くすることができる
.さて、以上のように、本実施例におけるスパッター装
置によれば、枚葉通過インライン型成膜での自公転処理
を簡略でコンパクトな構成の装置で2実施可能で、第8
図乃至第11図に示した従来のスパッター装置に比べて
、低コストで且つ高品位のディスク基板の量産が容易に
実施可能となる.次に、第6図及び第7図に本発明のさ
らに別の実施例を示し,以下説明する. 第6図は本実施例におけるスバッター装置を上方から見
たときの断面図、第7図は同上装置を前方から見たとき
の断面図である. 第6図及び第7図において、本実施例におけるスパッタ
ー装置は、円筒形シリンドリカルターゲット45a, 
45b, 45cを中心に配した複数の円形スパッター
チャンバー49と、各チャンバー49内の上記ターゲッ
ト45a, 45b, 45cの周りに等間隔に多数配
設され基板面がターゲット45a, 45b, 45c
と対向するようにディスク基板4lを保持するパレット
状の基板保持部材42(以下、パレットと称す)と、該
基板保持部材42を上記ターゲット45a, 45b,
45cを中心に自・公転する機構47と、各円形スパッ
ターチャンバー間に配置され、基板41を上記パレット
42に装着された状態で順次移送する移送路となるパレ
ット移送チャンバー43と、該パレット移送チャンバー
43と各円形スパッターチャンバ−49とを連結し各円
形スパッターチャンバー49のスパッター室49A, 
498. 49Cにパレット42を出し入れするエクス
チェンジャー兼用のロードロック機構44とを備えた構
成となっている.尚、第6図,第7図において,符号4
6はロードロック機構44の前後移動プレート,符号5
0はパレット42を吊り下げるためのパレットハンガー
を示している.さて、第6図及び第7図に示す構成のス
バッター装置においては,ディスク基板41はパレット
42に装着された状態でパレット移送チャンバー43内
を図中矢印方向に移動し、ロードロック機Js44の前
後移動プレート46に設けられたフックに吊り下げられ
る.この直後、前後移動プレート4Gは前進し、符号4
9Bのスパッタ一室に示すように、処理前のパレットを
スパッタ一室に挿入すると共に、開口部を移動プレート
46によりシールする。
Then, after moving half a turn, the substrate 21 is removed from the substrate holding member 24 by the platform type exchanger 23 on the substrate removal side and transferred to the transfer chamber 22, and the substrate 21 is transferred to the spatter chamber 29B of the next sputter chamber in a similar manner. It is fed by a mechanism and the next film is formed. When the exchanger is in operation, the sputter chamber is opened to the transfer chamber by opening and closing the sputter chamber, but the transfer chamber is normally evacuated to the same level of pressure as the sputter chamber. Since the opening/closing amount of the operation is about 10a+m, which is necessary for the passage of the substrate, and the operation is completed in about 2 seconds, atmospheric fluctuations in the sputtering chamber are slight, and the stability of sputtering discharge is maintained.
In addition, the exchangers on the side for inserting the substrate 21 into the sputtering chamber and the side for taking it out are controlled to operate at timings that do not open one sputtering chamber at the same time.
Atmosphere fluctuations are kept to a minimum and sputter discharge stability is maintained. By the way, in the sputtering apparatus having the configuration shown in FIGS. 4 and 5, after rotating half a revolution, the substrate holding member 24 from which the substrate 21 has been removed wraps around the non-discharge side of the cylindrical target 25 by the rotational revolution mechanism and is cooled by water. It is rotated and cooled in close proximity to a cooler 27 having a jacket. This cooling effect reduces the heating temperature of the substrate when it rotates on its own axis and revolves again, making it possible to prevent the occurrence of warping of the substrate. In addition, by making the substrate holding member 24 have a structure in which the substrate rotation mechanism part that rotates on its own axis is supported and rotated on the lower side, the generation of dust can be minimized, and it is possible to perform processing with fewer defects during film formation. By the way, when the sputtering apparatus having the configuration shown in FIG. 4 is used for forming a film on a magneto-optical disk or a substrate for a phase-change optical disk, the sputtering chamber 29A is used to form the first and third layers.
, Cylindrical target 2 installed at 29C
In step 5, a dielectric film such as SiN or SiO is applied to the substrate using a dielectric compound such as SiN or SiO, or by reactive sputtering using a Si target alone;
It is used as an undercoat on plastic substrate substrates and as a protective layer on magneto-optical films and phase change films. In addition, the target in the spatter chamber 29B, which applies a signal recording thin film such as a magneto-optical film or a phase change film, may have a composition similar to that of the applied film, but the surface layer of the cylindrical target may be composed of a single component of the applied film composition. Alternatively, by dividing and arranging the target material of the divided components on the circumference and performing Co spatter, it is possible to efficiently obtain a film composition and characteristics with good uniformity. In addition, the usage efficiency is also 2 of that of planar targets.
Compared to the 5% level, it can be increased to over 70%. Now, as described above, according to the sputtering apparatus of this embodiment, it is possible to carry out the rotation-revolution process in single-wafer passing in-line type film formation twice with the apparatus having a simple and compact configuration.
Compared to the conventional sputtering apparatus shown in FIGS. 1 to 11, mass production of high-quality disk substrates can be easily carried out at low cost. Next, another embodiment of the present invention is shown in FIGS. 6 and 7, and will be described below. FIG. 6 is a cross-sectional view of the sputtering device according to this embodiment when viewed from above, and FIG. 7 is a cross-sectional view of the same device as seen from the front. 6 and 7, the sputtering apparatus in this embodiment includes a cylindrical target 45a,
A plurality of circular sputter chambers 49 with sputtering chambers 45b and 45c arranged at the center, and a large number of sputtering chambers 49 arranged at equal intervals around the targets 45a, 45b and 45c in each chamber 49, so that the substrate surface is covered with the targets 45a, 45b and 45c.
A pallet-shaped substrate holding member 42 (hereinafter referred to as a pallet) that holds the disk substrate 4l so as to face the substrate holding member 42, and the substrate holding member 42 is connected to the targets 45a, 45b,
A mechanism 47 that rotates around 45c, a pallet transfer chamber 43 that is arranged between each circular sputter chamber and serves as a transfer path for sequentially transferring the substrate 41 mounted on the pallet 42, and the pallet transfer chamber. 43 and each circular sputter chamber 49 are connected, and the sputter chamber 49A of each circular sputter chamber 49,
498. 49C is equipped with a load lock mechanism 44 which also serves as an exchanger for loading and unloading pallets 42. In addition, in Fig. 6 and Fig. 7, the reference numeral 4
6 is a back and forth moving plate of the load lock mechanism 44, code 5
0 indicates a pallet hanger for hanging the pallet 42. Now, in the sputtering apparatus having the configuration shown in FIGS. 6 and 7, the disk substrate 41 is mounted on the pallet 42 and moves in the direction of the arrow in the figure in the pallet transfer chamber 43, and the disk substrate 41 moves before and after the load lock machine Js44. It is hung from a hook provided on the moving plate 46. Immediately after this, the back and forth moving plate 4G moves forward, and the reference numeral 4
As shown in the sputtering chamber 9B, the unprocessed pallet is inserted into the sputtering chamber, and the opening is sealed with a moving plate 46.

尚、この動作時において、短時間ではあるが、パレット
移送チャンバー43とスパッタ一室はシールが開放され
た状態となるが、パレット移送チャンバー43内はスバ
ッタ一室と同レベルの真空に排気されているのでスパッ
タ一室内の雰囲気変動はスパッター放電に影響を与えず
、また、A,B,Cの各スバッター室は同時に開放しな
いタイミングで動作するので相互の影響は回避される.
さて、各スバッターチャンパー49のスバッター室49
A, 49B, 49Gに挿入されたパレット42は、
スパッター室内のパレットハンガー46のフックに受け
渡され、パレット下端に位置するパレット自公転疑動機
構47によってシリンドリカルターゲット45a, 4
5b, 45cの周囲を公転すると共に、パレット42
に設けた回軸機構によって個々の基板41が自転する. ここで、第6[及び第7図に示す構成のスバッター装置
では、光磁気ディスクや相変化型光ディスク用基板の成
膜を行う場合、l層目と3層目の成膜を行うスパッター
室49A , 49Cに設置されるシリンドリカルター
ゲット45a , 45cには、SiN ,SiQ等の
誘電体化合物を用いるか、またはSi単独ターゲットを
使用する反応性スパッターで基板へSiN, SiOな
どの誘電体膜を付与し、プラスチック基板素地へのアン
ダーコート及び光磁気膜や相変化膜上の保護層とする. また,光磁気膜や相変化膜などの信号記録薄膜を付与す
るスパッタ一室49Bのターゲット45bは、付与膜近
似の組成で構成する場合もあるが、シリンドリ力ルター
 ゲットの表層を付与膜組成の単或分または分割成分の
ターゲット材を周上に分割配置し、Coスパッターする
ことにより、均一性の良好な膜組成と特性を効率良く得
ることができる.さて、スパッタ一室内のパレットの公
転により,膜付与の終了したパレット42は、空になっ
た前後移動プレート46のフックに吊り下げられる.そ
の直後,移動プレート46はロードロック機構44によ
って後退され、パレット移動チャンパー43のパレット
移動列に復帰し,成膜処理後のパレットが前後移動プレ
ート46から外され図中矢印方向に移動すると共に、次
の処理前のパレットが前後移動プレート46のフックに
吊り下げられる.以下,上述の動作が繰り返し行われ、
必要層数の多層膜の形成が終了する. 以上のように、本実施例のスパッター装置によれば、第
8図乃至第1l図に示した従来のスパッター装置に比べ
て、低コストで且つ高品位のディスク基板の量産が容易
に実施可能となる.また、本実施例におけるスパッター
装置では、円周回転型のスパッタ一室と、直線移動型の
チャンバーとの組合せにより、機構の簡略化とシステム
のコンパクト化を容易に図ることができる。
During this operation, the seals of the pallet transfer chamber 43 and the sputtering chamber are opened for a short time, but the inside of the pallet transfer chamber 43 is evacuated to the same level of vacuum as the sputtering chamber. Therefore, atmospheric fluctuations within one sputtering chamber do not affect the sputtering discharge, and since the sputtering chambers A, B, and C operate at timings that do not open at the same time, mutual influence is avoided.
Now, the spatter chamber 49 of each sputter chamber 49
The pallets 42 inserted into A, 49B, and 49G are
The cylindrical targets 45a, 4 are transferred to the hooks of the pallet hanger 46 in the sputtering chamber, and are moved by the pallet rotation/revolution movement mechanism 47 located at the lower end of the pallet.
5b, 45c, and the pallet 42
Each substrate 41 rotates on its own axis by a rotation mechanism provided in the . Here, in the sputtering apparatus having the configuration shown in the sixth [and FIG. , 49C, a dielectric compound such as SiN, SiQ, etc. is used, or a dielectric film such as SiN, SiO, etc. is applied to the substrate by reactive sputtering using a Si target alone. It is used as an undercoat on plastic substrate substrates and as a protective layer on magneto-optical films and phase change films. In addition, the target 45b of the sputtering chamber 49B, which applies a signal recording thin film such as a magneto-optical film or a phase change film, may have a composition similar to that of the applied film; By dividing and arranging target materials of single or divided components on the circumference and performing Co sputtering, it is possible to efficiently obtain a film composition and characteristics with good uniformity. By the revolution of the pallet in the sputtering chamber, the pallet 42 on which the film has been applied is suspended from the hook of the now empty back and forth moving plate 46. Immediately after that, the moving plate 46 is retreated by the load lock mechanism 44 and returns to the pallet moving row of the pallet moving chamber 43, and the pallet after the film forming process is removed from the back and forth moving plate 46 and moves in the direction of the arrow in the figure. The next pallet to be processed is hung from the hook of the back and forth moving plate 46. After that, the above operation is repeated,
Formation of the required number of multilayer films is completed. As described above, according to the sputtering apparatus of this embodiment, compared to the conventional sputtering apparatus shown in FIGS. Become. Further, in the sputtering apparatus of this embodiment, by combining one circumferentially rotating sputtering chamber and a linearly moving chamber, the mechanism can be simplified and the system can be made more compact.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、光磁気ディスク
や相変化型光ディスク等の基板への威膜を効率良く且つ
均質に行うことができ、しかも量産性に優れ,且つ処理
コストをも低減し得るスバッター装置を提供することが
できる. また,本発明によれば、コンパクト化と成膜処理の量産
化とを同時に図り得るスバッター装置を提供することが
できる.
As explained above, according to the present invention, it is possible to efficiently and uniformly apply a film to a substrate such as a magneto-optical disk or a phase change optical disk, and it is also excellent in mass production and reduces processing costs. We can provide a spatter device that can Further, according to the present invention, it is possible to provide a sputtering apparatus that can be made compact and mass-produced in film forming processes at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明の一実施例を示しスパッター装置を上方
から見たときの断面図、第2図は同上装置の第1図I−
1線断面図、第3図は第1図に示す構成のスバッター装
置の連結例を示す図、第4図は本発明の別の実施例を示
しスパッター装置を上方から見たときの断面図、第5図
は第4図A方向から見たときのスバッター装置の透視図
、第6図は本発明のさらに別の実施例を示しスバッター
装置を上方から見たときの断面図、第7図は同上装置を
前方から見たときの断面図、第8図及び第10図は夫々
従来技術によるスバッター装置を上方から見たときの断
面図、第9図及び第11図は夫々第8図及び第10図に
示す装置を前方から見たときの断面図である. 1,21.41・・・・基板、2, 24. 42・・
・・基板保持部材、4,29,49・・・・円形スパツ
ターチャンバー5. 25, 45a , 45b ,
 45c ”円筒形シリンドリカルターゲット、7,4
7・・・・機構.第 l 図 〜管 h1 2 図
Fig. 1 shows an embodiment of the present invention, and is a cross-sectional view of the sputtering device seen from above, and Fig. 2 is a sectional view of the same device as shown in Fig. 1-1.
1-line sectional view; FIG. 3 is a diagram showing an example of the connection of the sputtering device configured as shown in FIG. 1; FIG. 4 is a sectional view showing another embodiment of the present invention when the sputtering device is viewed from above; FIG. 5 is a perspective view of the spatter device as seen from the direction A in FIG. 4, FIG. 6 is a cross-sectional view of the spatter device showing still another embodiment of the present invention, and FIG. FIGS. 8 and 10 are sectional views of the spatter apparatus according to the prior art when viewed from above, and FIGS. 9 and 11 are sectional views of the same as shown in FIGS. 10 is a cross-sectional view of the device shown in FIG. 10 when viewed from the front. 1, 21.41...Substrate, 2, 24. 42...
...Substrate holding member, 4, 29, 49...Circular sputter chamber5. 25, 45a, 45b,
45c ”cylindrical target, 7,4
7...Mechanism. Figure l ~ Tube h1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] 1.円筒形シリンドリカルターゲットと、このターゲッ
トが中心に配置された円形スパッターチャンバーと、該
チャンバー内の上記ターゲットの周りに等間隔に多数配
設され基板面がターゲットと対向するように基板を保持
する基板保持部材と、該基板保持部材を上記ターゲット
を中心に公転する手段とを備え、上記ターゲットと対向
する多数の基板面に同時に成膜するスパッター装置。
1. A cylindrical cylindrical target, a circular sputtering chamber in which the target is placed in the center, and a number of substrate holders arranged at equal intervals around the target in the chamber to hold the substrate so that the substrate surface faces the target. A sputtering apparatus comprising: a member; and means for rotating the substrate holding member around the target; the sputtering apparatus simultaneously forms films on a number of substrate surfaces facing the target.
2.円筒形シリンドリカルターゲットと、このターゲッ
トが中心に配置された円形スパッターチャンバーと、該
チャンバー内の上記ターゲットの周りに等間隔に多数配
設され基板面がターゲットと対向するように基板を保持
する基板保持部材と、該基板保持部材を上記ターゲット
を中心に公転する手段とを備え、上記基板保持部材とし
て、基板を一枚づつ出し入れ可能な筒状カセットを上下
2段に設け、上下何れか一方側の筒状カセットに予め収
納された多数枚の基板を順次一枚づつ他方側の筒状カセ
ットに移送してカセットの出口に位置し上記ターゲット
と対向する基板が成膜されるように構成したスパッター
装置。
2. A cylindrical cylindrical target, a circular sputtering chamber in which the target is placed in the center, and a number of substrate holders arranged at equal intervals around the target in the chamber to hold the substrate so that the substrate surface faces the target. member, and means for revolving the substrate holding member around the target, and as the substrate holding member, cylindrical cassettes into and out of which substrates can be taken one by one are provided in upper and lower stages, and a cylindrical cassette is provided on either the upper or lower side. A sputtering apparatus configured so that a large number of substrates previously stored in a cylindrical cassette are transferred one by one to the other cylindrical cassette, and the substrate located at the exit of the cassette and facing the target is deposited. .
3.円筒形シリンドリカルターゲットを中心に配した複
数の円形スパッターチャンバーと、各チャンバー内の上
記ターゲットの周りに等間隔に多数配設され基板面がタ
ーゲットと対向するように基板を保持する基板保持部材
と、該基板保持部材を上記ターゲットを中心に公転する
手段と、各円形スパッターチャンバー間に配置され基板
を枚葉単位若しくは上記基板保持部材に装着された状態
で順次移送する移送路と、該移送路と円形スパッターチ
ャンバーとを連結し円形スパッターチャンバーに基板を
出し入れするエクスチェンジャーとを備え、複数の円形
スパッターチャンバーで順次成膜を行うことによって多
層膜の形成を可能としたスパッター装置。
3. a plurality of circular sputter chambers having a cylindrical cylindrical target in the center; a large number of substrate holding members arranged at equal intervals around the target in each chamber and holding the substrate so that the substrate surface faces the target; means for revolving the substrate holding member around the target; a transfer path disposed between each circular sputter chamber for sequentially transferring the substrate in units of wafers or mounted on the substrate holding member; A sputtering device that is equipped with an exchanger that connects a circular sputter chamber to take substrates in and out of the circular sputter chamber, and enables the formation of multilayer films by sequentially forming films in multiple circular sputter chambers.
JP19080189A 1989-07-24 1989-07-24 Sputtering device Pending JPH0356668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19080189A JPH0356668A (en) 1989-07-24 1989-07-24 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19080189A JPH0356668A (en) 1989-07-24 1989-07-24 Sputtering device

Publications (1)

Publication Number Publication Date
JPH0356668A true JPH0356668A (en) 1991-03-12

Family

ID=16263971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19080189A Pending JPH0356668A (en) 1989-07-24 1989-07-24 Sputtering device

Country Status (1)

Country Link
JP (1) JPH0356668A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215420A (en) * 1991-09-20 1993-06-01 Intevac, Inc. Substrate handling and processing system
JP2002180558A (en) * 2000-04-28 2002-06-26 Sekisui Chem Co Ltd Building
JP2008223110A (en) * 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Thin film treatment device
US20110132756A1 (en) * 2009-12-03 2011-06-09 Hon Hai Precision Industry Co., Ltd. Sputtering device
TWI450992B (en) * 2009-12-23 2014-09-01 Hon Hai Prec Ind Co Ltd Sputtering device
JP2014209404A (en) * 2008-10-22 2014-11-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Patterning of magnetic thin film using energized ions
US9263078B2 (en) 2008-02-12 2016-02-16 Applied Materials, Inc. Patterning of magnetic thin film using energized ions
US9997386B2 (en) 2008-09-30 2018-06-12 Canon Anelva Corporation Substrate holder mounting device and substrate holder container chamber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215420A (en) * 1991-09-20 1993-06-01 Intevac, Inc. Substrate handling and processing system
JP2002180558A (en) * 2000-04-28 2002-06-26 Sekisui Chem Co Ltd Building
JP2008223110A (en) * 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Thin film treatment device
US9263078B2 (en) 2008-02-12 2016-02-16 Applied Materials, Inc. Patterning of magnetic thin film using energized ions
US9997386B2 (en) 2008-09-30 2018-06-12 Canon Anelva Corporation Substrate holder mounting device and substrate holder container chamber
JP2014209404A (en) * 2008-10-22 2014-11-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Patterning of magnetic thin film using energized ions
US20110132756A1 (en) * 2009-12-03 2011-06-09 Hon Hai Precision Industry Co., Ltd. Sputtering device
TWI450992B (en) * 2009-12-23 2014-09-01 Hon Hai Prec Ind Co Ltd Sputtering device

Similar Documents

Publication Publication Date Title
JP2699045B2 (en) Substrate handling processing system
JP3700793B2 (en) Vacuum processing apparatus, method for processing substrate in vacuum processing apparatus, and lock for vacuum processing apparatus
EP0211938B1 (en) System and method for depositing plural thin film layers on a substrate
US4795299A (en) Dial deposition and processing apparatus
US5607009A (en) Method of heating and cooling large area substrates and apparatus therefor
US6203619B1 (en) Multiple station apparatus for liquid source fabrication of thin films
EP0443049B1 (en) Sputtering apparatus and sputtering system
US4790921A (en) Planetary substrate carrier method and apparatus
JPS6386867A (en) Wafer treatment apparatus
US20120222620A1 (en) Atomic Layer Deposition Carousel with Continuous Rotation and Methods of Use
US20230395402A1 (en) Chamber for degassing substrates
WO2000018979A9 (en) Sputter deposition apparatus
WO2000018979A1 (en) Sputter deposition apparatus
WO2001083843A1 (en) Substrate processing system
US4834855A (en) Method for sputter depositing thin films
US20030003767A1 (en) High throughput hybrid deposition system and method using the same
JPH0356668A (en) Sputtering device
JPH08239765A (en) Multichamber sputtering device
JPH0853752A (en) Vacuum film forming device and its evacuating method therefor
JPH10511429A (en) Cross-flow metal deposition of compact discs
JPH04141587A (en) Sputtering device
JPS59208074A (en) Sheet type film forming device
JP2762479B2 (en) Magnetron type sputtering equipment
JPS6123270B2 (en)
JPH08232062A (en) Coating apparatus