JPH0355720A - Coating method of wire rod - Google Patents

Coating method of wire rod

Info

Publication number
JPH0355720A
JPH0355720A JP15064389A JP15064389A JPH0355720A JP H0355720 A JPH0355720 A JP H0355720A JP 15064389 A JP15064389 A JP 15064389A JP 15064389 A JP15064389 A JP 15064389A JP H0355720 A JPH0355720 A JP H0355720A
Authority
JP
Japan
Prior art keywords
wire
wire rod
coating
coating layer
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15064389A
Other languages
Japanese (ja)
Inventor
Hirotsune Momose
百瀬 皓常
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UINGU HAISERA KK
Original Assignee
UINGU HAISERA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UINGU HAISERA KK filed Critical UINGU HAISERA KK
Priority to JP15064389A priority Critical patent/JPH0355720A/en
Publication of JPH0355720A publication Critical patent/JPH0355720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PURPOSE:To perform coating in a continuous mode by forming a coated layer of ceramics material around a wire rod, and by forming a beaded ceramics coating around the wire rod by means of forming and baking a certain shape of groove on the periphery of the coated layer. CONSTITUTION:A wire rod 1 such as nichrome wire is formed in a line, whose one end is gripped by a chuck 4, and the other end abutted on a front end surface of a core 2b of an extruding frame 2. A ceramics material, etc., in a form of clay is extrusively molded around the wire rod 1 from an extruder 3 through the extruding frame 2, so as to form a molded body 5 in a pipe shape. When the extrusion molding is progressed and the length of the molded body 5 becomes almost of the same length as that of the wire rod 1, and when it covers the whole length thereof, the wire rod 1 is removed from the chuck 4. A tool 7 of certain shape is pressed on a peripheral surface of the molded body 5 from a direction (a), and when the molded boyd 5 is rotated in a direction (b), a groove 8 is formed, by which, for example, a beaded coated material 9 is formed. The molded boyd 5 is then baked at a corresponding temperature to the material, and beaded coated materials 9 are obtained thereby.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は形状記憶合金や発熱体等の線材にセラミックス
材料又は合成樹脂材料によるビーズ状の絶縁被覆を施す
ための線材の被覆方法に関するものである. 〈従来の技術〉 従来より、t線等の導電性線材には通電の際の漏電を防
止するために、ゴム等のプラスチックや布によって絶縁
被覆が施されている.前記の如き絶縁被覆を有する電線
等は、可撓性を有し自由に屈曲し得るものである.また
導電性線材と被覆材との間は密着しており、通電によっ
て発生するジュール熱は被覆材を介して空中に放散され
る.最近になって、目的の形状を記憶させた後所定の形
状に変形させ、形状回復温度以上に加熱すると記憶した
形状を回復し、この形状回復過程に於いて目的の仕事を
なし得る形状記憶合金が開発されている。通常前記形状
記憶合金に対する加熱は、雰囲気温度により或いは通電
により行っている。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for coating wire rods, such as shape memory alloys, heating elements, etc., for applying bead-shaped insulation coatings of ceramic materials or synthetic resin materials to wire rods such as shape memory alloys and heating elements. be. <Prior art> Conventionally, conductive wires such as T-wires have been covered with an insulating coating of plastic such as rubber or cloth to prevent leakage when energized. Electric wires and the like having an insulating coating as described above are flexible and can be bent freely. Furthermore, the conductive wire and the sheathing material are in close contact, and the Joule heat generated by energization is dissipated into the air through the sheathing material. Recently, shape memory alloys have been developed that can memorize a desired shape, then deform into a predetermined shape, recover the memorized shape when heated above the shape recovery temperature, and perform the desired work in this shape recovery process. is being developed. Usually, the shape memory alloy is heated at ambient temperature or by electricity.

前記形状記憶合金に於ける形状変化は非可逆的である。The shape change in the shape memory alloy is irreversible.

このため本件出願人は、異なる形状を記憶させた復敗の
形状記憶合金線材を並列して一体化することによって形
状記憶合金の複合体をI#I威し、形状記憧合金線材に
対し選択的に通電することで複合体を可逆的に形状変化
させたり、或いは異なる形状に変化させる技術を開発し
ている.前記技術にあっては、形状記憶合金の複合体を
構成する複数の形状記憶合金線材を選択的に通電するに
際し以下の各条件が必要となる.即ち、特定の形状記憶
合金線材に対する通電が他の形状記憶合金線材に漏電し
てはならない。また通電された形状記憶合金線材の発熱
が他の形状記憶合金線材に対し影響を与えてはならない
.また通電を遮断された形状記憶合金線材の有する熱は
速やかに放散されなければならない.更に、形状記憶合
金線材を個々に被覆した場合、該被覆が形状記憶合金線
材の形状回復動作を阻害するものであってはならない。
For this reason, the applicant has developed a shape memory alloy composite by integrating shape memory alloy wire rods with different shapes memorized in parallel, and selected the shape memory alloy wire rods as a shape memory alloy wire rod. We are developing technology to reversibly change the shape of composites or change them into different shapes by energizing them. In the above technology, the following conditions are required when selectively energizing a plurality of shape memory alloy wires constituting a shape memory alloy composite. That is, the current applied to a specific shape memory alloy wire must not leak to other shape memory alloy wires. Furthermore, the heat generated by the energized shape memory alloy wire must not affect other shape memory alloy wires. In addition, the heat contained in the shape memory alloy wire must be dissipated quickly when the current is cut off. Furthermore, when the shape memory alloy wire is individually coated, the coating must not inhibit the shape recovery operation of the shape memory alloy wire.

またニクロム線ヒーターの如き発熱体にあっては、裸純
の状態で用いられているのが一般である。
Furthermore, heating elements such as nichrome wire heaters are generally used in a bare pure state.

従って、例えばニクロム線を加熱炉に於ける熱源として
用いる場合には該線を直接炉壁に取り付けており、炉壁
に対する熱伝達が大きく、このため熱効率が悪い.また
シーズヒーターでは金属管の中にニクロム線を屈曲して
収納すると共に絶縁粉末を充填して構威しているため、
該ヒーターの熱が絶縁粉末の加熱に消費されることから
熱効率が悪い. 上記の如く、漏電の防止.熱伝達の防止.放熱性,可撓
性の保有等を解決するために、セラξソクス材料又は合
成樹脂材料によってビーズを形成し、該ビーズを個々の
形状記憶合金線材或いはニクロム線等に嵌装することに
よって、これ等の線材を被覆している. 〈発明が解決しようとする!Iff> 上記技術に於いて、形状記憶合金線材やニクロム線等に
ビーズを嵌装する場合、作業に多くの人手が必要となり
能率が悪く、従って作業コストが高くなる。
Therefore, for example, when a nichrome wire is used as a heat source in a heating furnace, the wire is attached directly to the furnace wall, and heat transfer to the furnace wall is large, resulting in poor thermal efficiency. In addition, in a sheathed heater, a nichrome wire is bent and stored inside a metal tube and is filled with insulating powder.
Thermal efficiency is poor because the heat of the heater is consumed in heating the insulating powder. As mentioned above, prevention of electrical leakage. Prevention of heat transfer. In order to solve problems such as heat dissipation and flexibility, beads are formed from Cerasox material or synthetic resin material, and the beads are inserted into individual shape memory alloy wires or nichrome wires. It coats wire rods such as <Invention tries to solve! If> In the above technique, when inserting beads into a shape memory alloy wire, a nichrome wire, etc., many hands are required for the work, resulting in poor efficiency and, therefore, high work costs.

本発明の目的は、形状記憶合金やニクロム線等の線材に
効率的にセラミックス又は合成樹脂からなるビーズ状の
被覆を施す方法を提供するものである。
An object of the present invention is to provide a method for efficiently applying a bead-like coating made of ceramic or synthetic resin to a wire such as a shape memory alloy or a nichrome wire.

く課題を解決するための手段〉 上記課題を解決するための本発明に係る線材の被覆方法
は、セラもソクス材料の中空材の押出型の前端面に線材
の端部を当接させ、前記押出型からセラミノクス材料の
中空材を押出成形することによって前記線材の周囲にセ
ラξツクス材料による被覆層を形成し、次いで前記被覆
層の外周に所定の形状を持った溝を形成し、その後焼威
して線材の周囲にビーズ状のセラミックス被覆を形成す
ることを特徴とするものである. また他の被覆方法は、合成樹脂材料の中空材の押出型の
前端面に線材の端部を当接させ、前記押出型から合成樹
脂材料の中空材を押出成形することによって前記線材の
周囲に合成樹脂材料による被覆層を形成し、前記被覆層
が可塑性を保持している間に該被覆層の外周に所定の形
状を持った溝を形成し、その後常温まで冷却して線材の
周囲にビーズ状の合成樹脂被覆を形成することを特徴と
するものである. 〈作用〉 上記第1の手段に於いて、先ずセラミックス被覆すべき
線材をセラξツクス材料の中空材の押出型の前端面に当
接させる.そして前記押出型から粘土状のセラごツクス
材料を押出成形することによって、線材の周囲にセラミ
ンクス材料による被覆層を形成する.このとき、前記中
空材の内径は線材の外径よりも大きい寸法を有すること
が好ましい.前記の如くして線材の周囲にセラξツクス
材料による被覆層を形成した後、該被覆層の外周に所定
の形状、即ち、球状或いは円筒状等の所望の形状を持っ
た溝を形或する.次に線材と該線材の周囲に形成した溝
を有する被覆層とを焼威することによって線材の周囲に
形成した被覆層を硬化させる。前記焼成過程に於いて、
被覆層を構成するセラξソクスは溶融した後固化する。
Means for Solving the Problems> In order to solve the above problems, the method for coating a wire according to the present invention comprises bringing the end of the wire into contact with the front end surface of an extrusion mold for a hollow material made of Ceramosoku material, and A covering layer of ceramic material is formed around the wire by extruding a hollow member of ceramic material from an extrusion mold, and then a groove with a predetermined shape is formed on the outer periphery of the covering layer, and then baked. It is characterized by forming a bead-shaped ceramic coating around the wire. Another covering method is to bring the end of the wire into contact with the front end surface of an extrusion die for a hollow synthetic resin material, and to extrude the hollow synthetic resin material from the extrusion die to cover the periphery of the wire. A coating layer made of a synthetic resin material is formed, and while the coating layer retains its plasticity, a groove with a predetermined shape is formed on the outer periphery of the coating layer, and then it is cooled to room temperature and beads are formed around the wire. It is characterized by forming a synthetic resin coating. <Operation> In the first method described above, first, the wire to be coated with ceramics is brought into contact with the front end surface of the extrusion die of the hollow member of ceramic material. Then, by extruding a clay-like ceramic material from the extrusion die, a coating layer of the ceramic material is formed around the wire rod. At this time, it is preferable that the inner diameter of the hollow member is larger than the outer diameter of the wire. After forming a coating layer of ceramic material around the wire as described above, a groove having a predetermined shape, that is, a desired shape such as spherical or cylindrical, is formed on the outer periphery of the coating layer. .. Next, the coating layer formed around the wire is hardened by burning the wire and the coating layer having grooves formed around the wire. In the firing process,
Cerasox, which constitutes the coating layer, is melted and then solidified.

この溶融−固化の際にセラ1ツクスが収縮することで、
被覆層の外周に形成した溝に集中応力が作用し、被覆層
には溝を基点とした亀裂が生じ、ビーズ状の被覆材とな
る。
As the ceramic contracts during this melting and solidification,
Concentrated stress acts on the grooves formed on the outer periphery of the coating layer, causing cracks in the coating layer starting from the grooves, resulting in bead-shaped coating material.

また上記第2の手段に於いて、合成樹脂被覆すべき線材
を合成樹脂材料の中空材の押出型の前端面に当接させる
。そして前記押出型から溶融状態の合成樹脂材料を押出
成形することによって、線材の周囲に合成樹脂材料によ
る被覆層を形成する.前記の如くして線材の周囲に合成
樹脂材料による被覆層を形成した後、該被覆層が可塑性
を保持している間に被覆層の外周に所定の形状を持った
溝を形成する.次に線材と該線材の周囲に形戊した溝を
有する被覆層とを常温まで冷却することによって、線材
の周囲に形成した破屓層を硬化させると被覆層を構我す
る合成樹脂が収縮し、被覆層の外周に形成した溝に集中
応力が作用する.前記集中応力の作用によって被覆層に
は溝を基点とする亀裂が生じ、該被覆層が複数に分割し
てビーズ状の被覆材となる。
Further, in the second method, the wire to be coated with synthetic resin is brought into contact with the front end surface of the extrusion mold for the hollow material made of synthetic resin. Then, by extruding the molten synthetic resin material from the extrusion mold, a covering layer of the synthetic resin material is formed around the wire. After forming a coating layer made of a synthetic resin material around the wire as described above, a groove having a predetermined shape is formed on the outer periphery of the coating layer while the coating layer retains its plasticity. Next, the wire and the coating layer having grooves formed around the wire are cooled to room temperature to harden the fracture layer formed around the wire, and the synthetic resin forming the coating layer shrinks. , concentrated stress acts on the grooves formed on the outer periphery of the coating layer. Due to the action of the concentrated stress, cracks are generated in the coating layer starting from the grooves, and the coating layer is divided into a plurality of pieces to form bead-shaped coating materials.

また線材の周囲に形成したセラミックス材料又は合成樹
脂材料による被覆層を切断した場合には、該被覆層を焼
或或いは単に冷却することで線材の周囲にビーズ状の被
覆材を形成することが出来る。
Furthermore, when the coating layer made of ceramic material or synthetic resin material formed around the wire is cut, a bead-shaped coating material can be formed around the wire by baking or simply cooling the coating layer. .

以上の工程によって線材の周囲にビーズ状のセラ旦ツク
ス被覆または合成樹脂被覆を形成することが出来る。
By the above steps, a bead-shaped ceramic coating or synthetic resin coating can be formed around the wire.

〈実施例〉 以下上記手段を用いた線材の被覆方法について図により
説明する. 第1図(A)〜(F)は本発明に係る線材の被覆方法の
工程順説明図、第2図は異なる長さの形状記憶合金線材
を接合して横威した形状記憶合金の複合体の説明図、第
3図(A).(B)は押出型の説明図、第4図は戒形体
に形成する溝の説明図である。
<Example> A method of coating wire rods using the above method will be explained below using figures. Figures 1 (A) to (F) are step-by-step explanatory diagrams of the wire coating method according to the present invention, and Figure 2 is a shape memory alloy composite obtained by joining shape memory alloy wires of different lengths. An explanatory diagram of FIG. 3 (A). (B) is an explanatory diagram of the extrusion die, and FIG. 4 is an explanatory diagram of the grooves formed in the precept-shaped body.

図に於いて、線材1は通電によって発熱するニクロム線
等の発熱体の線材、形状記憶合金の単一線材、或いは第
2図に示すような長さの異なる形状記憶合金線材を長手
方向に接合して構威した形状記憶合金の複合体としての
線材等の線材であって、隣接する周囲の物体に対し漏電
.熱影響の付与等を防止することが望ましい線材が用い
られる.押出型2は第3図に示すように、型2aと中子
2bとによって構成されている。そして前記押出型2を
押出機3に装着すると共に、該押出機3によって粘土状
に錬成されたセラミンクス材料、又は溶融状態の合成樹
脂材料を押し出すと、セラミックス材料又は合成樹脂材
料は型2aと中子2bとによってバイブ状に成形される
。このような押出成形法は公知である。
In the figure, the wire 1 is a heating element wire such as a nichrome wire that generates heat when energized, a single wire of a shape memory alloy, or a shape memory alloy wire of different lengths joined in the longitudinal direction as shown in Figure 2. Wire rods, such as wire rods, as composites of shape memory alloys, which are designed to prevent electrical leakage to adjacent surrounding objects. Wire rods are used that are desirable to prevent thermal effects. As shown in FIG. 3, the extrusion mold 2 is composed of a mold 2a and a core 2b. Then, when the extrusion mold 2 is attached to the extruder 3 and the extruder 3 extrudes the ceramic material smelted into clay or the synthetic resin material in the molten state, the ceramic material or the synthetic resin material is inserted into the mold 2a. It is formed into a vibrator shape by the child 2b. Such extrusion molding methods are known.

線材lを被覆するためのセラミックス材料としては、ア
ル逅ナ,ジルコニア,シリカ.アルミナ・シリカ.酸化
セリウム.マグネシア.チタニアムライト.スピネル,
コージェライト等の酸化物系セラ旦ックス、或いは窒化
ケイ素.窒化アルも,窒化ホウ素,窒化チタン,炭化ケ
イ素.炭化ホウ素,pt化タングステン,サイアロン等
の非酸化物系セラミンクス等を用いることが可能である
.また線材1を被覆するための合成樹脂材料としては、
ボエアミド,ポリイミド5ボリア逅ドイミド,フン素樹
脂,ポリベンゾイごダゾール等を用いることが可能であ
る。
Ceramic materials for coating the wire 1 include aluminum, zirconia, silica, etc. Alumina silica. Cerium oxide. Magnesia. Titanium light. spinel,
Oxide ceramics such as cordierite, or silicon nitride. Al nitride also includes boron nitride, titanium nitride, and silicon carbide. It is possible to use non-oxide ceramics such as boron carbide, tungsten oxide, and sialon. In addition, the synthetic resin material for covering the wire 1 is as follows:
It is possible to use boaamide, polyimide 5-boria-imide, fluorine resin, polybenzoigodazole, and the like.

前記線材1に被覆を施す方法について第l図(A)〜(
F)により工程順に説明する。尚、以下線材1をセラミ
ックスにより被覆する場合を主として説明し、必要に応
じて合成樹脂による場合の説明を付加する. 先ず、前記線材lを直線状に戊形すると共に、該綿材1
の一端をチャソク4によって把持し、他端を押出型2の
押出方向下流側の端面である中子2bの前端面に当接さ
せる{同図(A) l .次に線材lを中子2bの前端
面に当接した状態を維持し、押出機3から押出型2を介
して粘土状にi!!威されたセラ稟フクス材料、或いは
溶融状態にある合成樹脂材料を線材lの周囲に沿わせて
押出成形し、線材lの周囲に被覆層となるパイプ状の成
形体(以下単にr成形体jという)5を形成する{同図
(B)}。
The method of coating the wire rod 1 is shown in FIGS.
F) will be explained step by step. In the following, the case where the wire rod 1 is covered with ceramics will be mainly explained, and the case where it is covered with synthetic resin will be explained as necessary. First, the wire material 1 is cut into a straight shape, and the cotton material 1 is
One end of the core 2b is held by the chuck 4, and the other end is brought into contact with the front end surface of the core 2b, which is the end surface of the extrusion die 2 on the downstream side in the extrusion direction {Figure (A) l. Next, the wire 1 is kept in contact with the front end surface of the core 2b, and is passed from the extruder 3 through the extrusion die 2 into clay-like i! ! A pipe-shaped molded body (hereinafter simply referred to as a molded body J) is formed by extrusion molding a hardened ceramic material or a synthetic resin material in a molten state along the periphery of the wire l to form a coating layer around the wire l. ) 5 {same figure (B)}.

戊形体5の内径は線材lの外径よりも大きい寸法を有す
ることが好ましく、特に線材lが形状記憶合金線材を長
手方向に接合した複合体である場合には、接合部材6の
外径よりも大きい寸法を有することが好ましい。このよ
うに線材lの外周と成形体5の内周とに異なる寸法を持
たせることによって、成形体5が線材lに干渉すること
無く、円滑な押出戒形を実施し得るものである。
It is preferable that the inner diameter of the rod-shaped body 5 is larger than the outer diameter of the wire l, and especially when the wire l is a composite body in which shape memory alloy wires are joined in the longitudinal direction, the inner diameter of the rod l is larger than the outer diameter of the joining member 6. It is also preferred that the size is also large. By giving the outer periphery of the wire 1 and the inner periphery of the molded body 5 different dimensions in this manner, smooth extrusion can be carried out without the molded body 5 interfering with the wire 1.

押出型2からの押出成形が進行し、戒形体5の長さが線
材1の長さと略等しくなると、線材lの周囲は略全長に
わたって戒形体5によって被覆される{同図(C) l
 .このようにして略全長にわたって戒形体5により被
覆された線材lはチャック4から取り外されると共に、
端部の中子2bの端面に対する当接を解除される.前記
状態に於ける成形体5は、セラミックス材料の場合には
粘土状であり、また合成樹脂材料の場合には可塑性を有
している. 次に同図(D)に示すように所定の形状を持った工具7
を、線材lの周囲に形成された粘土状、或いは可塑性を
有する成形体5の外周面に対し矢印a方向から押圧する
と共に、線材1及び成形体5を矢印b方向に回転させる
ことによって、成形体5に同図CB>に示すような溝8
を形成すると同時に成形体5の表面を工具7によって成
形する.本実施例に於いて、工具7は成形体5の表面を
球状に成形し得るよう構威されている. 前記溝8の深さは成形体5を切断し得る深さで形成して
も良く、また第4図に示すように戒形体5の連続性を維
持し得る深さを持って形成しても良い. 戒形体5を溝8によって切断した場合には、後述する工
程で該成形体5を焼威或いは直ちに冷却することによっ
て線材1の周囲にビーズ状の被覆材9を形成することが
可能であり、また溝8を成形体5の連続性を維持して形
成した場合には、線材l及び戒形体5を次工程に移送す
る際に、該成形体5を一材として取り扱うことが可能で
ある.尚、本実施例では成形体5には連続性を維持しう
るような溝8が形成されている. 次に成形体5の材料がセラミソクスである場合には、線
材l及び成形体5をセラξツクス材料の組威に応じた温
度で焼成する.この焼成により、粘土状のセラミソクス
材料によって成形された戒形体5を硬化させる.即ち、
戒形体5を構威するセラミックス材料は昇温に伴って溶
融し、体積が減少する。このとき、戒形体5の外周に形
成した溝8に集中応力が作用する.次いで冷却すると、
成形体5が連続性を維持して形成されている場合、溝8
に対する集中応力によって戒形体5にはil18を基点
とした亀裂が生じ、戒形体5は複数のビーズ状の被覆材
9となる。
As the extrusion molding from the extrusion die 2 progresses and the length of the wire rod 5 becomes approximately equal to the length of the wire rod 1, the wire l is covered with the wire rod 5 over almost its entire length {Figure (C) l
.. In this way, the wire l covered with the preform body 5 over almost its entire length is removed from the chuck 4, and
The contact of the end portion with the end surface of the core 2b is released. The molded body 5 in the above state is clay-like in the case of a ceramic material, and has plasticity in the case of a synthetic resin material. Next, as shown in the same figure (D), a tool 7 with a predetermined shape
is pressed against the outer peripheral surface of the clay-like or plastic molded body 5 formed around the wire l from the direction of arrow a, and at the same time, the wire rod 1 and the molded body 5 are rotated in the direction of arrow b. A groove 8 as shown in the figure CB> is formed in the body 5.
At the same time as forming the molded body 5, the surface of the molded body 5 is molded by the tool 7. In this embodiment, the tool 7 is configured to form the surface of the compact 5 into a spherical shape. The groove 8 may be formed to a depth that allows the molded body 5 to be cut, or may be formed to a depth that maintains the continuity of the molded body 5 as shown in FIG. good. When the shaped body 5 is cut by the groove 8, it is possible to form a bead-shaped coating material 9 around the wire rod 1 by burning or immediately cooling the shaped body 5 in the process described later. Furthermore, when the grooves 8 are formed while maintaining the continuity of the molded body 5, the molded body 5 can be handled as one material when the wire l and the shaped body 5 are transferred to the next process. In this embodiment, grooves 8 are formed in the molded body 5 to maintain continuity. Next, when the material of the molded body 5 is ceramics, the wire l and the molded body 5 are fired at a temperature depending on the strength of the ceramic material. By this firing, the precept form 5 formed from the clay-like ceramic material is hardened. That is,
The ceramic material that makes up the shaped body 5 melts as the temperature rises, and its volume decreases. At this time, concentrated stress acts on the groove 8 formed on the outer periphery of the precept 5. Then, upon cooling,
When the molded body 5 is formed while maintaining continuity, the groove 8
Due to the concentrated stress, cracks are generated in the guard-shaped body 5 starting from il18, and the guard-shaped body 5 becomes a plurality of bead-shaped covering materials 9.

また戒形体5の材料が合成樹脂である場合には、成形体
5の外周に溝8を形成した後、直ちに腺材l及び戒形体
5を常温まで冷却して硬化させる.前記硬化過程に於い
て戒形体5は収縮し、該収縮によって発生する応力が溝
8に対する集中応力として作用し、成形体5には溝8を
基点とした亀裂が生じて成形体5は複数のビーズ状の被
覆材9となる. 上記の如くして線材lの周囲に形成したビーズ状の被覆
材9は線材lの略全長にわたって整列しているため、線
材lを発熱させた場合に熱が被覆材9の内部に籠もる虞
があり、また線材lを変形させた場合に被覆材9が互い
に干渉して該変形を阻害する虞がある.このため、必要
に応じて線材lに被覆した被覆材9を数個だけ取り外し
、被覆材9相互の間に適当な間隙を形成することが好ま
しい(同図(F) l . 前述の実施例に於いて、戒形体5の表面を球状に成形す
ることによって球状の被覆材9を形成したが、この形状
に限定されるものでは無く、被覆材9を細長比(外径と
長さの比)の小さい円筒状に形成しても良い. 次に上記方法により周囲にビーズ状の被覆を施した形状
記憶合金線材、或いはニクロム線ヒーターの使用状態に
ついて説明する. 第5図(A) . (B)は夫々異なる形状を記憶させ
た3本の形状記憶合金線材11−13を並列させると共
に可撓性を有するケーシングl4内に収納し、該ケーシ
ング14によって一体化したアクチュエー夕に関する模
式説明図である。
Further, when the material of the molded body 5 is a synthetic resin, after forming the groove 8 on the outer periphery of the molded body 5, the gland material l and the molded body 5 are immediately cooled to room temperature and hardened. During the hardening process, the molded body 5 contracts, and the stress generated by the contraction acts as concentrated stress on the grooves 8, causing cracks in the molded body 5 starting from the grooves 8, causing the molded body 5 to have a plurality of cracks. A bead-shaped covering material 9 is formed. The bead-shaped sheathing material 9 formed around the wire l as described above is aligned over almost the entire length of the wire l, so that when the wire l generates heat, the heat is trapped inside the sheathing material 9. Furthermore, when the wire l is deformed, the covering materials 9 may interfere with each other and inhibit the deformation. For this reason, it is preferable to remove only a few of the sheathing materials 9 from the wire l as necessary to form an appropriate gap between the sheathing materials 9 (as shown in FIG. 1F). In the above, the spherical covering material 9 was formed by shaping the surface of the precept 5 into a spherical shape, but the shape is not limited to this, and the covering material 9 has a slenderness ratio (ratio of outer diameter to length). It may be formed into a small cylindrical shape.Next, we will explain how the shape memory alloy wire or nichrome wire heater whose periphery is coated with a bead-like coating by the above method is used. ) is a schematic explanatory diagram of an actuator in which three shape memory alloy wire rods 11-13 each having a different shape memorized are arranged in parallel and housed in a flexible casing 14, and are integrated by the casing 14. .

図に示すように、各形状記憶合金線材11〜13は互い
にビーズ状の被覆材9を介して接触しており、従って、
形状記憶合金線材11−13の何れかに通電しても他の
形状記憶合金線材に漏電する虞がない。
As shown in the figure, the shape memory alloy wire rods 11 to 13 are in contact with each other via the bead-shaped covering material 9, and therefore,
Even if any of the shape memory alloy wires 11 to 13 is energized, there is no risk of electrical leakage to other shape memory alloy wires.

ilm電された形状記憶合金線材11〜13の何れかの
発熱は、被覆材9の相互間に形成した間隙から放敗され
、他の形状記憶合金線材に対し熱影響を及ばず虞がある
。このため、ケーシング14内に冷却空気等を流通させ
ることによって、他の形状記憶合金線材に対する熱影響
を防止すると共に、通電を遮断された形状記憶合金線材
を速やかに冷却し得るように横威している.また通電さ
れた形状記憶合金線材11〜l3の何れかの発熱は被覆
材9を介してケーシングl4、及び接触する他の被覆材
9に伝達されるが、被覆材9の形状を球状とした場合に
は接触部が点接触となるため、熱伝達が少ない。
The heat generated by any one of the shape memory alloy wires 11 to 13 subjected to the irradiation is dissipated through the gap formed between the covering materials 9, and there is a possibility that it will not have a thermal effect on the other shape memory alloy wires. For this reason, by circulating cooling air or the like within the casing 14, it is possible to prevent thermal effects on other shape memory alloy wires and to quickly cool the shape memory alloy wires that have been cut off from electricity. ing. Further, the heat generated by any of the energized shape memory alloy wires 11 to 13 is transmitted to the casing l4 and the other sheathing materials 9 in contact through the sheathing material 9, but when the sheathing material 9 has a spherical shape Because the contact area is point contact, there is little heat transfer.

通電された形状記憶合金線材11〜l3の何れかが記憶
形状を回復するに際し、被覆材9が相互に適当な間隔を
持って配列されていることから、該被覆材9は形状記憶
合金線材の形状回復動作に伴って相互の位置を変更する
ことが可能であり、従って、通電された形状記憶合金線
材の形状回復動作を阻害する虞がない。
When any of the energized shape memory alloy wires 11 to 13 recovers its memorized shape, the sheathing materials 9 are arranged at appropriate intervals, so that the sheathing materials 9 It is possible to change the mutual positions along with the shape recovery operation, and therefore there is no possibility that the shape recovery operation of the energized shape memory alloy wire will be inhibited.

第6図は周囲にビーズ状の被覆材9を形成したニクロム
線をヒーターに適用した場合の模式説明図である。
FIG. 6 is a schematic explanatory diagram when a nichrome wire with a bead-shaped coating material 9 formed around it is applied to a heater.

図に於いて、周囲をビーズ状の被覆材9によって被覆さ
れたニクロム線ヒーター15はコイル状に巻かれて金属
管16内に収納されている。図に示すように、ニクロム
純ヒーター15は互いに被覆材9を介して接触しており
、該ヒーターl5に通電してもショートする虞が無く、
また金属管l6にも被覆材9を介して接触するため、漏
電する虞もない。
In the figure, a nichrome wire heater 15 whose periphery is covered with a bead-like coating material 9 is wound into a coil and housed in a metal tube 16. As shown in the figure, the pure nichrome heaters 15 are in contact with each other via the covering material 9, and there is no risk of short circuiting even if the heaters 15 are energized.
Furthermore, since it also contacts the metal tube 16 via the covering material 9, there is no risk of electrical leakage.

この場合、従来のシーズヒーターの如く、金属管内に絶
縁粉末を充填する必要がないことから、従来のシーズヒ
ーターと同一発熱のヒーターを形成する際に、金属管1
6の寸法を小さくすることが可能となり、且つヒーター
l5の発熱が絶縁粉末の加熱に消費されることがないた
め、速やかに昇温させることか可能となる. 尚、形状記憶合金或いは発熱体等の線材lをビーズ状の
被覆材9によって被覆した場合には、この被覆によって
以下の効果を得ることが可能である。
In this case, unlike conventional sheathed heaters, there is no need to fill the metal tube with insulating powder, so when forming a heater that generates the same heat as a conventional sheathed heater, the metal tube 1
6 can be made smaller, and the heat generated by the heater 15 is not consumed in heating the insulating powder, making it possible to quickly raise the temperature. Incidentally, when the wire l such as a shape memory alloy or a heating element is covered with a bead-shaped covering material 9, the following effects can be obtained by this covering.

即ち、被覆材9が隣接する他の物体と当接しても漏電の
虞が無い. 被覆材9の他の物体に対する接触が点接触となるため、
熱の伝達面積を小さくすることが可能となる。
That is, even if the covering material 9 comes into contact with another adjacent object, there is no risk of electrical leakage. Since the contact of the covering material 9 with other objects is a point contact,
It becomes possible to reduce the heat transfer area.

線材を変形させた場合、被覆材9が相互に位置を変更す
ることが可能であり、従って線材の変形を阻害すること
が無い. 被覆材9によって被覆した複数の線材を並列させて一体
化した場合、これ等の線材の間に被覆材9の接触による
空間が生じることから、該空間に冷却空気を流通させる
ことが可能となり、従って特定の線材の発熱によって他
の線材が影響を受けることか無い. 被覆材9がビーズ状に形成されることから、断面が小さ
く且つ重量も小さいため急激な温度変化が発生してもヒ
ートショックが少ない。
When the wire is deformed, the sheathing material 9 can mutually change its position, so that the deformation of the wire is not inhibited. When a plurality of wire rods covered with the sheathing material 9 are arranged in parallel and integrated, a space is created between these wire rods due to the contact of the sheathing material 9, so it becomes possible to circulate cooling air in the space, Therefore, the heat generated by a particular wire does not affect other wires. Since the covering material 9 is formed into a bead shape, the cross section is small and the weight is small, so even if a sudden temperature change occurs, there is little heat shock.

く発明の効果〉 以上詳細に説明したように、本発明に係る線材の被覆方
法は、被覆すべき線材をセラミ,クス材料又は合成樹脂
材料の中空材の押出型の端面に当接させ、前記押出型か
ら粘土状のセラξソクス材料又は溶融状態の合成樹脂材
料を押出戒形することによって線材の周囲にパイプ状の
被覆層を形成し、次いで該被覆材の外周に所定の形状を
持った溝を形成した後、線材と該線材の周囲に形成した
溝を有する被覆層とを焼戊又は直ちに冷却することで線
材の周囲にビーズ状の被覆を形成するよう構戒したので
、人手を患わすこと無く連続した工程で線材の周囲にセ
ラξツクス又は合成樹脂からなるビーズ状の被覆を施す
ことが出来る。
Effects of the Invention> As explained in detail above, the method for coating a wire according to the present invention involves bringing the wire to be coated into contact with the end surface of an extrusion mold for a hollow material made of ceramic, wood or synthetic resin material, and A pipe-shaped coating layer is formed around the wire by extruding a clay-like ceramic material or a molten synthetic resin material from an extrusion mold, and then a pipe-shaped coating layer is formed around the outer circumference of the coating material. After forming the grooves, we created a bead-shaped coating around the wire by burning or immediately cooling the wire and the coating layer with the grooves formed around the wire, which required less manual labor. A bead-shaped coating made of ceramics or synthetic resin can be applied around the wire in a continuous process without any interruption.

このため、被覆のための作業コストを低減することが出
来、且つ品質の一定した被覆を施すことが出来る等の特
徴を有するものである。
Therefore, it has features such as being able to reduce the work cost for coating and being able to provide a coating of constant quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(F)は本発明に係る線材の被覆方法の
工程順説明図、第2図は異なる長さの形状記憶合金線材
を接合して構成した形状記憶合金の複合体の説明図、第
3図(A) . (B)は押出型の説明図、第4図は成
形体に形成した溝の説明図、第5図(^),(8)は形
状記憶合金の複合体の模式説明図、第6図はヒーターの
模式説明図である。 ■は線材、2は押出型、3は押出機、4はチャンク、5
は戊形体、7は工具、8は溝、9は被覆材、11−13
は形状記憶合金線材、l4はケーシング、l5はニクロ
ム線ヒーター、l6は金属管である。
Figures 1 (A) to (F) are step-by-step explanatory diagrams of the wire coating method according to the present invention, and Figure 2 shows a shape memory alloy composite formed by joining shape memory alloy wires of different lengths. Explanatory diagram, Figure 3 (A). (B) is an explanatory diagram of the extrusion mold, Fig. 4 is an explanatory diagram of the grooves formed in the compact, Figs. 5 (^) and (8) are schematic explanatory diagrams of the shape memory alloy composite, and Fig. 6 is FIG. 2 is a schematic explanatory diagram of a heater. ■ is wire rod, 2 is extrusion mold, 3 is extruder, 4 is chunk, 5
is a rod, 7 is a tool, 8 is a groove, 9 is a covering material, 11-13
is a shape memory alloy wire, l4 is a casing, l5 is a nichrome wire heater, and l6 is a metal tube.

Claims (3)

【特許請求の範囲】[Claims] (1)セラミックス材料の中空材の押出型の前端面に線
材の端部を当接させ、前記押出型からセラミックス材料
の中空材を押出成形することによって前記線材の周囲に
セラミックス材料による被覆層を形成し、次いで前記被
覆層の外周に所定の形状を持った溝を形成し、その後焼
成して線材の周囲にビーズ状のセラミックス被覆を形成
することを特徴とした線材の被覆方法。
(1) The end of the wire is brought into contact with the front end surface of an extrusion mold for a hollow ceramic material, and the hollow ceramic material is extruded from the extrusion mold to form a coating layer of the ceramic material around the wire. A method for coating a wire rod, comprising forming a groove with a predetermined shape on the outer periphery of the coating layer, and then firing it to form a bead-shaped ceramic coating around the wire rod.
(2)合成樹脂材料の中空材の押出型の前端面に線材の
端部を当接させ、前記押出型から合成樹脂材料の中空材
を押出成形することによって前記線材の周囲に合成樹脂
材料による被覆層を形成し、前記被覆層が可塑性を保持
している間に該被覆層の外周に所定の形状を持った溝を
形成し、その後常温まで冷却して線材の周囲にビーズ状
の合成樹脂被覆を形成することを特徴とした線材の被覆
方法。
(2) The end of the wire rod is brought into contact with the front end surface of an extrusion mold for a hollow material made of synthetic resin material, and the hollow material made of synthetic resin material is extruded from the extrusion mold, so that the synthetic resin material is formed around the wire material. A coating layer is formed, and while the coating layer retains its plasticity, a groove with a predetermined shape is formed on the outer periphery of the coating layer, and then it is cooled to room temperature and bead-shaped synthetic resin is formed around the wire. A method for coating a wire, characterized by forming a coating.
(3)請求項(1)又は(2)記載の線材の被覆方法に
於いて、線材の周囲に形成した被覆層の外周を所定の形
状に成形すると共に切断することを特徴とした線材の被
覆方法。
(3) In the method for coating a wire rod according to claim (1) or (2), the outer periphery of the coating layer formed around the wire rod is formed into a predetermined shape and cut. Method.
JP15064389A 1989-06-15 1989-06-15 Coating method of wire rod Pending JPH0355720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15064389A JPH0355720A (en) 1989-06-15 1989-06-15 Coating method of wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15064389A JPH0355720A (en) 1989-06-15 1989-06-15 Coating method of wire rod

Publications (1)

Publication Number Publication Date
JPH0355720A true JPH0355720A (en) 1991-03-11

Family

ID=15501335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15064389A Pending JPH0355720A (en) 1989-06-15 1989-06-15 Coating method of wire rod

Country Status (1)

Country Link
JP (1) JPH0355720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412077B1 (en) * 2001-08-14 2003-12-24 한국기계연구원 The thermal barrier coating solution for high temperature superconducting long wire and the synthesis method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412077B1 (en) * 2001-08-14 2003-12-24 한국기계연구원 The thermal barrier coating solution for high temperature superconducting long wire and the synthesis method of the same

Similar Documents

Publication Publication Date Title
US3960995A (en) Method for prestressing a body of ceramic material
JPS5964198A (en) Production of granular structure
JP2021170539A (en) Deformed cable and method for manufacturing the same
US20060243412A1 (en) Mold material processing device, method and apparatus for producing same
WO2005098317A1 (en) Ceramic heater and manufacturing method thereof, and glow plug using ceramic heater
EP3476566B1 (en) Extrusion assembly for an additive manufacturing system and method for manufacturing the same
BRPI0709051A2 (en) heating element, and method for forming the same
JPH0355720A (en) Coating method of wire rod
JPH0364811A (en) Hollow core wire mi cable and manufacture thereof
US4314392A (en) Method of making a spark plug electrode
US4975563A (en) Heating devices
JP4248628B2 (en) Method for enclosing the end of a small-diameter object
JPH0355721A (en) Coating method of wire rod
KR100814961B1 (en) Tube type ceramic heater and manufacturing method the same
US3055084A (en) Method of making covered electrical resistors
JPH03179621A (en) Coating of wire rod
JPH11264911A (en) Manufacture of optical fiber bundle
JP3735154B2 (en) Mold for cylindrical molded product and molding method thereof
GB2112317A (en) Making a reinforced refractory article
JPH0234309A (en) Manufacture of molded rubber piece for electric insulation
JP2686545B2 (en) Method of manufacturing bent hose with protector
JPH0527238B2 (en)
JPS6333283B2 (en)
GB2037190A (en) Manufacture of spark plug electrode
JPS62292631A (en) Molding method for lens