JPH0354317B2 - - Google Patents

Info

Publication number
JPH0354317B2
JPH0354317B2 JP58162747A JP16274783A JPH0354317B2 JP H0354317 B2 JPH0354317 B2 JP H0354317B2 JP 58162747 A JP58162747 A JP 58162747A JP 16274783 A JP16274783 A JP 16274783A JP H0354317 B2 JPH0354317 B2 JP H0354317B2
Authority
JP
Japan
Prior art keywords
reception strength
vehicle
section
receiving
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58162747A
Other languages
Japanese (ja)
Other versions
JPS6053869A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58162747A priority Critical patent/JPS6053869A/en
Publication of JPS6053869A publication Critical patent/JPS6053869A/en
Publication of JPH0354317B2 publication Critical patent/JPH0354317B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】 ≪産業上の利用分野≫ この発明は、光を用いて車間距離を検出するレ
ーダ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <<Industrial Application Field>> The present invention relates to a radar device that detects an inter-vehicle distance using light.

≪従来技術≫ 従来のレーダ装置としては、例えば実開昭57−
166300号に記載の「衝突防止装置」のようなもの
がある。これは自車の前方にレーザ等のパルス信
号を送信したときから、先行車によつて反射した
パルス信号を受信するまでの時間に基づいて車間
距離を演算し表示するとともに、自車速に応じた
安全車間距離を算出し安全車間距離が確保されて
いないときは警報を発するものである。
<<Prior art>> As a conventional radar device, for example,
There is something like the "collision prevention device" described in No. 166300. This calculates and displays the inter-vehicle distance based on the time from when a pulse signal such as a laser is sent to the front of the vehicle until it receives the pulse signal reflected by the vehicle in front. It calculates the safe following distance and issues a warning if the safe following distance is not maintained.

≪発明が解決しようとする問題点および発明の目
的≫ しかしながらこのような従来のレーダ装置にお
いては、パルス信号の送受信面に汚れが付着して
いる場合、先行車のリヤエンドが汚れている場合
やパルス信号の反射効率向上のため先行車に設け
られたリフレツクスリフレクタと呼ばれる反射板
が破損していたり、汚れている場合等にはパルス
信号受信強度の低下により最長測定可能距離が縮
まるため、確実な車間距離の測定が行なえないと
いう問題点があつた。本発明は、受信部における
受信強度が低下した場合に警報するようにして確
実に車間距離を測定できるレーダ装置を提供する
事を目的としている。
<<Problems to be Solved by the Invention and Objectives of the Invention>> However, in such conventional radar devices, if dirt adheres to the pulse signal transmitting/receiving surface, if the rear end of the preceding vehicle is dirty, or if the pulse signal is If a reflective plate called a reflex reflector installed on the preceding vehicle to improve signal reflection efficiency is damaged or dirty, the maximum measurable distance will be shortened due to a decrease in the pulse signal reception strength. There was a problem that the distance between vehicles could not be measured. SUMMARY OF THE INVENTION An object of the present invention is to provide a radar device that can reliably measure the inter-vehicle distance by issuing a warning when the reception strength at the receiving section decreases.

≪発明の構成≫ 以上の様な目的を達成するための構成を第1図
により説明する。すなわち先行車と自車との車間
距離を検出するレーダ手段1と、前記レーダ手段
1の受信強度を検出する受信強度検出部9と、該
受信強度を前記レーダ手段1で検出した車間距離
に応じて補正する受信強度補正部10と、受信強
度が所定値以下であるかどうかを判別し、受信強
度が所定値以下である場合、受信強度異常信号を
出力する受信強度判別手段11と、受信強度異常
信号によつて、受信強度の異常を知らせる警報手
段12とを設けるようにした。
<<Configuration of the Invention>> A configuration for achieving the above objects will be explained with reference to FIG. 1. That is, a radar means 1 detects the inter-vehicle distance between the preceding vehicle and the host vehicle, a reception strength detecting section 9 detects the reception strength of the radar means 1, and a reception strength detecting section 9 detects the reception strength of the radar means 1 according to the inter-vehicle distance detected by the radar means 1. a reception strength correction unit 10 that determines whether the reception strength is below a predetermined value, and outputs a reception strength abnormal signal when the reception strength is below the predetermined value; An alarm means 12 is provided for notifying an abnormality in reception strength by means of an abnormal signal.

≪実施例≫ 第2〜5図は、この発明の一実施例を示す図で
ある。本実施例は、レーダ手段として、レーザ光
を用いた例である。まず第2図により構成を説明
すると1はレーダ手段であつて、詳しくは後述す
るがパルス光の送光から受光までの時間経過をク
ロツクカウントする事により、先行車と自車との
距離信号をマイクロコンピユータ17に出力す
る。16はピークホールド回路で、前記レーダ手
段1の受光パルスの増幅電圧をピークホールド
し、A/D変換後、前記マイクロコンピユータ1
7に出力する。マイクロコンピユータ17は、詳
しくは後述するが車速センサ5、レーダ手段1、
ピークホールド回路16からの信号を基に、車速
制御手段7、車間距離表示手段15へ出力すると
ともに、18の受信強度表示手段、13の洗浄部
及び14の警報部に動作指令信号を出力する。
<<Example>> FIGS. 2 to 5 are diagrams showing an example of the present invention. This embodiment is an example in which a laser beam is used as the radar means. First, the configuration will be explained with reference to FIG. 2. Reference numeral 1 is a radar means, which will be described in detail later, but by clock counting the time elapsed from the transmission of pulsed light to the reception of the pulsed light, it is used to signal the distance between the preceding vehicle and the own vehicle. is output to the microcomputer 17. Reference numeral 16 denotes a peak hold circuit which peak-holds the amplified voltage of the light pulse received by the radar means 1, and after A/D conversion, outputs the amplified voltage to the microcomputer 1.
Output to 7. The microcomputer 17 includes a vehicle speed sensor 5, a radar means 1, which will be described in detail later.
Based on the signal from the peak hold circuit 16, it outputs to the vehicle speed control means 7 and inter-vehicle distance display means 15, and also outputs an operation command signal to the reception strength display means 18, the cleaning section 13, and the alarm section 14.

次に作用を説明する。 Next, the action will be explained.

はじめに、第3図と第4図をもとに、レーダ手
段1の動作を説明する。送信部3は、一定周期T
(Tは数msec程度)毎にトリガパルス(パルス幅
は数10μsec程度)をカウンタ26、単安定マルチ
バイブレータ24、RSフリツプフロツプ(以下
RSF/Fと略す)21に出力するとともに、パ
ルス光を車両前方に送信する。このトリガパルス
を第4図のAに示す。先行車等の物標から反射し
て戻つたパルス光は、受信部2の光電変換素子で
電気信号に変換され、増幅器19で増幅される。
増幅された電圧は、前記パルス光が先行車等の物
標から反射されたパルス光か、それとも雑音光か
を判別するために閾値Ppのコンパレータ20で比
較され、Ppを越える受信強度が得られた場合は、
先行車からの反射パルスであるとみなし、第4図
Bの様にエコーパルスが発生する。RSF/F2
1は、前記トリガパルスをセツト入力、前記エコ
ーパルスをリセツト入力とするため、RSF/F
21の出力波形は、第4図Cの様になり、
RSF/F21の出力がHighレベルとなる時間t
(sec)をカウントしそれによつて、先行車と自車
との距離l(m)を次式を用いて求める。
First, the operation of the radar means 1 will be explained based on FIGS. 3 and 4. The transmitter 3 transmits a constant period T
(T is about several milliseconds), the trigger pulse (pulse width is about several tens of microseconds) is sent to the counter 26, monostable multivibrator 24, RS flip-flop (hereinafter referred to as
(abbreviated as RSF/F) 21 and transmits pulsed light to the front of the vehicle. This trigger pulse is shown at A in FIG. The pulsed light reflected and returned from a target object such as a preceding vehicle is converted into an electrical signal by a photoelectric conversion element of the receiving section 2 and amplified by an amplifier 19.
The amplified voltages are compared by a comparator 20 with a threshold value P p to determine whether the pulsed light is reflected from a target object such as a preceding vehicle or noise light, and if the received intensity exceeds P p If obtained,
It is assumed that this is a reflected pulse from the preceding vehicle, and an echo pulse is generated as shown in FIG. 4B. RSF/F2
1 uses the trigger pulse as a set input and the echo pulse as a reset input, so the RSF/F
The output waveform of 21 is as shown in Figure 4C,
Time t when the output of RSF/F21 becomes High level
(sec) and then calculate the distance l (m) between the preceding vehicle and the host vehicle using the following formula.

l=Ct/2 …(1) (ただし、Cは光速C=3×103m/sec) 前記時間tの時間カウントは、RSF/F21
の出力と、クロツク22の出力をANDゲート2
3に通し、そのANDゲート23の出力(第4図
Fに示す)をカウンタ26に入力し、カウント内
容をラツチ27で読み出すことにより得られる。
なお、カウンタ26のもう1つの入力端子は、ク
リア信号入力端子で、前記送信部3の出力端子に
接続され、トリガパルス発生毎にカウンタ26の
内容がクリアされる。一方、単安定マルチバイブ
レータ24は、送信部3からのトリガパルスを入
力し、パルス幅τのパルスを発生する(第4図D
に示す)。τの値は次の様に与えている。
l=Ct/2...(1) (However, C is the speed of light C=3×10 3 m/sec) The time count of the above time t is RSF/F21
and the output of clock 22 are connected to AND gate 2.
3, the output of the AND gate 23 (shown in FIG. 4F) is input to the counter 26, and the count contents are read out by the latch 27.
The other input terminal of the counter 26 is a clear signal input terminal, which is connected to the output terminal of the transmitter 3, and the contents of the counter 26 are cleared every time a trigger pulse is generated. On the other hand, the monostable multivibrator 24 receives the trigger pulse from the transmitter 3 and generates a pulse with a pulse width τ (Fig. 4D
). The value of τ is given as follows.

tnax<τ<T …(2) ただし、tnaxは、最長測定可能距離を光が往復
するのに十分な時間。
t nax <τ<T...(2) However, t nax is the time sufficient for light to travel back and forth over the longest measurable distance.

これは、単安定マルチバイブレータ24の出力
と、RSF/F21の出力をNORゲート25に入
力し、第4図Eに示す様にエコーパルスが発生し
た場合のみNORゲート25の出力にパルス幅T
−τのデータ読込み指令パルスを発生し、これを
ラツチ27のデータ読込み指令端子に入力する事
によつて、エコーパルスが発生した場合だけのカ
ウンタ26の内容をラツチ27に転送させるため
である。
This is done by inputting the output of the monostable multivibrator 24 and the output of the RSF/F 21 to the NOR gate 25, and applying the pulse width T to the output of the NOR gate 25 only when an echo pulse is generated as shown in Fig. 4E.
By generating a data read command pulse of -τ and inputting it to the data read command terminal of the latch 27, the contents of the counter 26 only when an echo pulse is generated are transferred to the latch 27.

16はピークホールド回路であり、増幅器19
の増幅電圧をダイオード28、コンデンサ29、
抵抗30でピークホールドし、A/D変換器31
でA/D変換されて受信強度Plを出力する。
16 is a peak hold circuit, and an amplifier 19
The amplified voltage of diode 28, capacitor 29,
Peak hold with resistor 30, A/D converter 31
It is A/D converted and outputs the reception strength P l .

次に、マイクロコンピユータ17は第5図のよ
うな動作をする。ステツプ50で車速センサ5か
ら自車速を入力し、ステツプ51でラツチ27か
ら、先行車と自車との距離lを入力する。さらに
ステツプ52でピークホールド回路16からのエ
ーパルス受信強度をPlとして入力する。
Next, the microcomputer 17 operates as shown in FIG. At step 50, the vehicle speed is inputted from the vehicle speed sensor 5, and at step 51, the distance l between the preceding vehicle and the own vehicle is inputted from the latch 27. Furthermore, in step 52, the A-pulse reception strength from the peak hold circuit 16 is input as Pl .

次に、ステツプ53,54で先行車と安全車間
距離を保つて追従走行する等制御の詳細は例えば
特開昭55−86000に記載されている)の車両走行
制御を行う。
Next, in steps 53 and 54, vehicle running control is performed, such as following the vehicle while maintaining a safe distance from the preceding vehicle.

ステツプ55では受信強度補正を行なうが、こ
の受信強度補正について以下説明する。ステツプ
52で入力した受信強度Plは、次式で表わされ
る。
In step 55, reception strength correction is performed, and this reception strength correction will be explained below. The reception strength P l input in step 52 is expressed by the following equation.

Pl=α・β・S/Snio(lnax/l)4Pp …(3) ただし、 α:リフレツクスリフレクタの破損・汚れ等によ
る受信強度Plの減衰率(0α1) β:レーダ手段6の送受信面の汚れによる受信強
度Plの減衰率(0β) Snio:運輸省規定のリフレツクスリフレクタ最小
面積 S:リフレツクスリフレクタの面積(SSnio) lnax:レーダ手段の最長測定可能距離 l:先車と自車との距離 Pp:検出可能最小受信強度 今、簡単のため、全ての先行車について、S=
Snioであると近似し、(3)式の両辺にl4を掛けると、 l4Pl=αβlnax 4Pp …(4) ここで、lnax、Ppは定数であるから、 l4Pl=Cαβ …(5) ただし、C:定数、α:0α1、β:0
β1 となる。すなわち、l4Plの値を求める事により、
先行車と自車との距離lによらず、リフレツクス
リフレクタの破損や汚れによる減衰や、レーダ手
段1の送受信面の汚れによる減衰等の光伝播路の
異常による受信強度の変化を求める事ができる。
ステツプ56によつて受信強度表示手段18に出
力する。
P l = α・β・S/S nio (l nax /l) 4 P p …(3) However, α: Attenuation rate of received strength P l due to damage or dirt on the reflex reflector (0α1) β: Radar Attenuation rate of reception intensity P l due to dirt on the transmitting and receiving surface of means 6 (0β) S nio : Minimum area of reflex reflector stipulated by the Ministry of Transport S : Area of reflex reflector (SS nio ) l nax : Maximum measurable range of radar means Distance l: Distance between the preceding vehicle and own vehicle P p : Minimum detectable reception strength Now, for the sake of simplicity, for all preceding vehicles, S=
By approximating that S nio and multiplying both sides of equation (3) by l 4 , l 4 P l = αβl nax 4 P p …(4) Here, l nax and P p are constants, so l 4 P l = Cαβ …(5) where, C: constant, α: 0α1, β: 0
Becomes β1. In other words, by finding the value of l 4 P l ,
Regardless of the distance l between the preceding vehicle and the host vehicle, it is possible to determine changes in reception intensity due to abnormalities in the optical propagation path, such as attenuation due to damage or dirt on the reflex reflector, or attenuation due to dirt on the transmitting/receiving surface of the radar means 1. can.
In step 56, the signal is outputted to the reception strength display means 18.

次にステツプ57でl4Plの値を所定値Cp(ただ
し、Cpは、前記定数Cよりも小さい値に設定され
る)と比較することにより、光伝播路の異常を判
別する事ができる。
Next, in step 57, the value of l 4 P l is compared with a predetermined value C p (however, C p is set to a value smaller than the constant C) to determine an abnormality in the optical propagation path. I can do it.

ステツプ57で受信強度が所定値より低くなつ
たときは、光伝播路の異常であるとみなし、前記
レーダ手段1内の送信部3及び受信部2の送受信
面を洗浄する洗浄部13が動作したかどうかをス
テツプ58で判別し、動作していなければステツ
プ59により、洗浄部13を動作させる。次に、
該洗浄部13の動作によつても、受信強度が所定
値以上に回復しない場合は、先行車のリフレツク
スリフレクタの破損又は汚れによつて、先行車を
確実に検出できず適確な追従走行する事ができな
いので、ステツプ60で警報部14を動作させ、
警報を発するのである。
When the receiving intensity becomes lower than a predetermined value in step 57, it is assumed that there is an abnormality in the optical propagation path, and the cleaning section 13 for cleaning the transmitting and receiving surfaces of the transmitting section 3 and receiving section 2 in the radar means 1 is operated. It is determined in step 58 whether the washing section 13 is in operation or not, and if it is not operating, the cleaning section 13 is operated in step 59. next,
If the reception strength does not recover to a predetermined value or higher even after the operation of the cleaning unit 13, the preceding vehicle cannot be reliably detected due to damage or dirt on the reflex reflector of the preceding vehicle, and proper following may not be possible. Since it is not possible to do so, the alarm unit 14 is activated in step 60.
It gives a warning.

なお、車速制御手段を有する装置で説明した
が、単に車間距離を表示するものか、車速に応じ
た車間距離以下になると警報を発するレーダ装置
に適用することもできる。
Although the present invention has been described as a device having a vehicle speed control means, it can also be applied to a radar device that simply displays the inter-vehicle distance or issues an alarm when the inter-vehicle distance becomes less than the distance corresponding to the vehicle speed.

≪発明の効果≫ 以上説明してきたように、この発明によれば、
その構成をレーダ手段の受信部における受信強度
を検出する受信強度検出部と、該受信強度検出部
からの受信強度を車間距離信号に応じて補正する
受信強度補正部と、該受信強度補正部で補正され
た受信強度と所定値とを比較する受信強度判別手
段と、該受信強度判別手段によつて、受信強度が
所定値以下である場合、それを知らせる警報手段
とを設けたため、自車と先行車との距離測定にお
いて、受信強度が低下し、最長測定可能距離が縮
まることによる誤まつた車間距離の測定をするこ
とがなくなる。
<<Effect of the invention>> As explained above, according to this invention,
The configuration includes a reception strength detection section that detects the reception strength in the reception section of the radar means, a reception strength correction section that corrects the reception strength from the reception strength detection section according to the inter-vehicle distance signal, and the reception strength correction section. A reception strength determination means for comparing the corrected reception strength with a predetermined value, and an alarm means for notifying the reception strength when the reception strength is less than the predetermined value by the reception strength determination means are provided. When measuring the distance to the preceding vehicle, it is no longer possible to erroneously measure the inter-vehicle distance due to a decrease in reception strength and a shortening of the longest measurable distance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるレーダ装置のブロツク
図、第2図は本発明によるレーダ装置の一実施例
を説明するブロツク図、第3図はレーダ手段1及
びピークホールド回路16の回路構成図、第4図
は第3図の各点におけるタイムチヤートを示す
図、第5図はマイクロコンピユータ17の信号処
理流れ図である。 1……レーダ手段、8……受信強度検出手段、
9……受信強度検出部、10……受信強度補正
部、11……受信強度判別手段、12……警報手
段、13……洗浄部、14……警報部、16……
ピークホールド回路、17……マイクロコンピユ
ータ、18……受光強度表示手段。
FIG. 1 is a block diagram of a radar device according to the present invention, FIG. 2 is a block diagram illustrating an embodiment of the radar device according to the present invention, FIG. 3 is a circuit configuration diagram of the radar means 1 and the peak hold circuit 16, and FIG. 4 is a diagram showing a time chart at each point in FIG. 3, and FIG. 5 is a signal processing flowchart of the microcomputer 17. 1... Radar means, 8... Reception strength detection means,
9...Reception strength detection unit, 10...Reception strength correction unit, 11...Reception strength determination means, 12...Alarm means, 13...Cleaning unit, 14...Alarm unit, 16...
Peak hold circuit, 17...microcomputer, 18...received light intensity display means.

Claims (1)

【特許請求の範囲】 1 送信部から光信号を送信したときから、車両
で反射した光信号を受信部で受信するまでの時間
に基づいて車間距離を求めるレーダ装置におい
て、 前記受信部の受信強度を検出する受信強度検出
部と、該受信強度を前記距離に応じて補正する受
信強度補正部と、該補正された受信強度が所定値
以下であれば受信強度異常信号を出力する受信強
度判別手段と、該受信強度異常信号により異常を
知らせる警報手段とを備えたことを特徴とするレ
ーダ装置。 2 前記警報手段は、前記受信強度異常信号によ
つて前記送信部及び受信部の露出面である送受信
面の洗浄を行う洗浄部と、送受信面洗浄後も前記
受信強度異常信号が出力されている場合警報する
警報部とを有することを特徴とする特許請求の範
囲第1項記載のレーダ装置。
[Scope of Claims] 1. In a radar device that calculates an inter-vehicle distance based on the time from when an optical signal is transmitted from a transmitting section to when an optical signal reflected by a vehicle is received at a receiving section, the reception intensity of the receiving section is provided. a reception strength detection unit that detects the reception strength; a reception strength correction unit that corrects the reception strength according to the distance; and a reception strength determination unit that outputs a reception strength abnormality signal if the corrected reception strength is equal to or less than a predetermined value. A radar device comprising: and an alarm means for notifying an abnormality using the reception strength abnormal signal. 2. The alarm means includes a cleaning section that cleans the transmitting and receiving surfaces, which are exposed surfaces of the transmitting section and the receiving section, using the receiving strength abnormal signal, and the receiving strength abnormal signal is output even after the transmitting and receiving surfaces are cleaned. 2. The radar device according to claim 1, further comprising an alarm unit that issues an alarm when the alarm occurs.
JP58162747A 1983-09-05 1983-09-05 Radar equipment Granted JPS6053869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58162747A JPS6053869A (en) 1983-09-05 1983-09-05 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58162747A JPS6053869A (en) 1983-09-05 1983-09-05 Radar equipment

Publications (2)

Publication Number Publication Date
JPS6053869A JPS6053869A (en) 1985-03-27
JPH0354317B2 true JPH0354317B2 (en) 1991-08-19

Family

ID=15760490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58162747A Granted JPS6053869A (en) 1983-09-05 1983-09-05 Radar equipment

Country Status (1)

Country Link
JP (1) JPS6053869A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109030A (en) * 1997-10-01 1999-04-23 Fujitsu Ten Ltd Onboard radar equipment
DE19945268A1 (en) * 1999-09-21 2001-03-22 Bosch Gmbh Robert Method and device for status detection in a system for automatic longitudinal and / or transverse control in a motor vehicle
JP2005233782A (en) * 2004-02-19 2005-09-02 Kurita Water Ind Ltd Method and apparatus for detecting dirt of ultrasonic sensor
JP2006250793A (en) * 2005-03-11 2006-09-21 Fujitsu Ten Ltd Radar apparatus
JP5710108B2 (en) * 2009-07-03 2015-04-30 日本信号株式会社 Optical distance measuring device
JP6739074B2 (en) * 2017-03-24 2020-08-12 パナソニックIpマネジメント株式会社 Distance measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166578A (en) * 1981-04-08 1982-10-14 Toshiba Corp Photoelectric converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166578A (en) * 1981-04-08 1982-10-14 Toshiba Corp Photoelectric converter

Also Published As

Publication number Publication date
JPS6053869A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
US4699507A (en) Apparatus and method for measuring the distance to an object
EP0479169A2 (en) Distance measuring equipment for car
JP3224286B2 (en) Temperature measurement device using ultrasonic waves
JP3244438B2 (en) Object information detection device
JP3185547B2 (en) Distance measuring device
JP3669524B2 (en) Vehicle distance measuring device and distance measuring method
US4657382A (en) Laser measurement system
JPH10227857A (en) Optical range finder
JP2003114277A (en) Vehicle-to-vehicle distance measuring device
JP2941593B2 (en) Distance measuring device
US5623334A (en) Optical distance measurement apparatus and method using cleaning device
KR100294351B1 (en) Ultrasonic Detector for Automatic Windshields Cleaning System
JPH06242240A (en) Distance measuring apparatus
JPH0354317B2 (en)
JP3146838B2 (en) Distance sensor head
EP0773453A1 (en) An optical remote detection, anticollision system for vehicles
JP3249592B2 (en) Distance detection method
JPH0330116B2 (en)
JPH0743469A (en) Communication system between cars
JPH04250388A (en) Ultrasonic object detector
JP3250203B2 (en) Distance measuring device
JPH08184666A (en) Radar distance measuring equipment
JP2876387B2 (en) Seating detection device
JP3206256B2 (en) Objective distance measuring device
GB2329779A (en) Distance measuring device