JPH0353462A - Manufacture of normal temperature molten salt - Google Patents

Manufacture of normal temperature molten salt

Info

Publication number
JPH0353462A
JPH0353462A JP1187418A JP18741889A JPH0353462A JP H0353462 A JPH0353462 A JP H0353462A JP 1187418 A JP1187418 A JP 1187418A JP 18741889 A JP18741889 A JP 18741889A JP H0353462 A JPH0353462 A JP H0353462A
Authority
JP
Japan
Prior art keywords
molten salt
temperature molten
normal temperature
reaction
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1187418A
Other languages
Japanese (ja)
Inventor
Shoichiro Mori
森 彰一郎
Kazuhiko Ida
和彦 井田
Hitoshi Suzuki
仁 鈴木
Setsuko Takahashi
節子 高橋
Isao Saeki
功 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd, Nisshin Steel Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP1187418A priority Critical patent/JPH0353462A/en
Publication of JPH0353462A publication Critical patent/JPH0353462A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To easily control heat of reaction and to prepare a molten salt having stable characteristics as an electrolyte by conducting complexing reaction with a normal temperature molten salt as a solvent. CONSTITUTION:A quaternary salt of nitrogen heterocyclic compound and aluminium halide are dissolved in a normal temperature molten salt previously prepared and complexing reaction is advanced to prepare a normal temperature molten salt. By using the normal temperature molten salt having the same composition as the objective normal temperature molten salt as the solvent, heat is easily removed, and a solvent removing process becomes unnecessary. The normal temperature molten salt obtained can be used as the solvent in the next production.. The normal temperature molten salt having stable characteristics is efficiently, continuously produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、2次電池などの電解液として用いられる常温
溶融塩の製造方法に関する.常温溶融塩は溶媒を特に使
用しなくとも常温で液状であり、かなり高い電導度を示
すことが知られており、特にN.N′−ジアルキルイミ
グゾリウムハライドとハロゲン化アルミニウムからなる
常温溶融塩は、従来の有機系及び無機系電解液と大巾に
異なる新しい電解液として大いに期待されている。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing room temperature molten salt used as an electrolyte for secondary batteries and the like. It is known that room temperature molten salts are liquid at room temperature without the use of a solvent and exhibit considerably high conductivity. Room-temperature molten salts consisting of N'-dialkyl imigzolium halides and aluminum halides are highly anticipated as new electrolytes that are vastly different from conventional organic and inorganic electrolytes.

{列えば、ギフ才一ドらは、1.2.3−トリアルキル
イミタゾリウムハライドとハロゲン化アルミニウムとか
ら生成する常温溶融塩を電解液とした2次電池を提案し
ている(特開昭60−1 33669及び1 3367
0号公報)。さらに、古川らはl−メチル−3−エチル
イミダゾリウムクロリドと塩化アルミニウムとから生成
する常温溶融塩を電解液とした2次電池を提案している
(特開昭62−165879号公報).また,小林らは
、1.3−ジアルキノしイミダゾリウムハライドと周期
律表第III a族の金属ハロゲン化物から生成する常
温溶融塩を電解液とした2次電池を提案している(特開
昭60−136180号公報)。
{For example, Giff et al. have proposed a secondary battery using a room-temperature molten salt produced from 1,2,3-trialkylimitazolium halide and aluminum halide as an electrolyte (Unexamined Japanese Patent Publication No. 1986-1 33669 and 1 3367
Publication No. 0). Furthermore, Furukawa et al. have proposed a secondary battery using a room-temperature molten salt produced from l-methyl-3-ethylimidazolium chloride and aluminum chloride as an electrolyte (Japanese Unexamined Patent Publication No. 165879/1982). In addition, Kobayashi et al. have proposed a secondary battery using a room-temperature molten salt produced from 1,3-dialkino imidazolium halide and a metal halide of group IIIa of the periodic table as an electrolyte (Japanese Patent Application Laid-Open No. 60-136180).

(従来の技術) 一般に含窒素複素環化合物の四級塩とハロゲン化アルミ
ニウムとから常温溶融塩を生成する反応は、塩化アルミ
ニウムとN.N’ −ジアルキルイミダゾリウムクロリ
ドを例とした場合、次式に示すようなイオン解離をする
ことが知られている.なお、塩化アルミニウムとN.N
′−ジアルキルイミダゾリウムクロリドとの配合モル比
により生成するイオン種が異なることら知られており、
配合モル比が1対lでは(1)式、配合モル比が2対1
では(2)式のイオン解離が起る。
(Prior Art) Generally, a reaction for producing a room temperature molten salt from a quaternary salt of a nitrogen-containing heterocyclic compound and an aluminum halide is a reaction in which aluminum chloride and N. Taking N'-dialkylimidazolium chloride as an example, it is known that it undergoes ionic dissociation as shown in the following formula. Note that aluminum chloride and N. N
It is known that the ionic species produced differs depending on the molar ratio of ′-dialkylimidazolium chloride.
When the blending molar ratio is 1:1, formula (1) is obtained, and the blending molar ratio is 2:1.
Then, the ionic dissociation of equation (2) occurs.

(式中、R1及びR2は低級アルキル基を表す) 上記の例では、ハロゲンが塩素のものであるが、ハロゲ
ンが臭素又はヨウ素のものでも同様の反応が進行すると
考えられる。
(In the formula, R1 and R2 represent a lower alkyl group) In the above example, the halogen is chlorine, but it is thought that the same reaction will proceed even if the halogen is bromine or iodine.

以後、含窒素複素環化合物の四級塩とハロゲン化アルミ
ニウムから(1)又は(2)式に従い常温溶融塩を生成
させる工程を措化工程と略称する。
Hereinafter, the process of producing a room-temperature molten salt from the quaternary salt of a nitrogen-containing heterocyclic compound and aluminum halide according to formula (1) or (2) will be abbreviated as the oxidation process.

従来、錯化工程は、固体であるハロゲン化アルミニウム
と含窒素複素環化合物の四級塩を、N2雰囲気グローブ
ボックス内で徐々に混合しながら、常温溶融塩を製造す
る固体混合法が一般的である(例えば、電気化学、1l
、(3).257参照)。
Conventionally, the complexation process has generally been a solid mixing method in which a solid aluminum halide and a quaternary salt of a nitrogen-containing heterocyclic compound are gradually mixed in a N2 atmosphere glove box to produce a molten salt at room temperature. Yes (e.g. electrochemistry, 1l
,(3). 257).

(発明が解決しようとする課題) 含窒素複素環化合物の四級塩とハロゲン化アルミニウム
とから工業的規模で常温溶融塩を製造する際にいくつか
の問題を有している。
(Problems to be Solved by the Invention) There are several problems when producing a room temperature molten salt on an industrial scale from a quaternary salt of a nitrogen-containing heterocyclic compound and an aluminum halide.

第1点として、錯化反応は極めて大きな発熱反応であり
、固体混合法では熱制御が極めて困難であることが指摘
される.例えば、高橋らは熱除去のため{こドライアイ
スーメタノーノレ冫谷で冷却する方法を記載している(
N気化学、54、(3)、257)が、工業的な方法と
はなり得ない。固体混合法では熱の伝達ち悪く極部的な
発熱、さらには爆発的な温度上昇によって原料及び(又
は)生成物が熱的に変質して溶融塩の特性を著しく劣化
させることが考えられる。事実、反応量を多くすると特
性のバラツキも大きくなることが観測された。
First, it is pointed out that the complexation reaction is an extremely exothermic reaction, and it is extremely difficult to control the heat using the solid-state mixing method. For example, Takahashi et al. have described a method of cooling with dry ice and methanol to remove heat.
N Gas Chemistry, 54, (3), 257) cannot be an industrial method. In the solid mixing method, heat transfer is poor, localized heat generation, and even explosive temperature rises may cause thermal alteration of the raw materials and/or products, resulting in significant deterioration of the properties of the molten salt. In fact, it was observed that as the amount of reaction increased, the variation in properties also increased.

第2点として、錯化工程における発熱量を制御するため
に、一方の原料を少量ずつ添加する方法も考えられるが
、水分によって溶融塩の特性が著しく劣化するので、原
料及び生成物は水分の非存在下に行う必要があり、ドラ
イ雰囲気で少量の固体を取扱うことは、効率的な製造を
著しく妨げることとなる。
Second, in order to control the amount of heat generated in the complexation process, it is possible to add one of the raw materials little by little, but since the properties of the molten salt will be significantly deteriorated by moisture, the raw materials and products will be Handling small amounts of solids in a dry atmosphere, which must be carried out in the absence of a chemical agent, seriously impedes efficient production.

また、第3点として、錯化工程での固体混合法では、充
分な撹拌操作を行えず反応時間も長時間になる点が掲げ
られる。
The third point is that the solid mixing method in the complexing step does not allow sufficient stirring and requires a long reaction time.

(課題を解決するための手段) 本発明者らは固体混合法による従来の錯化工程の問題点
を解決すべく鋭意検討を重ね、含窒素復素璋化合物の四
級塩とハロゲン化アルミニウムから常温溶融塩を工業的
に効率よく製造する方法を見い出し、本発明に到達した
(Means for Solving the Problem) The present inventors have made extensive studies to solve the problems of the conventional complexation process using a solid mixing method, and have developed The present invention was achieved by discovering a method for industrially and efficiently producing room temperature molten salt.

すなわち、本発明は、先に製造した常温溶融塩中に含窒
素複素環化合物の四級塩とハロゲン化アルミニウムを溶
解させ錯化反応を十分進行させることにより、常濡溶融
塩を製造するものである。
That is, the present invention produces a room-wet molten salt by dissolving a quaternary salt of a nitrogen-containing heterocyclic compound and aluminum halide in the previously produced room-temperature molten salt and allowing the complexation reaction to proceed sufficiently. be.

この方法は、従来法の問題点であった熱除去を、製品と
同組成の常温溶融塩を溶媒として用いることによって容
易にし、かつ溶媒の除去等の工程が不要であるという特
徴を有する。また、得られた常温溶融塩は次回の製造時
に溶媒として用いることができ、効率的かつ安定した特
性を有する常温溶融塩の連続製造が可能となる。
This method is characterized in that heat removal, which was a problem with conventional methods, is facilitated by using a room-temperature molten salt having the same composition as the product as a solvent, and that steps such as solvent removal are not required. Further, the obtained room temperature molten salt can be used as a solvent during the next production, making it possible to continuously produce a room temperature molten salt having efficient and stable characteristics.

本発明において用いられる原料のハロゲン化アルミニウ
ムとして、三塩化アルミニウム、三臭化アルミニウム及
び三ヨウ化アルミニウムが挙げられる.又ちう一方の原
料である含窒素複素環化合物の四級塩の例を挙げると、 次式で示されるN.N′−ジアルキル又は1.2.3−
トリアルキルイミダゾリウムハロゲン化物 (式中、R1及びR2はそれぞれ炭素数l〜6のアルキ
ル基を表し、R3は水素原子又は炭素数l〜6のアルキ
ル基を表し、X−はハロゲンイオンを表す) 次式で示される1.3−ジアルキルベンズイミダゾリウ
ムハロゲン化物 (式中、R’及びR2はそれぞれ炭素数1〜6のアルキ
ル基を表し、X一はハロゲンイオンを表す)次式で示さ
れるN−アルキルビリジニウムハロゲン化物 (式中、Rlは炭素数1〜】2のアルキル基を表し、X
−はハロゲンイオンを表す)等である。
Examples of aluminum halides used as raw materials in the present invention include aluminum trichloride, aluminum tribromide, and aluminum triiodide. An example of a quaternary salt of a nitrogen-containing heterocyclic compound, which is one of the raw materials, is as follows: N'-dialkyl or 1.2.3-
Trialkylimidazolium halide (wherein R1 and R2 each represent an alkyl group having 1 to 6 carbon atoms, R3 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and X- represents a halogen ion) 1,3-dialkylbenzimidazolium halide represented by the following formula (in the formula, R' and R2 each represent an alkyl group having 1 to 6 carbon atoms, and X represents a halogen ion) N represented by the following formula -Alkylviridinium halide (wherein Rl represents an alkyl group having 1 to 2 carbon atoms,
- represents a halogen ion).

N.N′−ジアルキルイミダゾリウムハロゲン化物の具
体的な例として、1.3−ジメチルイミダゾリウムブロ
マイド、1−メチル−3−エチルイミダゾリウムクロラ
イド、1−メチル−3−エチルイミダゾリウムアイ才ダ
イド、l−メチルー3−n−プチルイミダゾリウムクロ
ライド、また1.2.3−トリアルキルイミダゾリウム
ハロゲン化物の具体例として、1.2.3−1−リメチ
ルイミダゾリウムブロマイド、l,2.3−トリメチル
イミタゾリウムアイ才グイド、1.2−ジメチル−3−
エチルイミダゾリウムブロマイド、1.2−ジメチル−
3−エチルイミダゾリウムクロライド、1.2−ジメチ
ル−3−プチルイミダゾリウムフル才ライドなどを挙げ
ることができる。
N. Specific examples of N'-dialkylimidazolium halides include 1,3-dimethylimidazolium bromide, 1-methyl-3-ethylimidazolium chloride, 1-methyl-3-ethylimidazolium chloride, l- Specific examples of methyl-3-n-butylimidazolium chloride and 1.2.3-trialkylimidazolium halides include 1.2.3-1-limethylimidazolium bromide and l,2.3-trimethylimidazolium chloride. Tazolium ai, 1,2-dimethyl-3-
Ethylimidazolium bromide, 1,2-dimethyl-
Examples include 3-ethylimidazolium chloride and 1,2-dimethyl-3-butylimidazolium chloride.

1,3−ジアルキルベンズイミダゾリウムハ口ゲン化物
の具体的な例として、1.3−ジメチルベンズイミダゾ
リウムブロマイド、1,3−ジメチルベンズイミグゾリ
ウムアイオダイド、1−メチル−3−エチルベンズイミ
ダゾリウムブロマイド、1−メヂル−3−エチルベンズ
イミダゾリウムクロライド、1−メチル−3−プチルベ
ンズイミダゾリウムフル才ライド、l一エチル−3−プ
ロビルベンズイミダゾリウムブロマイドなどを挙げるこ
とができる。
Specific examples of 1,3-dialkylbenzimidazolium halide compounds include 1,3-dimethylbenzimidazolium bromide, 1,3-dimethylbenzimigzolium iodide, and 1-methyl-3-ethylbenz. Examples include imidazolium bromide, 1-methyl-3-ethylbenzimidazolium chloride, 1-methyl-3-butylbenzimidazolium chloride, and 1-ethyl-3-propylbenzimidazolium bromide.

N−アルキルビリジニウムハロゲン化物の具体的な例と
して、N一エチルビリジニウムクロライド、N一エチル
ビリジニウムブロマイド、N一n−プチルビリジニウム
クロライド、N−i−プチルビリジニウムブロマイド、
N−n−プロビルビリジニウムアイオグイド、l一エチ
ル−2−メチルビリジニウムクロライド、1−n−へキ
シル−2−メチルビリジニウムクロライド、1−n−ブ
チルー4−メチルビリジニウムクロライド、1−n−ブ
チルー2.4−ジメチルビリジニウムクロライドなどを
挙げることができる。
Specific examples of N-alkylpyridinium halides include N-ethylpyridinium chloride, N-ethylpyridinium bromide, N-n-butylpyridinium chloride, and N-butylpyridinium bromide. ,
N-n-propylbridinium ioguide, l-ethyl-2-methylpyridinium chloride, 1-n-hexyl-2-methylpyridinium chloride, 1-n-butyl-4-methylpyridinium Examples include chloride, 1-n-butyl-2,4-dimethylpyridinium chloride, and the like.

常c品溶融塩は,上記の2種類の原料を任意に組み合わ
せ、錯化反応を行わせることによって製造される。この
際原料であるハロゲン化アルミニウムと含窒素複素環化
合物の四級塩のモル比は0 5〜4,5、好ましくは0
 7〜4 0、より好ましくはl O〜2.5の範囲で
ある。
The ordinary c-product molten salt is produced by arbitrarily combining the above two types of raw materials and performing a complexing reaction. At this time, the molar ratio of the raw materials, aluminum halide and the quaternary salt of the nitrogen-containing heterocyclic compound, is 0.5 to 4.5, preferably 0.
It is in the range of 7 to 40, more preferably lO to 2.5.

本発明の方法は、先に製造した常温溶融塩中に含窒素複
素環化合物の四級塩とハロゲン化アルミニウムを溶解さ
せ、加熱下で錯化反応を十分進行させることにより常温
溶融塩を製造するちのである。具体的な実施態様は上記
の基本操作に基づく限り、種々の態様で行うことが可能
である。以下に具体的方法の一例を述べる。
In the method of the present invention, a quaternary salt of a nitrogen-containing heterocyclic compound and aluminum halide are dissolved in the previously produced room temperature molten salt, and a complexing reaction is sufficiently advanced under heating to produce a room temperature molten salt. It's Chino. Specific embodiments can be implemented in various ways as long as they are based on the basic operations described above. An example of a specific method will be described below.

製品と同組成の常温溶融塩を溶媒とし、N.N゛ −ジ
アルキルイミグゾリウムハライドをその中に徐々に添加
する。この際、前記反応式(1)又は(2)に従い錯化
反応が速やかに進行するが、かなりの発熱を伴うので、
反応器の外部ジャケット又は内部コイルに適当な冷媒を
通し、反応器内の温度が急激に上昇しない様に温度を制
i卸する。この際の反応1嘉度は室温から100℃の範
囲に制御するのが好ましい。この様に発熱を制I卸しな
がら、N.N′ −ジアノレキルイミグゾリウムハライ
ドを添加し終ったら、次に非水雰囲気下でハロゲン化ア
ルミニウムを徐々に添加する。この場合6、かなりの発
熱を伴うので上記と同様な手法により温度を制御する.
発熱を制御しながら、ハロゲン化アルミニウムを添加し
終ったら、系内を30〜100℃の範囲で制御し、錯化
反応を完結させる。
Using room temperature molten salt with the same composition as the product as a solvent, N. N-dialkylimigzolium halide is gradually added therein. At this time, the complexation reaction proceeds quickly according to the reaction formula (1) or (2), but it is accompanied by considerable heat generation, so
A suitable coolant is passed through the outer jacket or inner coil of the reactor to control the temperature in the reactor so that it does not rise rapidly. The temperature of the reaction at this time is preferably controlled within the range of room temperature to 100°C. While controlling the fever in this way, N. Once the N'-dianolekylimigzolium halide has been added, aluminum halide is gradually added under a non-aqueous atmosphere. In this case 6, since a considerable amount of heat is generated, the temperature should be controlled using the same method as above.
After adding aluminum halide while controlling heat generation, the temperature inside the system is controlled within the range of 30 to 100°C to complete the complexation reaction.

本発明の方法のバリエーションとして、添加順序を逆に
して常温溶融塩中にハロゲン化アルミニウムを懸濁させ
て、N.N′−ジアルキルイミダゾリウムハライドを添
加する方i1!,v実施可能である。
As a variation of the method of the present invention, the order of addition is reversed and the aluminum halide is suspended in the cold molten salt so that the N. Adding N'-dialkylimidazolium halide i1! , v is possible.

(発明の効果) 本発明の方法を採用することにより、速やかにかつ反応
熱の制御が容易となり、電解液として安定した特性を有
する溶融塩の製造が可能となる。
(Effects of the Invention) By employing the method of the present invention, the reaction heat can be quickly controlled and a molten salt having stable properties as an electrolytic solution can be produced.

(実施例) 以下に実施例、比較例を挙げて本発明を更に具体的に説
明する。
(Example) The present invention will be described in more detail below with reference to Examples and Comparative Examples.

実施例一l N2ガスで置換した撹拌付ガラス製反応器内に、1−メ
チル−3一二チルイミダゾリウムクロライド/三塩化ア
ルミニウム系常温溶融塩(三塩化アルミニウムのモル比
2 0、電導度13.6mS/cm) 1 2 0 g
を入れ、1−メチル−3−エチルイミダゾリウムクロラ
イド71g (0.484モル)及び三塩化アルミニウ
ム129g(0.968モル)を液温が60゜C以上に
上昇しないように十分な撹拌条件下で徐々に添加した。
Example 1 In a stirred glass reactor purged with N2 gas, 1-methyl-3-ditylimidazolium chloride/aluminum trichloride-based room temperature molten salt (aluminum trichloride molar ratio 20, conductivity 13 .6mS/cm) 1 2 0 g
and 71 g (0.484 mol) of 1-methyl-3-ethylimidazolium chloride and 129 g (0.968 mol) of aluminum trichloride were added under sufficient stirring conditions to prevent the liquid temperature from rising above 60°C. Added gradually.

全量添加後、急激な発熱がおさまったところで、反応器
を外郎加熱し、60℃でl.OFyF間撹拌し、錯化反
応を完結させた。この時点で溶順は均一かつ暗緑色ない
し暗褐色の溶液となる。
After the entire amount was added and the rapid heat generation subsided, the reactor was heated to 60°C and l. The mixture was stirred during OFyF to complete the complexation reaction. At this point, the solution becomes homogeneous and dark green to dark brown in color.

最終的に溶融塩320gを得た。得られた溶融塩は液体
で、電導度を測定し,たところ25゜Cで1 3.5m
S/cmの値を示した。
Finally, 320 g of molten salt was obtained. The obtained molten salt was a liquid, and its conductivity was measured to be 13.5 m at 25°C.
The value of S/cm is shown.

さらに、ほぼ同様な操作を繰返し、3ロットの溶融塩を
製造したが、電導度はいずれも±3%以内の安定した値
を示した。
Furthermore, three lots of molten salt were produced by repeating almost the same operation, and all showed stable values of electrical conductivity within ±3%.

実施例−2 実施例−1と同様の反応器にN−n−プチルビリジニウ
ムクロライド/三塩化アルミニウム系常温溶融塩(三塩
化アルミニウムのモル比2.O、電導度7 . 3mS
/cm) 1 2 0 gを入れ、N−n−プチルビリ
ジニウムクロライド80g(0.466モル)及び三塩
化アルミニウム120g (0.930モル)を実施例
−1と同様に温度を制御し添加した。
Example-2 In a reactor similar to Example-1, N-butylpyridinium chloride/aluminum trichloride-based room temperature molten salt (aluminum trichloride molar ratio 2.0, conductivity 7.3 mS) was added.
/cm), and added 80 g (0.466 mol) of N-n-butylpyridinium chloride and 120 g (0.930 mol) of aluminum trichloride while controlling the temperature in the same manner as in Example-1. did.

最終的に溶融塩320gを得た。得られた溶融塩は液体
で、電導度を測定したところ25゜Cで7.4mS/c
mの値を示した. さらに、ほぼ同様な操作を繰返し、3ロットの溶融塩を
製造したが、電導度はいずれち±3%以内の安定した値
を示した。
Finally, 320 g of molten salt was obtained. The obtained molten salt was a liquid, and its conductivity was measured to be 7.4 mS/c at 25°C.
The value of m is shown. Furthermore, almost the same operation was repeated to produce three lots of molten salt, and the conductivity of each lot showed a stable value within ±3%.

実施例−3 実施例−1と同様の反応器に1−メチル−3−エチルベ
ンズイミダゾリウムクロライド/三塩化アルミニウム系
常lm溶融塩(三塩化アルミニウムのモル比2.0、電
導度2 . 7mS/cm)  1 2 0 gを入れ
、1−メチル−3−エチルベンズイミグゾリウムクロラ
イl’84.9g (0、432モル)及び三塩化アル
ミニウム115.1g(0.863モル)を実施例−1
と同様に渇度を制御し添加した。
Example-3 In a reactor similar to Example-1, 1-methyl-3-ethylbenzimidazolium chloride/aluminum trichloride-based normal lm molten salt (aluminum trichloride molar ratio 2.0, conductivity 2.7 mS /cm) 120 g was added, and 84.9 g (0.432 mol) of 1-methyl-3-ethylbenzimigzolium chloride and 115.1 g (0.863 mol) of aluminum trichloride were added. Example-1
The thirst level was controlled and added in the same manner as above.

最終的に溶融塩320gを得た。得られた溶融塩は液体
で、電導度を測定したところ25゜Cで2.7mS/c
mの値を示した。
Finally, 320 g of molten salt was obtained. The obtained molten salt was a liquid, and its conductivity was measured to be 2.7 mS/c at 25°C.
The value of m is shown.

さらに、ほぼ同様な操作を繰返し、3ロットの溶融塩を
製造したが、電導度はいずれも±3%以内の安定した値
を示した。
Furthermore, three lots of molten salt were produced by repeating almost the same operation, and all showed stable values of electrical conductivity within ±3%.

比較例 l−メチル−3−エチルイミダゾリウムクロライド35
.5g (0.242モル)をガラス容器に入れ、三塩
化アルミニウム64 5g(0.484モル)を徐々に
添加したところ、次第に反応して一部r容液状態に変化
した。このとき、反応に伴う急激な発熱反応が観測され
た。三塩化アルミニウムを全量投入した後に反応溶液を
60℃、l時間加熱した。冷却後、25℃で電導度を測
定したところ1 0 . 8 mS/ amであった。
Comparative Example l-Methyl-3-ethylimidazolium chloride 35
.. When 5 g (0.242 mol) of aluminum trichloride was placed in a glass container and 64 5 g (0.484 mol) of aluminum trichloride was gradually added, it gradually reacted and partially changed into a liquid state. At this time, a rapid exothermic reaction accompanying the reaction was observed. After adding the entire amount of aluminum trichloride, the reaction solution was heated at 60° C. for 1 hour. After cooling, the conductivity was measured at 25°C and was found to be 10. It was 8 mS/am.

同し反応を再度繰返したところ電導度は11.7mS/
 cm ( 2 5℃)であった。
When the same reaction was repeated again, the conductivity was 11.7 mS/
cm (25°C).

比較例による方法では実施例に比べ、溶融塩の特性は低
く、かつ特性の再現性は劣るものであった。
In the method according to the comparative example, the characteristics of the molten salt were lower than those in the example, and the reproducibility of the characteristics was poor.

Claims (1)

【特許請求の範囲】[Claims] 含窒素複素環化合物の四級塩とハロゲン化アルミニウム
とからなる常温溶融塩を製造する方法において、常温溶
融塩を溶媒として上記原料を錯化反応させることを特徴
とする常温溶融塩の製造方法。
A method for producing a room temperature molten salt comprising a quaternary salt of a nitrogen-containing heterocyclic compound and an aluminum halide, the method comprising subjecting the raw materials to a complexing reaction using the room temperature molten salt as a solvent.
JP1187418A 1989-07-21 1989-07-21 Manufacture of normal temperature molten salt Pending JPH0353462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1187418A JPH0353462A (en) 1989-07-21 1989-07-21 Manufacture of normal temperature molten salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1187418A JPH0353462A (en) 1989-07-21 1989-07-21 Manufacture of normal temperature molten salt

Publications (1)

Publication Number Publication Date
JPH0353462A true JPH0353462A (en) 1991-03-07

Family

ID=16205701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1187418A Pending JPH0353462A (en) 1989-07-21 1989-07-21 Manufacture of normal temperature molten salt

Country Status (1)

Country Link
JP (1) JPH0353462A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297094A (en) * 2006-04-28 2007-11-15 Taisei Kako Co Ltd Container
WO2007134484A1 (en) * 2006-05-18 2007-11-29 Citic Guoan Mengguli New Energy Technology Co., Ltd. A lithium-ion battery with medium and small capacity and high output
US7701320B2 (en) 2005-04-28 2010-04-20 Tdk Corporation Ferrite core and transformer using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701320B2 (en) 2005-04-28 2010-04-20 Tdk Corporation Ferrite core and transformer using the same
US8120458B2 (en) 2005-04-28 2012-02-21 Tdk Corporation Ferrite core and transformer using the same
JP2007297094A (en) * 2006-04-28 2007-11-15 Taisei Kako Co Ltd Container
WO2007134484A1 (en) * 2006-05-18 2007-11-29 Citic Guoan Mengguli New Energy Technology Co., Ltd. A lithium-ion battery with medium and small capacity and high output

Similar Documents

Publication Publication Date Title
Rajput et al. Elucidating solvation structures for rational design of multivalent electrolytes—a review
US4505997A (en) Bis perhalogenoacyl -or sulfonyl-imides of alkali metals, their solid solutions with plastic materials and their use to the constitution of conductor elements for electrochemical generators
US4122245A (en) AlCl3 /1-alkyl pyridinium chloride room temperature electrolytes
JPH0324088A (en) Production of normal-temperature molten salt
JP2005511666A (en) Production of ionic liquid
NO852122L (en) ELECTRIC LEADING MACROMOLECYLATED MATERIALS.
TW535319B (en) Tetrakisfluoroalkylborate salts and their use as conducting salts
CN112456464A (en) Method for preparing electrode material by using eutectic salt
JP2003137890A (en) Synthesis of ionic metal complex
JPH11514790A (en) Wide electrochemical window solvents used in electrochemical devices and electrolyte solutions incorporating the solvents
WO2016072158A1 (en) Method for purifying electrolyte solution and method for producing electrolyte solution
US4542081A (en) Tetra-alkynyl or -aluminates of alkali metals, their solid solutions with plastic materials and their use for the constitution of conductor elements for electrochemical generators
JP2006225372A (en) Method for synthesizing ionic complex
TW527357B (en) Lithium salts, process for preparing them, nonaqueous electrolyte and electrochemical cell
JPH0353462A (en) Manufacture of normal temperature molten salt
JPS5931780A (en) Ionic compound, ion conductive substance and electric cell
EP0339535B1 (en) Plating bath for electrodeposition of aluminum and plating process making use of the bath
JPH02305988A (en) Composition having low melting point and aluminum electroplating method with bath of this composition
JP2000011753A (en) Imidazolium fused salt type electrolyte
Bervas et al. Soft‐chemistry synthesis and characterization of bismuth oxyfluorides and ammonium bismuth fluorides
JP2565522B2 (en) Method for producing room temperature molten salt electrolyte
JPS60133027A (en) Production of electrically conductive organic polymer
Berardelli et al. Polymethonium‐Silver Iodide Compounds as High‐Conductivity Solid Electrolytes
JPH03134193A (en) Low-melting point composition and electric aluminum plating method
JPS6147625A (en) Solid electrolytic condenser