JPH0353142A - Tire wear anticipating method - Google Patents

Tire wear anticipating method

Info

Publication number
JPH0353142A
JPH0353142A JP1187940A JP18794089A JPH0353142A JP H0353142 A JPH0353142 A JP H0353142A JP 1187940 A JP1187940 A JP 1187940A JP 18794089 A JP18794089 A JP 18794089A JP H0353142 A JPH0353142 A JP H0353142A
Authority
JP
Japan
Prior art keywords
tire
wear
force
vehicle
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1187940A
Other languages
Japanese (ja)
Other versions
JPH0663933B2 (en
Inventor
Hideyuki Nakamura
秀之 中村
Shingo Komura
伸吾 香村
Jiyunsuke Komura
小村 淳輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1187940A priority Critical patent/JPH0663933B2/en
Publication of JPH0353142A publication Critical patent/JPH0353142A/en
Publication of JPH0663933B2 publication Critical patent/JPH0663933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To accurately and easily anticipate the wear state of a tire without actual vehicle running for each of running conditions and various data of the vehicle by separating and synthesizing an influence of the load acting on the tire in the longitudinal direction and the transverse direction and fractionizing the load acting on the tire in each prescribed area to simulate the load. CONSTITUTION:The load acting the tire at the time of running of the vehicle is obtained as a longitudinal force Fx and a transverse force Fy, and they are sampled in each unit covered distance or each unit running time. Frequencies in existence of data of sampled longitudinal force Fx and transverse force Fy in respective analysis slice levels Fxi and Fyi by which the range of the load acting the tire is divided are counted for a prescribed covered distance to obtain frequency data Nxi and Nyi. Slice levels Fxi and Fyi, frequency data Nxi and Nyi, degrees of wear Kx and Ky in the longitudinal direction and the transfer direction which are preliminarily experimentally obtained for each tire, a driving stayness Ds in the longitudinal direction, and a cornering power Cp are used to obtain an extent of wear MT of the tire for running of an arbitrary running distance D by formula.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、実際の走行状態でのタイヤの摩耗を正確に
予測する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a method for accurately predicting tire wear under actual driving conditions.

〔従来技術〕[Prior art]

車両の走行時におけるタイヤの摩耗現象は非常に複雑で
あり、影響する要因も多く、大別すると、タイヤの特性
、路面状況、およびタイヤへの入力荷重が挙げられ、入
力荷重は、さらに、前後荷重と左右荷重に大別される. タイヤに作用する入力荷重を模式化すると、第6図に示
すように、駆動力あるいは制動力として前後方向に作用
する前後力Fx、求心力として左右力F7,そして、こ
れらの前後力Fxおよび左右力F7に影響を及ぼす上下
荷重W、スリップ率51車両の進行方向Aに対するタイ
ヤ1の傾きであるスリップ角θ、対地キャンバCが考え
られる.このような複雑な要因の影響を考慮した定量的
な摩耗状況の予測方法は開発されておらず、実車試験に
頼っているのが現状である。
The phenomenon of tire wear when a vehicle is running is extremely complex, and there are many influencing factors. Broadly speaking, these include tire characteristics, road surface conditions, and input loads to the tires. It is broadly divided into load and lateral load. To schematically describe the input loads acting on the tire, as shown in Figure 6, there is a longitudinal force Fx acting in the longitudinal direction as a driving force or braking force, a lateral force F7 as a centripetal force, and these longitudinal forces Fx and lateral forces. The vertical load W that affects F7, the slip angle θ which is the inclination of the tire 1 with respect to the traveling direction A of the vehicle with a slip ratio of 51, and the ground camber C are considered. A method for quantitatively predicting wear conditions that takes into account the influence of such complex factors has not been developed, and currently relies on actual vehicle tests.

従来、車両のタイヤ摩耗を予測する方法として、実際に
車両を所定の単位距離だけ走行させてその時の摩耗状況
から完全に摩耗する時期を推定する方法や、実際には走
行させずにタイヤの表面に刃具を押しつけながら回転さ
せ摩耗度を推定する方法が、とられている. 前者のように実際に走行させて摩耗を推定する方法とと
しては、例えば、特開昭60−47940号公報に開示
された推定方法がある.〔発明が解決しようとする課題
〕 しかし、前者のように実際に単位距離だけ走行させてそ
の時の摩耗状態から完全に摩耗した時を推定する方法は
、摩耗量の測定精度の関係でタイヤをある程度摩耗させ
る必要があり、そのため前記単位距離を短くはできず、
所定の単位距離を走行するのに時間がかかる欠点がある
. しかも、走行条件が異なる場合には、ある走行条件で単
位距離だけ走行した時の摩耗データをそのまま採用する
ことはできず、その度に実際に走行させる必要がある. また、後者のように台上試験で摩耗度を推定する方法で
は、摩耗状態が実際に道路を種々の走行条件で走行した
場合の摩耗状態と一致しない欠点がある. このように、従来は、走行条件および車両諸元ごとに実
車走行を行うことなく、タイヤ摩耗を簡単にかつ正確に
推定する方法はなかった。
Conventionally, methods for predicting vehicle tire wear include methods of actually driving the vehicle for a predetermined unit distance and estimating when it will be completely worn out based on the wear condition at that time, and methods of estimating when the vehicle will be completely worn out based on the wear condition at that time. A method is used to estimate the degree of wear by rotating the cutting tool while pressing it against the tool. An example of the former method of estimating wear by actually driving the vehicle is the estimation method disclosed in Japanese Patent Application Laid-Open No. 60-47940. [Problem to be solved by the invention] However, the former method of actually driving a unit distance and estimating when the tire is completely worn out from the wear state at that time is difficult to measure due to the accuracy of measuring the amount of wear. Therefore, the unit distance cannot be shortened.
The disadvantage is that it takes time to travel a given unit distance. Moreover, if the driving conditions are different, it is not possible to directly use the wear data obtained when driving a unit distance under a certain driving condition, and it is necessary to actually run the vehicle each time. Furthermore, the latter method of estimating the degree of wear using a bench test has the disadvantage that the wear condition does not match the wear condition when the vehicle is actually driven on a road under various driving conditions. As described above, conventionally, there has been no method for easily and accurately estimating tire wear without actually driving the vehicle for each driving condition and vehicle specification.

なお、タイヤの摩耗を予測する計算式としてシャーラマ
ッハの摩耗量式があるが、この理論式によると、単位走
行距離あたりのタイヤの摩耗IMは、摩擦エネルギーに
比例すると言われており、次式で表わされる。
Furthermore, there is the Schaller-Mach wear amount formula as a calculation formula for predicting tire wear. According to this theoretical formula, tire wear IM per unit mileage is said to be proportional to frictional energy, and the following formula is used: It is expressed as

M−rρF” /C 但し、ここで、γはタイヤの摩耗度、ρはリジリエンス
、Fはタイヤに作用する外力、Cは前後方向または左右
方向の力に対する剛性(左右方向の場合コーナリングパ
ワーであり、前後方向の場合ドライビングスティフネス
である。
M−rρF” /C Where, γ is the degree of wear of the tire, ρ is the resilience, F is the external force acting on the tire, and C is the stiffness against force in the longitudinal or lateral direction (cornering power in the case of lateral direction). , driving stiffness in the longitudinal direction.

しかし、このシャーラマッハの摩耗量式は、実験の結果
からタイヤ摩耗に影響する要因およびその寄与度を示し
ているだけであり、この摩耗量式を用いてタイヤの摩耗
状態を予測できるのは、車両重量等の車両諸元が一定で
あり、且つ、一定速度で直進走行あるいは定常円旋回走
行等の一定の走行条件で走行する場合のみであった.す
なわち、車両重量等の車両諸元が変わった場合、走行条
件が変わった場合あるいは市街地での一般的な走行時の
ように走行条件が複雑に変化する場合の摩耗の推定は不
可能であった.したがって、本発明は、タイヤに作用す
る荷重の影響を前後方向および左右方向に分離し合戒す
るとともに、実走行時での走行条件をタイヤに作用する
荷重を所定領域毎に細分化してシュミレートすることに
より、走行条件および車両諸元毎に実車走行を行うこと
なく、タイヤ摩耗状態を正確かつ簡単に予測する方法を
提供することを目的とする. 〔課題を解決するための手段〕 この目的を達戒するため、本発明のタイヤ摩耗の予測方
法は、車両を走行させた時のタイヤに作用する時々刻々
に変化する荷重を前後方向および左右方向に分離して前
後力Fxおよび左右力FVとして求め、この前後力Fx
および左右力Fyを単位走行距離あるいは単位走行時間
毎にサンプリングし、このサンプリングされた前後力F
xおよび左右力Fyのデータがタイヤに作用する荷重範
囲を複数に分割した各分析スライスレベルFxi.Fy
tに存在した頻度を所定走行距離の間カウントして頻度
データNxiおよびNyiを求め、この頻度分布データ
として得られた前後力Fxおよび左右力Fyの各分析ス
ライスレベルF xi,  F yiとその頻度データ
Nxi, Nyiおよび当該タイヤ毎に予め実験的に求
められている前後方向および左右方向の摩耗度Kx ,
  Ky 、前後方向のドライビングスティネスD3、
コーナリングパワーCpを用い、任意の走行距離Dだけ
走行した時のタイヤの摩耗@MTを、式 MT =ΣKx X (Fxi ”/Ds ) ×Nx
i×D+ΣKy X (Fyi ”/Cp ) ×Ny
i×Dから求めることを特徴としている. 〔実施例〕 以下、本発明の実施例に係わるタイヤ摩耗の予測方法を
図面によって説明する. 本発明の実施例に係わるタイヤ摩耗の予測方法における
下記のタイヤの摩耗を予測する摩耗量予測式 MT −ΣKx X (Fxi ”/Ds ) ×Nx
i×D+ΣKy X (Fyi ”/Cp ) ×Ny
i×Dのうち、まず、予め各タイヤ毎に実験的に求めら
れるタイヤに固有の前後方向および左右方向の摩耗度K
x,Ky、前後方向のドライビングスティフネスDs 
 (単位はkgf/X )および左右方向のコーナリン
グパワーCp  (単位はkgf/rad )について
説明する. このうち前後方向および左右方向の摩耗度KxKyの求
め方は以下のとおりである. この前後方向および左右方向の摩耗度Kx s Kyは
、実車状態あるいは実車状態を再現できるシャシーダイ
上で該当するタイヤを装着した試験車両を単位走行距離
分(例えば1000Km)だけ、複数の摩擦エネルギー
条件で走行させ、その時の摩擦エネルギーであるFx 
 ”/Ds  (Fy  ”/Cp〉と単位走行距離当
たりのタイヤ摩耗量Mx(My )との関係を、両対数
グラフ上にプロットして求める.ここで、前後力Fκお
よび左右力Fyの単位はkgf 、単位走行距離当たり
の摩耗IMx,Myの単位は一gm/10001uw 
”i?ある。
However, this Schallermach wear equation only shows the factors that influence tire wear and their contribution based on experimental results, and this wear equation can only be used to predict the tire wear state. This was only applicable when vehicle specifications such as vehicle weight were constant, and the vehicle was driven under certain driving conditions, such as driving straight at a constant speed or driving in steady circular turns. In other words, it is impossible to estimate wear when vehicle specifications such as vehicle weight change, when driving conditions change, or when driving conditions change in a complex manner, such as during general driving in urban areas. .. Therefore, the present invention separates and combines the effects of loads acting on tires in the front-rear and left-right directions, and simulates actual driving conditions by subdividing the loads acting on tires into predetermined regions. The purpose of this study is to provide a method for accurately and easily predicting tire wear conditions without actually driving the vehicle under each driving condition and vehicle specification. [Means for Solving the Problems] In order to achieve this objective, the tire wear prediction method of the present invention calculates the ever-changing loads acting on the tires when the vehicle is running in the longitudinal and lateral directions. The longitudinal force Fx and the lateral force FV are obtained by separating the
and lateral force Fy are sampled every unit travel distance or unit travel time, and this sampled longitudinal force F
x and left and right force Fy data is divided into multiple analysis slice levels Fxi. Fy
Frequency data Nxi and Nyi are obtained by counting the frequencies present at time t during a predetermined running distance, and each analysis slice level F xi, F yi of longitudinal force Fx and lateral force Fy obtained as this frequency distribution data and their frequencies are calculated. The data Nxi, Nyi and the degree of wear Kx in the front-back direction and the left-right direction, which are determined experimentally in advance for each tire,
Ky, longitudinal driving stiffness D3;
Using the cornering power Cp, tire wear @MT when traveling an arbitrary distance D is calculated using the formula MT = ΣKx X (Fxi ”/Ds ) × Nx
i×D+ΣKy X (Fyi ”/Cp) ×Ny
It is characterized by being calculated from i×D. [Example] Hereinafter, a method for predicting tire wear according to an example of the present invention will be explained with reference to the drawings. The following wear amount prediction formula for predicting tire wear in the tire wear prediction method according to the embodiment of the present invention MT -ΣKx
i×D+ΣKy X (Fyi ”/Cp) ×Ny
Of i×D, first, the tire-specific wear degree K in the front-rear direction and left-right direction is determined experimentally for each tire in advance.
x, Ky, longitudinal driving stiffness Ds
(unit: kgf/X) and lateral cornering power Cp (unit: kgf/rad). The method of determining the degree of wear KxKy in the front-rear direction and left-right direction is as follows. The degree of wear Kx s Ky in the longitudinal direction and the lateral direction is determined by testing a test vehicle equipped with the relevant tire for a unit mileage (for example, 1000 km) under multiple frictional energy conditions on an actual vehicle condition or a chassis die that can reproduce the actual vehicle condition. Fx, which is the frictional energy at that time, is
The relationship between "/Ds (Fy "/Cp>) and the amount of tire wear Mx (My) per unit traveling distance is determined by plotting it on a logarithmic graph.Here, the units of longitudinal force Fκ and lateral force Fy are kgf, wear per unit mileage IMx, My unit is 1 gm/10001uw
“i? Yes.

具体的な試験条件としては、試験車両として、車両総重
11050Kgの車両に所定のタイヤを装着して、舗装
路面にて行った. 前後方向の摩耗度Kχについては、一方の試験車両をこ
の試験車両と同一の車両諸元の他方の試験車両で牽引力
を計る牽引力計を介して牽引した状態で、牽引されてい
る前記一方の試験車両にはエンジンブレーキがかかった
状態にし、牽引している側の試験車両の駆動トルクおよ
び牽引されている側の試験車両の制動力を変えて所定単
位距離だけ走行させる.その時のタイヤに作用する前把
方向の荷重Fxは、両試験車両間の牽引力であり、その
値は牽引力計で読み取る。
As for specific test conditions, the test was carried out on a paved road using a vehicle with a total vehicle weight of 11,050 kg equipped with specified tires. Regarding the degree of wear Kχ in the longitudinal direction, one test vehicle was towed by another test vehicle having the same vehicle specifications as this test vehicle through a traction force meter that measures the traction force, and the test was performed on one of the test vehicles being towed. The engine brake is applied to the vehicle, and the driving torque of the test vehicle on the towing side and the braking force of the test vehicle on the towed side are varied and the vehicle is driven for a predetermined unit distance. The load Fx in the front grip direction acting on the tire at that time is the traction force between both test vehicles, and its value is read with a traction force meter.

ところで、ドライビングスティフネスDsは、タイヤに
作用するドライビングフォースをスリップ率で割ったも
のであり、タイヤに固有の定数である.このドライビン
グスティフネスDsは、シャシーダイ上に試験車両を載
せて、ローラをタイヤで駆動した時の駆動力およびタイ
ヤとローラとの間のスリップ率とから求める. そして、この予め求められておいたこのドライビングス
ティフネスDsと、荷重条件を種々変えてこの牽引試験
を行った場合の牽引力計で測定した前後方向の荷重Fx
および単位距離だけ走行した後のタイヤの摩耗量Mxと
から、両対数グラフの縦軸および横軸に、それぞれ単位
走行距離当たりのタイヤ摩耗量Mxおよび摩擦エネルギ
ー(F!”/Ds)を、プロフトすると、第1図に示す
ように結果が得られた.なお、この摩耗度Kxは駆動側
(牽引側車両側の駆動輪)と制動゜側(被牽引車両側の
駆動輪)とで異なる結果が得られた。
By the way, the driving stiffness Ds is the driving force acting on the tire divided by the slip rate, and is a constant specific to the tire. This driving stiffness Ds is determined from the driving force when the rollers are driven by the tires and the slip rate between the tires and the rollers with the test vehicle mounted on the chassis die. This driving stiffness Ds determined in advance and the load Fx in the longitudinal direction measured with a traction force meter when carrying out this traction test under various load conditions.
and tire wear amount Mx after traveling unit distance, the tire wear amount Mx and frictional energy (F!''/Ds) per unit traveling distance are plotted on the vertical and horizontal axes of the logarithmic graph, respectively. As a result, the results shown in Fig. 1 were obtained.The degree of wear Kx differs between the drive side (driving wheels on the towing vehicle side) and the braking side (driving wheels on the towed vehicle side). was gotten.

次に、左右方向の摩耗度Kyについては、所定の半径の
円軌跡を描くように、定常的に円旋回走行を行わせ、車
両に取りつけた加速度計にて車両に作用する半径方向の
加速度を求め、この半径方向の加速度と車両重量とから
遠心力を求め、さらにこの遠心力を所定の分配率で各車
輪に分配することによりタイヤに作用する左右方向の荷
重を求める. ところで、コーナリングパワーcpは、車両が旋回する
時に作用するコーナリングフォースをスリップ角で割っ
たものであり、これも、タイヤに固有の定数である.こ
のコーナリングパワーCpは、シャシーダイ上に試験車
両を載せタイヤを車両の前進方向に対して所定のスリッ
プ角で傾けた状態にして、ローラをタイヤで駆動した時
にびタイヤに作用する左右方向の力すなわちコーナリン
グフォースと前記スリップ角とから求める.そして、こ
の予め求められておいたこのコーナリングパワーCpと
、荷重条件を種々変えてこの定常円旋回試験を行った場
合の加速度計で測定した左右方向の荷重FVおよび単位
距離だけ定常円旋回走行した後のタイヤの摩耗量Myと
から、両対数グラフの縦軸および横軸に、それぞれ単位
走行距離当たりのタイヤ摩耗量M!および摩擦エネルギ
ー(Fy  ”/Cp)を、プロットすると、第2図に
示すような結果が得られる。
Next, regarding the degree of wear Ky in the left and right direction, the vehicle is made to constantly turn in a circular motion so as to draw a circular locus with a predetermined radius, and the acceleration in the radial direction acting on the vehicle is measured using an accelerometer attached to the vehicle. The centrifugal force is determined from this radial acceleration and vehicle weight, and the lateral load acting on the tires is determined by distributing this centrifugal force to each wheel at a predetermined distribution ratio. By the way, cornering power cp is obtained by dividing the cornering force that acts when the vehicle turns by the slip angle, and is also a constant specific to the tire. This cornering power Cp is determined by the horizontal force that acts on the tires when the test vehicle is mounted on the chassis die and the tires are tilted at a predetermined slip angle with respect to the forward direction of the vehicle, and the rollers are driven by the tires. In other words, it is determined from the cornering force and the slip angle. Then, the cornering power Cp determined in advance, the load FV in the left and right direction measured by the accelerometer when performing this steady circular turning test with various load conditions, and the steady circular turning for a unit distance were run. From the subsequent tire wear amount My, the tire wear amount per unit mileage M! is plotted on the vertical and horizontal axes of the logarithmic graph, respectively. When the frictional energy (Fy''/Cp) is plotted, the results shown in FIG. 2 are obtained.

以上で、あるタイヤの任意の走行条件での摩耗状態を予
測するのに必要な定数が得られたことになる. 次に、前記定数Kx s Ky s Ds , Cpを
基に、実際の走行条件でのタイヤに作用する前後方向お
よび左右方向の荷重を単位走行距離あるいは単位走行時
間毎にサンプリングして、荷重範囲を複数に分割した各
分析スライスレベルFxi,Fyi毎に、サンプリング
データの頻度をカウントして頻度データNκi, Ny
iを求めることにより、任意の走行距離Dだけ走行した
時のタイヤの摩耗量MTが、前記摩耗量予測式から求め
られる. そこで、この頻度分布は、以下のようにして求める.す
なわち、まず、該当タイヤを該当車両に装着した状態で
、タイヤ摩耗を予測すべき走行条件に適する道路を実際
に走行して、車両に作用する時々刻々変化する前後荷重
および左右荷重を測定する.この車両に作用する前後荷
重および左右荷重を、車両の各車輪毎に分配して各車輪
に作用する前後方向および左右方向の荷重である前後力
Fx,左右力Fyとする。
With the above, we have obtained the constants necessary to predict the wear state of a certain tire under arbitrary driving conditions. Next, based on the constants Kx s Ky s Ds , Cp, the loads in the longitudinal and lateral directions that act on the tires under actual driving conditions are sampled for each unit traveling distance or unit traveling time, and the load range is determined. For each analysis slice level Fxi, Fyi divided into multiple parts, the frequency of sampling data is counted and frequency data Nκi, Ny
By determining i, the wear amount MT of the tire when traveling an arbitrary distance D can be determined from the wear amount prediction formula. Therefore, this frequency distribution is obtained as follows. That is, first, with the relevant tires mounted on the relevant vehicle, the vehicle is actually driven on a road suitable for the driving conditions for which tire wear is to be predicted, and the ever-changing longitudinal and lateral loads acting on the vehicle are measured. The longitudinal load and the lateral load acting on the vehicle are distributed to each wheel of the vehicle to form a longitudinal force Fx and a lateral force Fy, which are loads in the longitudinal direction and the lateral direction acting on each wheel.

なお、その測定車両の加速度を測定し、その加速度と車
両諸元からタイヤに作用する前後力Fx.左右力Fyを
計算することでも代用で・きる.このように特定の車両
で加速度を測定しておけば、同じ走行条件の場合は、タ
イヤに作用する荷重を求めるのに、車両諸元が異なるご
とに実車走行する必要はなく、頻度分布を計算により簡
単に求めることができる. この時々刻々変化する前後力Fx.左右力Fyは、第3
図に示すように変化しており、この前後力Fx,左右力
Fyを単位時間(例えば0.4m秒)毎にサンプリング
する.なお、第3図においては前後力Fxおよび左右力
Fyを絶対値で表さずに、所定の荷重範囲を64分割し
た状態でのレベル番号で表示している. そして、このサンプリングデータが、各分析スライスレ
ベルFxi,Fyiの何れに存在したかにより、各分析
スライスレベルF xi,  F yi毎に頻度をカウ
ントする.所定走行距離走行分だけカウントして、その
頻度データNxi, Nyiを求める.この頻度データ
Nxi, Nyiを縦軸にとって図示したのが第4図に
示すヒストグラムである. 現実の車両諸元および走行条件が反映された実車走行で
の、タイヤに作用する前後方向および左右方向の荷重で
ある前後力Fxおよび左右力Fyの頻度分布データであ
る分析スライスレベルFxi,Fyiとその頻度データ
Nxi. Nyiと、前述したように予め実験的に各タ
イヤ毎に求められている前後方向および左右方向の摩耗
度Kx ,Ky 、前後方向のドライビングスティフネ
スDs、および左右方向のコーナリングパワーCpから
、任意の所定距離Dだけ走行した場合に、タイヤの摩耗
量がいくらになるかが、前記各データKx.Ky.Fx
i, Fyi. Ds , Cp , Nxi. Ny
iを、前記摩耗量予測式に代入することにより、簡単か
つ正確に算出できる. そして、上記試験車両と同一の車両およびタイヤにて豊
田市および名古屋市近郊を実際に走行した場合の摩耗量
の実測値と、上記摩耗量推定式により算出した摩耗量の
推定値とは、第5図に示すように良く一致しており、市
場走行のような複雑な走行条件においても本予測方法で
タイヤの摩耗を正確に推定できることが確認できた.以
上、本発明の一実施例について説明したが、本発明は、
この実施例に限定されるものではなく、特許請求の範囲
に記載の範囲内で種々の実施態様が包含されるものであ
り、例えば、タイヤに作用する荷重をサンプリングする
のに単位走行時間毎ではなく、単位走行距離毎にサンプ
リングしても良い. また、市場走行を想定した場合のタイヤに作用する荷重
の各分析スライスレベルF xi.  F yiの頻度
Nxi,  Nyiがシュミレートできれば、実際に走
行させなくとも、シュミレートされた各分析スライスレ
ベルF xi,  F yi毎の頻度データNxf, 
Nyiを用いて摩耗量を算出するとこもできる.なお、
以上はタイヤ全体の摩耗量を前提として説明してきたが
、タイヤのトレンド部やショルダ部毎に分けて、摩耗量
を推定することもでき、このようにタイヤのトレンド部
やショルダ部毎に分けて推定するとタイヤの偏摩耗の予
測も可能となる. 〔発明の効果〕 以上述べたように、本発明によれば、タイヤの摩耗度を
荷重が前後方向.左右方向単独に作用した場合を示して
いるが、前後方向,左右方向に複合的に作用しても摩耗
量の推定が可能である.また、前後方向および左右方向
に荷重を分離して摩耗量を算出しているため、タイヤに
作用する荷重の測定が簡単に行え、また、摩耗量の計算
も簡単に行なえる. さらに、前後方向および左右方向の荷重による摩耗量を
独立して算出しているため、多種の走行条件での摩耗の
解析にも有効である.
The acceleration of the measurement vehicle is measured, and the longitudinal force Fx. acting on the tires is determined from the acceleration and the vehicle specifications. This can also be substituted by calculating the left and right force Fy. By measuring the acceleration of a specific vehicle in this way, under the same driving conditions, there is no need to drive the actual vehicle each time the vehicle specifications differ to determine the load acting on the tires, and the frequency distribution can be calculated. It can be easily obtained by This momentarily changing longitudinal force Fx. The left and right force Fy is the third
The force changes as shown in the figure, and the longitudinal force Fx and lateral force Fy are sampled every unit time (for example, 0.4 msec). In addition, in FIG. 3, the longitudinal force Fx and the lateral force Fy are not expressed as absolute values, but as level numbers obtained by dividing a predetermined load range into 64. Then, depending on which of the analysis slice levels Fxi and Fyi this sampling data exists in, the frequency is counted for each analysis slice level F xi and F yi. The frequency data Nxi and Nyi are determined by counting the number of miles traveled over a predetermined distance. The histogram shown in FIG. 4 illustrates this frequency data Nxi and Nyi on the vertical axis. Analysis slice levels Fxi, Fyi are frequency distribution data of longitudinal force Fx and lateral force Fy, which are loads in the longitudinal direction and lateral direction that act on tires, during actual vehicle driving that reflects actual vehicle specifications and driving conditions. Its frequency data Nxi. Nyi, the degree of wear in the longitudinal direction and the lateral direction Kx, Ky, the driving stiffness Ds in the longitudinal direction, and the cornering power Cp in the lateral direction, which are determined experimentally for each tire in advance as described above, to an arbitrary predetermined value. The amount of wear on the tires when the distance D is traveled is calculated from each of the data Kx. Ky. Fx
i, Fyi. Ds, Cp, Nxi. NY
By substituting i into the above-mentioned wear amount prediction formula, it can be easily and accurately calculated. The actual measured value of the amount of wear when the same vehicle and tires as the above test vehicle were actually driven around Toyota City and Nagoya City, and the estimated value of the amount of wear calculated using the above wear amount estimation formula are As shown in Figure 5, there is good agreement, confirming that this prediction method can accurately estimate tire wear even under complex driving conditions such as market driving. Although one embodiment of the present invention has been described above, the present invention includes
The present invention is not limited to this example, and includes various embodiments within the scope of the claims. Instead, sampling may be performed for each unit distance traveled. In addition, each analysis slice level F xi. of the load acting on the tire assuming market driving. If the frequency Nxi, Nyi of F yi can be simulated, the frequency data Nxf, for each simulated analysis slice level F xi, F yi can be obtained without actually running the vehicle.
It is also possible to calculate the amount of wear using Nyi. In addition,
The above explanation has been based on the amount of wear of the tire as a whole, but it is also possible to estimate the amount of wear by dividing the tire's trend part and shoulder part. By estimating this, it is also possible to predict uneven tire wear. [Effects of the Invention] As described above, according to the present invention, the degree of tire wear is determined by the load in the longitudinal direction. Although the case where the wear is applied in the left-right direction alone is shown, the amount of wear can be estimated even if the wear is applied in the front-rear and left-right directions in combination. In addition, since the amount of wear is calculated by separating the load in the front-rear direction and left-right direction, it is easy to measure the load acting on the tire, and it is also easy to calculate the amount of wear. Furthermore, since the amount of wear due to loads in the longitudinal and lateral directions is calculated independently, it is effective in analyzing wear under a variety of driving conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のタイヤ摩耗の予測方法における前後方
向のタイヤの摩耗度を示す前後力と摩耗量とをプロット
した両対数グラフ、第2図は本発明のタイヤ摩耗の予測
方法における左右方向のタイヤの摩耗度を示す左右力と
摩耗量とをプロットした両対数グラフ、第3図は実車走
行時のタイヤに作用する前後力(左右力)の時々刻々の
変化を示す記録波形図、第4図は第3図の前後力(左右
力)の各分析スライスレベル毎の頻度分布を示すヒスト
グラム、第5図は市場走行でのタイヤの摩耗量の実測値
と本発明のタイヤ摩耗の予測方法に基づき予測した推定
値との相関を示すグラフ、第6図はタイヤに作用する荷
重を示す模式図である。 第 1 図 第2図 FY2/Cp 第5図 JtL定イl(mm) 第6図
Fig. 1 is a logarithmic graph plotting longitudinal force and amount of wear showing the degree of tire wear in the longitudinal direction in the tire wear prediction method of the present invention, and Fig. 2 is a logarithmic graph plotting the longitudinal force and wear amount in the tire wear prediction method of the present invention in the lateral direction. Fig. 3 is a logarithmic graph plotting the lateral force and the amount of wear showing the degree of tire wear; Fig. 3 is a recorded waveform chart showing moment-by-moment changes in the longitudinal force (lateral force) acting on the tire when the vehicle is running; Figure 4 is a histogram showing the frequency distribution for each analysis slice level of the longitudinal force (lateral force) in Figure 3, and Figure 5 is the actual measured value of tire wear amount in market driving and the tire wear prediction method of the present invention. FIG. 6 is a graph showing the correlation with the estimated value predicted based on the equation, and FIG. 6 is a schematic diagram showing the load acting on the tire. Fig. 1 Fig. 2 FY2/Cp Fig. 5 JtL setting l (mm) Fig. 6

Claims (1)

【特許請求の範囲】[Claims] (1)車両を走行させた時のタイヤに作用する時々刻々
に変化する荷重を前後方向および左右方向に分離して前
後力F_xおよび左右力F_yとして求め、この前後力
F_xおよび左右力F_yを単位走行距離あるいは単位
走行時間毎にサンプリングし、このサンプリングされた
前後力F_xおよび左右力F_yのデータがタイヤに作
用する荷重範囲を複数に分割した各分析スライスレベル
F_x_i、F_y_iに存在した頻度を所定走行距離
の間カウントして頻度データN_x_iおよびN_y_
iを求め、この頻度分布データとして得られた前後力F
_xおよび左右力F_yの分析スライスレベルF_x_
i、F_y_iとその頻度データN_x_i、N_y_
iと、当該タイヤ毎に予め実験的に求められている前後
方向および左右方向の摩耗度K_x、F_y、前後方向
のドライビングスティネスD_sおよび左右方向のコー
ナリングパワーC_pを用い、任意の走行距離Dだけ走
行した時のタイヤの摩耗量MTを、式 MT=ΣK_x×(F_x_i^z/D_s)×N_x
_i×D+ΣK_y×(F_y_i^z/C_p)×N
_y_i×Dから求めることを特徴とするタイヤ摩耗の
予測方法。
(1) Separate the ever-changing loads that act on the tires when the vehicle is running into the longitudinal and lateral directions and find them as longitudinal force F_x and lateral force F_y, and use these longitudinal force F_x and lateral force F_y as units. Sampling is performed for each traveling distance or unit traveling time, and the frequency with which the sampled data of longitudinal force F_x and lateral force F_y exists at each analysis slice level F_x_i, F_y_i, which divides the load range acting on the tire into multiple parts, is calculated for a predetermined traveling period. Frequency data N_x_i and N_y_ by counting during distance
i is obtained, and the longitudinal force F obtained as this frequency distribution data is
Analysis slice level F_x_ of _x and left-right force F_y
i, F_y_i and its frequency data N_x_i, N_y_
i, the degree of wear K_x, F_y in the front-rear direction and left-right direction experimentally determined for each tire in advance, the driving stiffness D_s in the front-rear direction, and the cornering power C_p in the left-right direction, and only an arbitrary traveling distance D. The amount of tire wear MT during driving is calculated using the formula MT=ΣK_x×(F_x_i^z/D_s)×N_x
_i×D+ΣK_y×(F_y_i^z/C_p)×N
A method for predicting tire wear characterized by calculating from _y_i×D.
JP1187940A 1989-07-20 1989-07-20 How to predict tire wear Expired - Lifetime JPH0663933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1187940A JPH0663933B2 (en) 1989-07-20 1989-07-20 How to predict tire wear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1187940A JPH0663933B2 (en) 1989-07-20 1989-07-20 How to predict tire wear

Publications (2)

Publication Number Publication Date
JPH0353142A true JPH0353142A (en) 1991-03-07
JPH0663933B2 JPH0663933B2 (en) 1994-08-22

Family

ID=16214839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1187940A Expired - Lifetime JPH0663933B2 (en) 1989-07-20 1989-07-20 How to predict tire wear

Country Status (1)

Country Link
JP (1) JPH0663933B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258090A (en) * 1993-03-05 1994-09-16 Japan Radio Co Ltd Safety travel designating apparatus
JP2002221527A (en) * 2001-01-26 2002-08-09 Sumitomo Rubber Ind Ltd Wear state detection method and device for tire, and wear determination program for tire
JP2010015496A (en) * 2008-07-07 2010-01-21 Denso Corp Vehicle driving support apparatus
JP2012098251A (en) * 2010-11-05 2012-05-24 Bridgestone Corp Wear test apparatus for tires, method and program
JP2013083575A (en) * 2011-10-11 2013-05-09 Bridgestone Corp Method, apparatus and program for predicting tire wear
JP2015219150A (en) * 2014-05-19 2015-12-07 横浜ゴム株式会社 Wear prediction method of tire and computer program for wear prediction
JP2017110976A (en) * 2015-12-15 2017-06-22 住友ゴム工業株式会社 Tire wear performance prediction method and simulation method
CN114475093A (en) * 2022-01-05 2022-05-13 东风柳州汽车有限公司 Tire wear reminding method, device, equipment and storage medium
US11597238B2 (en) 2018-09-10 2023-03-07 Denso Corporation Tire system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5625376B2 (en) * 2009-02-06 2014-11-19 横浜ゴム株式会社 Wear resistance performance evaluation apparatus, wear resistance performance evaluation method, and computer program for wear resistance performance evaluation
JP5504912B2 (en) * 2010-01-22 2014-05-28 横浜ゴム株式会社 Tire usage condition evaluation method and apparatus, and tire wear prediction method and apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258090A (en) * 1993-03-05 1994-09-16 Japan Radio Co Ltd Safety travel designating apparatus
JP2002221527A (en) * 2001-01-26 2002-08-09 Sumitomo Rubber Ind Ltd Wear state detection method and device for tire, and wear determination program for tire
JP4582920B2 (en) * 2001-01-26 2010-11-17 住友ゴム工業株式会社 Tire wear state detecting device and method, and tire wear judging program
JP2010015496A (en) * 2008-07-07 2010-01-21 Denso Corp Vehicle driving support apparatus
JP4513909B2 (en) * 2008-07-07 2010-07-28 株式会社デンソー Vehicle travel support device
US8185289B2 (en) 2008-07-07 2012-05-22 Denso Corporation Vehicle driving support apparatus
JP2012098251A (en) * 2010-11-05 2012-05-24 Bridgestone Corp Wear test apparatus for tires, method and program
JP2013083575A (en) * 2011-10-11 2013-05-09 Bridgestone Corp Method, apparatus and program for predicting tire wear
JP2015219150A (en) * 2014-05-19 2015-12-07 横浜ゴム株式会社 Wear prediction method of tire and computer program for wear prediction
JP2017110976A (en) * 2015-12-15 2017-06-22 住友ゴム工業株式会社 Tire wear performance prediction method and simulation method
US11597238B2 (en) 2018-09-10 2023-03-07 Denso Corporation Tire system
CN114475093A (en) * 2022-01-05 2022-05-13 东风柳州汽车有限公司 Tire wear reminding method, device, equipment and storage medium
CN114475093B (en) * 2022-01-05 2023-06-30 东风柳州汽车有限公司 Tire wear reminding method, device, equipment and storage medium

Also Published As

Publication number Publication date
JPH0663933B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JP4747798B2 (en) Tire wear test method
EP1354184B1 (en) A method of wear testing a tire
US7228732B2 (en) Tire wear analysis method
EP3322965B1 (en) Method of generating tire load histories and testing tires
JP2001001723A (en) Method for predicting tire wear
JP3158038B2 (en) Tire pressure drop detector
US4969212A (en) Quantitative measurement of handling characteristics of tires and/or vehicle/tire combinations
JPH0353142A (en) Tire wear anticipating method
JP2020020796A (en) Scalable vehicle model for indoor tire testing
JP5756817B2 (en) Vehicle driving support method
Becker et al. Motion resistance measurements on large lug tyres
JP3948678B2 (en) Wheel turning stability evaluation method and wheel turning stability evaluation apparatus
Pokorski et al. Influence of exploitation conditions on anti-skid properties of tyres
CN102057267B (en) Method of estimating the transverse grip of a pair of tyres by comparative analysis
US20040225426A1 (en) Process and apparatus for detecting damper damage
US11703423B2 (en) Method for driving a tire on a wear rolling road
Gobbi et al. Motorcycle smart wheels for monitoring purposes
Lupker et al. Truck tyre wear assessment and prediction
Lugaro et al. Advanced method for virtual tire and braking distance simulation
Veith The Driving Severity Number (DSN)—a step toward quantifying treadwear test conditions
EP2267426A2 (en) A method of wear testing a tire
RU2239810C1 (en) Method of determining inequality in action of vehicle brakes
Blyankinshtein et al. Braking force measurement errors on a stand with horizontal support discs
Wach et al. Striated Tire Yaw Marks—Modeling and Validation. Energies 2021, 14, 4309
Metz Potential for Hydroplaning Behavior during Transient Maneuvers

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 15

EXPY Cancellation because of completion of term