JPH0352934A - Glass fiber base material for laminated board of glass fiber-reinforced polyimide resin - Google Patents

Glass fiber base material for laminated board of glass fiber-reinforced polyimide resin

Info

Publication number
JPH0352934A
JPH0352934A JP1186388A JP18638889A JPH0352934A JP H0352934 A JPH0352934 A JP H0352934A JP 1186388 A JP1186388 A JP 1186388A JP 18638889 A JP18638889 A JP 18638889A JP H0352934 A JPH0352934 A JP H0352934A
Authority
JP
Japan
Prior art keywords
polyimide resin
glass fiber
base material
fiber base
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1186388A
Other languages
Japanese (ja)
Inventor
Sukeji Murakoshi
村越 資治
Yoshiharu Suzuki
鈴木 芳治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP1186388A priority Critical patent/JPH0352934A/en
Publication of JPH0352934A publication Critical patent/JPH0352934A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain the subject base material capable of sufficiently impregnating a polyimide resin in short time, having storing stability and imparting excellent heat resistance in soldering and high qualities to laminated board of a polyimide resin. CONSTITUTION:(B) 0.001-0.5wt.% (calculated as solid component) silane coupling agent (e.g. vinyltrichlorosilane) is adhered together with (C) a polyimide resin (e.g. a compound expressed by the formula) and/or an epoxy-modified polyimide resin composed of a mixture of a polyimide resin and an epoxy resin in a weight ratio of 1:0.01-1 so as to be 0.001-0.5wt.% adhered amount of a polyimide resin on (A) the surface of a glass fiber to afford the aimed base material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガラス繊維強化樹脂積層板用のガラス繊維基材
に係り、特にガラス繊維強化ポリイミド樹脂積層板用の
ガラス繊維基材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a glass fiber base material for a glass fiber reinforced resin laminate, and particularly to a glass fiber base material for a glass fiber reinforced polyimide resin laminate.

[従来の技術] ガラス繊維基材にポリイミド樹脂を含浸させてなるブリ
ブレグを複数枚積層してなるガラス繊維強化ポリイミド
樹脂積層板は、ガラス繊維強化樹脂積層板の中でも特に
耐熱性に優れており、プリント回路基板、航空・宇宙材
料など幅広い分野で用いられている。
[Prior Art] A glass fiber-reinforced polyimide resin laminate, which is made by laminating a plurality of blibregs made by impregnating a glass fiber base material with polyimide resin, has particularly excellent heat resistance among glass fiber-reinforced resin laminates. It is used in a wide range of fields including printed circuit boards and aerospace materials.

このガラス繊維強化ポリイミド樹脂積層板を製造するに
あたっては、ガラス繊維とポリイミド樹脂とのなじみ性
やぬれ性を向上させるため、あらかじめガラス繊維の表
面をシランカップリング剤で処理する方法が採られてい
る。
In manufacturing this glass fiber-reinforced polyimide resin laminate, a method is adopted in which the surface of the glass fiber is treated with a silane coupling agent in advance in order to improve the compatibility and wettability between the glass fiber and the polyimide resin. .

ところで、近年、ガラス繊維強化ポリイミド樹脂積層板
の生産性を向上させるために、ブリブレグの製造時間の
短縮が図られており、これに伴いガラス繊維基材に対す
るポリイミド樹脂の含浸性の向上が望まれている。また
近年、複数のブリプレグをブレス或形して積層板とする
際の寸法精度を向上させてガラス繊維強化ポリイミド樹
脂積層板の高品質化を図るために、低圧戊形法が採用さ
れるようになった。これに伴い、プレス成形時の荷重に
よりプリプレグ中の樹脂未含浸部を消失さることが困難
となったため、樹脂未含浸部が残存することに起因する
耐熱性の低下を抑止するためにも、ガラス繊維基材に対
するポリイミド樹脂の含漫性の向上が望まれている。
Incidentally, in recent years, in order to improve the productivity of glass fiber reinforced polyimide resin laminates, efforts have been made to shorten the manufacturing time of blibregs, and along with this, it has been desired to improve the impregnation of polyimide resin into the glass fiber base material. ing. In addition, in recent years, low-pressure forming methods have been adopted to improve the dimensional accuracy when pressing and forming multiple Bripregs into laminates and to improve the quality of glass fiber-reinforced polyimide resin laminates. became. Along with this, it has become difficult to eliminate the non-resin-impregnated parts of the prepreg due to the load during press molding, so in order to prevent the decrease in heat resistance caused by the remaining resin-unimpregnated parts, glass It is desired to improve the inclusion property of polyimide resins in fiber base materials.

このような要望に対しては、シランカップリング剤を用
いた表面処理によりガラス繊維とポリイミド樹脂との間
のなじみ性やぬれ性を向上させるだけでは対応しきれな
いため、ガラス繊維基材を曲げたり、しごいたりしてガ
ラス繊維を構戊するフィラメントを分散させ、物理的に
ポリイミド樹脂の含浸性を向上させる方法も試みられて
いる。
In order to meet these demands, simply improving the compatibility and wettability between the glass fiber and polyimide resin through surface treatment using a silane coupling agent is not enough. Attempts have also been made to physically improve the impregnating properties of polyimide resin by dispersing the filaments that make up the glass fibers by rubbing or squeezing them.

[発明が解決しようとする課題] しかしながら、上述した物理的にポリイミド樹脂の含漫
性を向上させる方法では、ガラス繊維基材を構或するフ
ィラメントやガラス繊維そのものを破損したり、ガラス
繊維が曲がってしまったりしやすく、また、ガラス繊維
基材に対するポリイミド樹脂の含漫性の向上もなお不十
分であるため、高品質のガラス繊維強化ポリイミド樹脂
積層板を高い生産性の下に製造することが困難であると
いう問題点があった。
[Problems to be Solved by the Invention] However, the above-mentioned method of physically improving the inclusion property of polyimide resin may damage the filaments or glass fibers that make up the glass fiber base material, or may cause the glass fibers to bend. Furthermore, it is difficult to manufacture high-quality glass fiber-reinforced polyimide resin laminates with high productivity because the impurity of the polyimide resin to the glass fiber base material is still not sufficiently improved. The problem was that it was difficult.

したがって本発明の目的は、上記従来技術の問題点を解
決して、高品質のガラス繊維強化ポリイミド樹脂積層板
を高い生産性の下に製造することが可能な、ガラス繊維
基材を提供することにある。
Therefore, an object of the present invention is to provide a glass fiber base material that can solve the problems of the prior art described above and make it possible to manufacture high-quality glass fiber-reinforced polyimide resin laminates with high productivity. It is in.

[課題を解決するための手段コ 本発明は、上記目的を達成するためになされたものであ
り、本発明のガラス繊維強化ポリイミド樹脂積層板用ガ
ラス繊維基材は、シランカップリング剤と、ポリイミド
樹脂および/またはエポキシ変性ポリイミド樹脂とが表
面に付着したガラス繊維からなることを特徴とするもの
である。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and the glass fiber base material for a glass fiber reinforced polyimide resin laminate of the present invention comprises a silane coupling agent and a polyimide resin laminate. It is characterized in that it consists of glass fibers with resin and/or epoxy-modified polyimide resin attached to the surface.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明において、シランカップリング剤と、ポリイミド
樹脂および/またはエポキシ変性ポリイミド樹脂とが表
面に付着されるガラス繊維としては、ガラス繊維強化樹
脂積層板の強化材として従来より使用されているEガラ
ス、Tガラス、Dガラス等のガラス長繊維を用いること
ができる。また本発明のガラス繊維基材の形状は、ガラ
ス繊維よりなる織布、不織布、紙などのシート状のもの
であることが好ましい。
In the present invention, the glass fibers to which the silane coupling agent and the polyimide resin and/or the epoxy-modified polyimide resin are attached include E glass, which has been conventionally used as a reinforcing material for glass fiber reinforced resin laminates; Long glass fibers such as T glass and D glass can be used. Further, the shape of the glass fiber base material of the present invention is preferably a sheet-like material such as a woven fabric, a nonwoven fabric, or a paper made of glass fiber.

上記ガラス繊維の表面に付着されるシランカッブリング
剤としては、従来公知のものが適宜使用できる。代表的
なものとしては、例えば、ビニルトリクロロシラン、ビ
ニルトリス(2−メトキシ)シラン、γ−グリシドキシ
プロビルトリメトキシシラン、γ−メタクリロキシプロ
ビルトリメトキシシラン、γ−アミノプロビルトリエト
キシシラン、γ一(2−アミノエチル)アミノプロピル
トリメトキシシラン、N一β一(N−ビニルベンジルア
ミノエチル)一γ−アミノプロピルトリメトキシシラシ
◆塩酸塩、N−フェニルーγ−アミノプロピルトリメト
キシシラン、γ−クロロプロビルトリメトキシシラン、
γ−メルカプトブ口ビルトリメトキシシラン、ビニルト
リエトキシシラン、β一(3,4−エポキシシクロヘキ
シル)エチルトリメトキシシラン等を挙げることができ
る。
As the silane coupling agent to be attached to the surface of the glass fiber, any conventionally known silane coupling agent can be used as appropriate. Typical examples include vinyltrichlorosilane, vinyltris(2-methoxy)silane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and γ-aminopropyltriethoxysilane. , γ-(2-aminoethyl)aminopropyltrimethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane hydrochloride, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane,
Examples include γ-mercaptobutyltrimethoxysilane, vinyltriethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane.

上記シランカップリング剤とともに用いられる樹脂は、
ポリイミド樹脂および/またはエポキシ変性ポリイミド
樹脂である。
The resin used with the above silane coupling agent is
They are polyimide resins and/or epoxy-modified polyimide resins.

ポリイミド樹脂としては、従来公知のものが適宜使用で
きる。代表的なものとしては、下記のものを挙げること
ができる。
As the polyimide resin, conventionally known ones can be used as appropriate. Typical examples include the following.

●ケルイミド(Kerimid ) キネル(K1nel) [共 に商品名、 ローヌ・ブーラン社製] ・ベスベル(Vespel)、 カプトン (Kapton) [共 に商品名、デュポン社製] トーロン (Torlon) [商品名、 アモコ・ケミカ ルズ社製] ・BTレジン [商品名、三菱瓦斯化学■製] ・NR−150 [商品名、デュポン社製] ・サーミド(Theriid ,. HR−600) [商品名、 ヒューズエアクラフト社製] ●PMR−15 ・LARK−160 またエポキシ変性ポリイミド樹脂としては、■前記ポリ
イミド樹脂に、エポキシ樹脂を添加してなる混合物、 ■上記■を加熱して、部分的に反応させたもの、を用い
ることができる。
●Kerimid K1nel [Both product names, manufactured by Rhône-Boulin] ・Vespel, Kapton [Both product names, manufactured by DuPont] Torlon [Product name, Amoco Chemicals・BT Resin [Product Name, Manufactured by Mitsubishi Gas Chemical Company] ・NR-150 [Product Name, Manufactured by DuPont] ・Theriid (HR-600) [Product Name, Manufactured by Hughes Aircraft Company] ●PMR -15 ・LARK-160 Furthermore, as the epoxy-modified polyimide resin, (1) a mixture obtained by adding an epoxy resin to the above polyimide resin, (2) a mixture obtained by heating the above (2) to cause a partial reaction, can be used. .

このとき用いら几るエポキシ樹脂としては、下記のもの
を挙げることができる。
Examples of epoxy resins that can be used at this time include the following.

・ビスフェノールAのジグリシジルエーテル・ビスフェ
ノールAのジグリシジルエーテル・ビスフェノールFの
ジグリシジルエーテル・臭素化エポキシ樹脂 ・臭素化エポキシ松脂 ◆ノボラック樹脂のポリグリシジルエーテル前記エポキ
シ樹脂には、通常、硬化剤(促進剤)が併用され、これ
らの硬化剤(促進剤)としては、下記に示すアミン系、
酸無水物系、エポキシ系等の硬化剤(促進剤)を挙げる
ことができる。
- Diglycidyl ether of bisphenol A - Diglycidyl ether of bisphenol A - Diglycidyl ether of bisphenol F - Brominated epoxy resin - Brominated epoxy pine resin - Polyglycidyl ether of novolak resin These curing agents (accelerators) include the following amine-based curing agents,
Examples include acid anhydride-based curing agents (accelerators) and epoxy-based curing agents (accelerators).

a.アミン系 ・ジエチレントリアミン ・トリエチレンテトラミン ・ジエチルアミンプロピルアミン ・テトラエチレンペンタミン ・脂肪族ポリエーテルトリアミン ◆ジシアンジアミド ・4,4′ −メチレンジアニリン(MDA)・m−フ
エニレンジアミン(M P D A)●4,4′−ジア
ミノジフエニルスルフオン・2,6−ジアミノピリジン
(DAP)・33.3%MPDA−33.3%MDA−
33.3%イソプロビルMPDA ・40%MDA−60%ジエチルMDA・40%MPD
A−60%MDA ・アミノポリアミド ・2−エチル−4−メチルイミダゾール・2,4.6−
}リス(ジメチルアミノエチル)フェノール 等 b.酸無水物系 ・フタル酸無水物 ・ヘキサヒドロフタル酸無水物 ●ナディクメチルアンハイドライド ・ドデシルコハク酸無水物 ●クロレンディクアンハイドライド ・トリメリト酸無水物 ・マレイン酸無水物 ・コハク酸無水物 ・メチルテトラヒドロフタル酸無水物 ・3.3’ ,4.4’ −ベンゾフエノンーテトラカ
ルボン酸二無水物 等 C.エポキシ系 ・プチルグリシジルエーテル ●ヘプチルグリシジルエーテル ●オクチルグリシジルエーテル φアリルグリシジルエーテル −p−t−プチルフエニルグリシジルエーテル●フェニ
ルグリシジルエーテル ・クレジルグリシジルエーテル 等 なお、前記ポリイミド樹脂の中には、カルボキシル基、
アミノ基等を含むものがあり、これらはエポキシ樹脂の
硬化剤(促進剤)として作用するので、これらのポリイ
ミド樹脂を用いれば、エポキシ樹脂に硬化剤(促進剤)
を添加するすることは必須ではない。
a. Amine type・diethylenetriamine・triethylenetetramine・diethylaminepropylamine・tetraethylenepentamine・aliphatic polyethertriamine◆Dicyandiamide・4,4'-methylene dianiline (MDA)・m-phenylenediamine (MPDA)● 4,4'-diaminodiphenylsulfone/2,6-diaminopyridine (DAP)/33.3% MPDA-33.3% MDA-
33.3% Isoprobyl MPDA 40% MDA-60% Diethyl MDA 40% MPD
A-60%MDA・Aminopolyamide・2-ethyl-4-methylimidazole・2,4.6-
}Lis(dimethylaminoethyl)phenol etc. b. Acid anhydrides, phthalic anhydride, hexahydrophthalic anhydride, nadic methyl anhydride, dodecyl succinic anhydride, chlorendic anhydride, trimellitic anhydride, maleic anhydride, succinic anhydride, methyl Tetrahydrophthalic anhydride/3.3',4.4'-benzophenone-tetracarboxylic dianhydride, etc.C. Epoxy-based butyl glycidyl ether ●Heptyl glycidyl ether ●Octyl glycidyl ether ,
Some polyimide resins contain amino groups, etc., and these act as curing agents (accelerators) for epoxy resins.
It is not necessary to add.

前述した■のエポキシ変性ポリイミド樹脂は、ポリイミ
ド樹脂とエポキシ樹脂とを、これらの雪量比が、1:0
.01〜1となるように混合すZことにより得られる。
The above-mentioned epoxy-modified polyimide resin (■) is made by combining polyimide resin and epoxy resin with a snow amount ratio of 1:0.
.. It is obtained by mixing Z so that it becomes 01-1.

また前述した■のエポキシ変性ポリイミド樹脂は、上述
した■のエポキシ感性ポリイミド樹脂を100〜250
℃に加熱しχ部分的に反応させることにより得られる。
In addition, the epoxy-modified polyimide resin (2) mentioned above has a content of 100 to 250% of the epoxy-sensitive polyimide resin (2) mentioned above.
It is obtained by heating to ℃ and partially reacting.

本発明において、ポリイミド樹脂とエポキシ溪性ポリイ
ミド樹脂との混合物を用いる場合には、ポリイミド樹脂
とエポキシ変性ポリイミドとの1量比を1.:0.1〜
1とすることが好ましい。
In the present invention, when a mixture of a polyimide resin and an epoxy-modified polyimide resin is used, the ratio of the polyimide resin to the epoxy-modified polyimide is 1. :0.1~
It is preferable to set it to 1.

本発明のガラス繊維基材は、以上説明したシランカップ
リング剤と、ポリイミド樹脂および/jたはエポキシ変
性ポリイミド樹脂(以下、ポリイミド系樹脂と総称する
)を、例えば以下に示すス法によりガラス繊維の表面に
付着させることに詰り得られる。
The glass fiber base material of the present invention is produced by combining the above-described silane coupling agent and a polyimide resin and /j or epoxy-modified polyimide resin (hereinafter collectively referred to as polyimide resin) into glass fibers by, for example, the following method. It can get stuck when attached to the surface.

■ ガラス繊維基材となるガラス繊維を、室沼に近い温
度下で、シランカップリング剤と寸リイミド系樹脂とを
含む混合液中に数秒間日潰した後、マングルにより20
〜40%ビ・〉クアップとなるよう絞液し、続いて10
0〜180℃で数秒間乾燥キュアリングする。
■ After crushing the glass fibers that will serve as the glass fiber base material for a few seconds in a mixed solution containing a silane coupling agent and a thin-limide resin at a temperature close to that of Muronuma,
Squeeze the liquid until it reaches ~40% volume, then add 10%
Dry cure for a few seconds at 0-180°C.

このときのシランカップリング剤とポリイミド系樹脂と
を含む混合液は、シランカップリング剤を水および/ま
たは有機溶剤(例えばアルコール類、ケトン類、グリコ
ールエーテル類、ジメチルホルムアミド等)で溶解して
なるシランカップリング剤溶液と、ポリイミド系樹脂を
有機溶剤(例えばビリジン、ピロリドン、ジメチルホル
ムアミド、テトラヒドロフラン、メチルエチルケトン等
)で溶解してなるポリイミド系樹脂溶液とを混合するこ
とにより得られる。なお、このポリイミド系樹脂溶液に
代えて、ポリイミド系樹脂に水、界面活性剤等を加えて
得られたポリイミド系樹脂水分散液を用いることもでき
る。また、シランカップリング剤とポリイミド系樹脂と
を水および/または有機溶剤(例えばビリジン、ピロリ
ドン、ジメチルホルムアミド、テトラヒド口フラン、メ
チルエチルケトン等)に添加して、上記の混合液を得て
もよい。
The mixed solution containing the silane coupling agent and polyimide resin at this time is obtained by dissolving the silane coupling agent in water and/or an organic solvent (for example, alcohols, ketones, glycol ethers, dimethylformamide, etc.). It is obtained by mixing a silane coupling agent solution and a polyimide resin solution prepared by dissolving a polyimide resin in an organic solvent (eg, pyridine, pyrrolidone, dimethylformamide, tetrahydrofuran, methyl ethyl ketone, etc.). Note that instead of this polyimide resin solution, an aqueous polyimide resin dispersion obtained by adding water, a surfactant, etc. to a polyimide resin can also be used. Alternatively, the above mixed solution may be obtained by adding the silane coupling agent and the polyimide resin to water and/or an organic solvent (eg, pyridine, pyrrolidone, dimethylformamide, tetrahydrofuran, methyl ethyl ketone, etc.).

なお、ガラス繊維基材となるガラス繊維にシランカップ
リング剤とポリイミド系樹脂とを含む混合液を付着させ
る方法としては、浸漬法の他に、スプレー法等の公知の
方法が適用できる。
In addition, as a method for attaching the liquid mixture containing a silane coupling agent and a polyimide resin to the glass fibers serving as the glass fiber base material, other than the dipping method, a known method such as a spray method can be applied.

■ ガラス繊維をシランカップリング剤で処理した後、
このガラス繊維をポリイミド系樹脂で処理し、この後、
100〜180℃で数秒間乾燥キュアリングする。
■ After treating the glass fiber with a silane coupling agent,
This glass fiber is treated with polyimide resin, and then
Dry cure for a few seconds at 100-180°C.

このときのシランカップリング剤による処理は、■で例
示したシランカップリング剤溶液を用い、またポリイミ
ド系樹脂による処理も、■で例示したポリイミド系樹脂
溶液または水分散液を用い、それぞれ浸漬法、スプレー
法等の公知の方法で行われる。
The treatment with a silane coupling agent at this time uses the silane coupling agent solution exemplified in (■), and the treatment with a polyimide resin uses the polyimide resin solution or aqueous dispersion illustrated in (■), respectively. This is carried out by a known method such as a spray method.

上記■、■の方法により得られたガラス繊維基材に対す
るシランカップリング剤の付着量(固形分基準)は0.
001〜0.5重量%、特に0.01〜0.  2重量
%の範囲であることが望ましく、またポリイミド系樹脂
の付着量(固形分基準)は0.001〜0.5重量%、
特に0.01〜0.3重量%の範囲であるのが望ましい
The amount of silane coupling agent deposited on the glass fiber base material obtained by the methods (1) and (2) above (based on solid content) was 0.
001 to 0.5% by weight, especially 0.01 to 0.00% by weight. It is desirable that the amount is in the range of 2% by weight, and the amount of polyimide resin attached (based on solid content) is 0.001 to 0.5% by weight,
In particular, a range of 0.01 to 0.3% by weight is desirable.

[実施例] 以下、実施例により本発明を更に説明する。[Example] The present invention will be further explained below with reference to Examples.

実施例l シランカップリング剤としてN−フエニルーγ−アミノ
ブロビルトリエトキシシラン(商品名二KBM573、
信越化学工業側製)を用い、これを酢酸含有水溶液に溶
解することにより、0.7重量%の上記シランカップリ
ング剤と3.0重量%の酢酸を含有する、シランカップ
リング剤水溶液(以下、シラン処理液という)を調製し
た。
Example 1 N-phenyl-γ-aminobrobyltriethoxysilane (trade name 2KBM573,
By dissolving this in an acetic acid-containing aqueous solution, a silane coupling agent aqueous solution (hereinafter referred to as , silane treatment solution) was prepared.

またポリイミド系樹脂としてポリアミノビスマレイミド
樹脂(商品名:ケルイミド601、日本ポリイミド■製
)を用い、このポリアミノビスマレイミド樹脂10重量
部を、所定量の非イオン界面活性剤(高分子量プロピレ
ンオキサイドーエチレンオキサイドブロック・コポリマ
ー)の存在下に常法により強制分散させて、ポリアミノ
ビスマレイミド樹脂エマルジョンを得、さらに、ボリア
ミノビスマレイミド樹脂の濃度が0.1重量%となるよ
うに水で希釈して、ボリアミノビスマレイミド樹脂水分
散液を調製した。
In addition, polyamino bismaleimide resin (product name: Kelimide 601, manufactured by Nippon Polyimide ■) was used as the polyimide resin, and 10 parts by weight of this polyamino bismaleimide resin was mixed with a predetermined amount of nonionic surfactant (high molecular weight propylene oxide - ethylene oxide). A polyamino bismaleimide resin emulsion is obtained by forced dispersion in the presence of a polyamino bismaleimide resin (block copolymer) using a conventional method. An aqueous aminobismaleimide resin dispersion was prepared.

次に、熱処理脱脂したガラス織物(商品名:WEA−1
16E,日東紡績■製)を前述のシラン処理液に浸漬し
、マングルを用いてピックアップ30%となるように絞
液した後、110℃で5分間加熱乾燥した。
Next, heat treated and degreased glass fabric (product name: WEA-1
16E, manufactured by Nittobo Co., Ltd.) was immersed in the above-mentioned silane treatment solution, squeezed using a mangle to give a pick-up of 30%, and then heated and dried at 110° C. for 5 minutes.

この後、加熱乾燥したガラス織物を、上述したポリアミ
ノビスマレイミド樹脂水分散液に浸漬し、マングルを用
いピックアップ30%となるよう絞液した後、110℃
で5分間加熱乾燥して、ガラス繊維に対するシランカッ
プリング剤の付着量(固形分基準)が0.  1重量%
で、ポリアミノビスマレイミド樹脂の付着量(固形分基
準)が0.05重量%であるガラス繊維基材(以下、ガ
ラス繊維基材1という)を得た。
Thereafter, the heat-dried glass fabric was immersed in the above-mentioned polyamino bismaleimide resin aqueous dispersion, and after squeezing the liquid using a mangle to a pick-up ratio of 30%, the mixture was heated to 110°C.
After heating and drying for 5 minutes, the amount of silane coupling agent attached to the glass fiber (based on solid content) was 0. 1% by weight
Thus, a glass fiber base material (hereinafter referred to as glass fiber base material 1) having a polyamino bismaleimide resin adhesion amount (based on solid content) of 0.05% by weight was obtained.

実施例2 まず、実施例1と同様にして、実施例1と同様のシラン
処理液を調製した。
Example 2 First, in the same manner as in Example 1, a silane treatment liquid similar to that in Example 1 was prepared.

また、エポキシ樹脂エマルジョン(商品名:ユカレジン
KE−002、吉村油化学■製)をエポキシ樹脂の濃度
が0.1重量%となるように水で希釈して、エポキシ樹
脂水分散液を得た。そしてこのエポキシ樹脂水分散液に
、実施例1と同様にして得たポリアミノビスマレイミド
樹脂水分散液を等量混合して、エポキシ変性ポリイミド
樹脂溶液を調製した。
Further, an epoxy resin emulsion (trade name: Yucaresin KE-002, manufactured by Yoshimura Yukagaku ■) was diluted with water so that the epoxy resin concentration was 0.1% by weight to obtain an epoxy resin aqueous dispersion. Then, an equal amount of the polyamino bismaleimide resin aqueous dispersion obtained in the same manner as in Example 1 was mixed into this epoxy resin aqueous dispersion to prepare an epoxy-modified polyimide resin solution.

次に、実施例1と同様の方法により、熱処理脱脂したガ
ラス織物(商品名:WEA−116E、日東紡績■製)
を上記シラン処理液で処理した。
Next, a heat-treated and degreased glass fabric (product name: WEA-116E, manufactured by Nitto Boseki ■) was prepared in the same manner as in Example 1.
was treated with the above silane treatment solution.

その後、このガラス繊維織物を上記エポキシ変性ポリイ
ミド樹脂溶液に浸漬し、ピックアップ30%となるよう
校液した後、110℃で5分間加熱乾燥して、ガラス繊
維に対するシランカップリング剤の付着量(固形分基準
)が0,1重量%で、エポキシ変性ポリイミド樹脂の付
着量(固形分基準)が0.05重量%であるガラス繊維
基材(以下、ガラス繊維基材2という)を得た。
Thereafter, this glass fiber fabric was immersed in the above epoxy-modified polyimide resin solution, a proofing solution was added to the epoxy-modified polyimide resin solution to give a pick-up of 30%, and then heated and dried at 110°C for 5 minutes. A glass fiber base material (hereinafter referred to as glass fiber base material 2) was obtained in which the amount of epoxy-modified polyimide resin attached was 0.05 wt% (based on solid content) and 0.1 wt% (based on solid content).

比較例1 まず、実施例1と同様のシラン処理液を用いて、実施例
1と同様の方法により、熱処理脱脂したガラス織物(商
品名:WEA−116E、日東紡績■製)を処理した。
Comparative Example 1 First, a heat-treated and degreased glass fabric (trade name: WEA-116E, manufactured by Nitto Boseki ■) was treated in the same manner as in Example 1 using the same silane treatment solution as in Example 1.

次に、このガラス繊維基材を、エポキシ樹脂エマルジョ
ン(商品名:ユカレジンKE一〇〇2、吉村油化学■製
)をエポキシ樹脂の濃度が0.1重量%となるように希
釈して得たエポキシ樹脂水分散液に浸漬し、ピックアッ
プ30%となるよう絞液した後、110℃で5分間加熱
乾燥して、ガラス繊維に対するシランカップリング剤の
付着量(固形分基準)が0.1重量%で、エポキシ樹脂
の付着量(固形分基準)が0.05重量%であるガラス
繊維基材(以下、ガラス繊維基材3という)を得た。
Next, this glass fiber base material was obtained by diluting an epoxy resin emulsion (trade name: Yukaresin KE 1002, manufactured by Yoshimura Yukagaku ■) so that the concentration of epoxy resin was 0.1% by weight. After immersing in an aqueous epoxy resin dispersion and squeezing the liquid to a pick-up of 30%, it was heated and dried at 110°C for 5 minutes, and the amount of silane coupling agent attached to the glass fiber (based on solid content) was 0.1 weight. %, and a glass fiber base material (hereinafter referred to as glass fiber base material 3) having an epoxy resin adhesion amount (solid content basis) of 0.05% by weight was obtained.

比較例2 実施例1と同様にして調製したシラン処理液に、ガラス
繊維織物(商品名:WEA−116E,日東紡績■製)
を浸漬し、マングルを用いてピックアップ30%となる
ように絞液した後、110℃で加熱乾燥して、ガラス繊
維に対するシランカップリング剤の付着量(固形分基準
)が0.  1重量%であるガラス繊維基材(以下、ガ
ラス繊維基材4という)を得た。
Comparative Example 2 Glass fiber fabric (trade name: WEA-116E, manufactured by Nitto Boseki ■) was added to the silane treatment solution prepared in the same manner as in Example 1.
After soaking the glass fibers and squeezing the liquid using a mangle to a pick-up concentration of 30%, the mixture was heated and dried at 110°C until the amount of silane coupling agent attached to the glass fibers (based on solid content) was 0. A glass fiber base material (hereinafter referred to as glass fiber base material 4) having a concentration of 1% by weight was obtained.

試験例1(含漫性試験) まず、実施例1〜2および比較例1〜2で得られたガラ
ス繊維基材1〜4から、縦が10cmで横が6cmの含
漫性測定用試験片をそれぞれ切出した。
Test Example 1 (Fluidity Test) First, from the glass fiber substrates 1 to 4 obtained in Examples 1 to 2 and Comparative Examples 1 to 2, a test piece for measuring fumeability with a length of 10 cm and a width of 6 cm was prepared. were cut out from each.

また、ポリイミド樹脂(商品名:ケルイミド601、日
本ポリイミド■製)をN−メチル−2ービロリドン中に
5Qwt%濃度となるように溶解させ、25℃における
粘度が2 8 0 cpsとなるように調整して、含漫
性試験用ポリイミド樹脂溶液を得た。
In addition, polyimide resin (trade name: Kelimide 601, manufactured by Nippon Polyimide ■) was dissolved in N-methyl-2-pyrrolidone to a concentration of 5Qwt%, and the viscosity at 25°C was adjusted to 280 cps. A polyimide resin solution for a fumes-containing test was obtained.

次に、先に準備した各含浸性測定用試験片をこの含浸性
試験用ポリイミド樹脂溶液に静かに浮かべ、目視観察に
よりこの樹脂溶液の含浸状態を観察しながら、ポリイミ
ド樹脂溶液が試験片を構成するフィラメント間に完全に
含浸するまでの時間(含漫に要した時間)を、含漫性測
定用試験片毎に測定した。
Next, each test piece for impregnation measurement prepared earlier was gently floated in this polyimide resin solution for impregnation test, and while visually observing the impregnation state of this resin solution, the polyimide resin solution formed the test piece. The time required for complete impregnation between the filaments (time required for impregnation) was measured for each test piece for measuring impregnability.

さらに、比較例1〜2で得られたガラス繊維基材3〜4
に対するエポキシ樹脂ワニスの含浸性試験を、以下の要
領で行った。
Furthermore, glass fiber base materials 3 and 4 obtained in Comparative Examples 1 and 2
An impregnation test of epoxy resin varnish was conducted in the following manner.

すなわち、比較例1〜2で得られたガラス繊維基材3〜
4から、縦が10cmで横が6cmの含漫性測定用試験
片を切出し、この含浸性測定用試験片を下記組成のエポ
キシ樹脂ワニス(FR−4処方)に静かに浮かべ、目視
観察によりこの樹脂ワニスの含浸状態を観察しながら、
エポキシド樹脂ワニスが試験片を構成するフィラメント
間に完全に含浸するまでの時間(含浸に要した時間)を
、含漫性測定用試験片毎に測定した。
That is, glass fiber base materials 3 to 3 obtained in Comparative Examples 1 to 2
4, cut out a test piece for measuring impregnability with a length of 10 cm and a width of 6 cm.The test piece for impregnating property measurement was gently floated on an epoxy resin varnish (FR-4 formulation) with the following composition, and visually observed. While observing the impregnated state of the resin varnish,
The time required for the epoxide resin varnish to completely impregnate between the filaments constituting the test piece (the time required for impregnation) was measured for each test piece for measuring impregnation.

[エポキシ樹脂ワニスの組威] エビコート5046−B−80 (商品名、油化シエル
エポキシ■製)・・・100重量部・エピコート154
(商品名、油化シエルエポキシ株製)      ・・
・ 20重量部・ジシアンジアミド    ・・・  
4重量部・ベンジルジメチルアミン ・・・0.2重量
部●メチルエチルケトン   ・・・ 15重量部・ジ
メチルホルムアミド  ・・・ 30重量部これらの結
果を表−1に示す。
[Assemblage of epoxy resin varnish] Ebikoat 5046-B-80 (trade name, manufactured by Yuka Shell Epoxy ■)...100 parts by weight, Epicoat 154
(Product name, manufactured by Yuka Ciel Epoxy Co., Ltd.)
・20 parts by weight・dicyandiamide...
4 parts by weight Benzyldimethylamine 0.2 parts by weight Methyl ethyl ketone 15 parts by weight Dimethylformamide 30 parts by weight These results are shown in Table 1.

表−1から明らかなように、実施例1〜2で得られたガ
ラス繊維基材1〜2に対するポリイミド樹脂溶液の含浸
性は、比較例1〜2で得られたガラス繊維基材3〜4に
対するポリイミド樹脂溶液の含浸性より優れていること
が確認された。
As is clear from Table 1, the impregnating properties of the polyimide resin solution on the glass fiber base materials 1 and 2 obtained in Examples 1 and 2 are as follows: It was confirmed that the impregnating property of the polyimide resin solution was superior to that of the polyimide resin solution.

また、ガラス繊維の表面にシランカップリング剤とエポ
キシ樹脂とを付着させてなるガラス繊維基材3に対する
エポキシ樹脂ワニスの含浸性を評価したところ、予想外
にもガラス繊維の表面にシランカップリング剤のみを付
着ぎ゛−でなるガラス繊維基材4に対するエポキシ樹脂
ワニスの含浸性より低いことが確認された。
In addition, when we evaluated the impregnability of the epoxy resin varnish to the glass fiber base material 3, which is made by adhering a silane coupling agent and an epoxy resin to the surface of glass fibers, we unexpectedly found that the silane coupling agent and epoxy resin were attached to the surface of the glass fibers. It was confirmed that the impregnating property of the epoxy resin varnish was lower than that of the glass fiber base material 4, which is made by adhering only the epoxy resin varnish.

試験例2(ハンダ耐熱性試験) 実施例1〜2および比較例1〜2で得られたガラス繊維
基材l〜4に、マトリックス樹脂の溶液として試験例l
で用いた含漫性試験用ポリイミド樹脂溶液と同様のポリ
イミド樹脂溶液をそれぞれ含浸させた後、160℃で1
0分間予備乾燥して、計4種類のブリブレグを得た。
Test Example 2 (Solder Heat Resistance Test) Test Example 1 was applied as a matrix resin solution to the glass fiber base materials 1 to 4 obtained in Examples 1 to 2 and Comparative Examples 1 to 2.
After impregnating each polyimide resin solution with the same polyimide resin solution as the polyimide resin solution for impregnation test used in 1.
Preliminary drying was carried out for 0 minutes to obtain a total of four types of blibregs.

次いで、これら4種類のプリプレグについて、それぞれ
5枚を積層して積層物を得、各積層物の上部表面および
下部表面に銅箔を重ね合せて、圧力20kg/cJ,温
度170℃の条件で90分間低圧戒形し、さらに、得ら
れた成形物を200℃で24時間熱処理して、樹脂量が
40vt%であるハンダ耐熱性試験用ポリイミド樹脂積
層板を計4種類得た。
Next, five sheets of each of these four types of prepreg were laminated to obtain a laminate, and copper foil was placed on the upper and lower surfaces of each laminate, and the mixture was heated at a pressure of 20 kg/cJ and a temperature of 170° C. for 90 minutes. After being molded under low pressure for a minute, the resulting molded product was further heat-treated at 200° C. for 24 hours to obtain a total of four types of polyimide resin laminates for solder heat resistance testing with a resin content of 40 vt%.

次に、これらのハンダ耐熱性試験用ポリイミド樹脂積層
板にエッチング処理を施して銅泊を取り除き、133℃
のプレッシャークッカーで処理した後、280℃のハン
ダ浴に20秒間浸漬し、浸漬後の各ハンダ耐熱性試験用
ポリイミド樹脂積層板にふくれが発生しているか否かを
目視観察により判定した。
Next, these polyimide resin laminates for solder heat resistance testing were etched to remove the copper foil, and heated to 133°C.
After being treated in a pressure cooker, it was immersed in a 280° C. solder bath for 20 seconds, and it was determined by visual observation whether or not blistering had occurred in each polyimide resin laminate for solder heat resistance testing after immersion.

さらに、比較例1〜2で得られたガラス繊維基材3〜4
に、マトリックス樹脂の溶液として試験例1で用いたエ
ポキシ樹脂ワニス(FR−4処方)と同様のエポキシ樹
脂ワニスをそれぞれ含浸させた以外は、上述したハンダ
耐熱性試験用ポリイミド樹脂積層板と同様にしてハンダ
耐熱性試験用エポキシ樹脂積層板を得、同様のハンダ耐
熱性試験を行った。
Furthermore, glass fiber base materials 3 and 4 obtained in Comparative Examples 1 and 2
were impregnated with an epoxy resin varnish similar to the epoxy resin varnish (FR-4 formulation) used in Test Example 1 as a matrix resin solution. An epoxy resin laminate for a solder heat resistance test was obtained, and a similar solder heat resistance test was conducted.

これらの結果を表−2に示す。These results are shown in Table-2.

*1:O・・・・・・ほとんどふくれなし△・・・・・
・若干ふくれ発生 表−2から明らかなように、ガラス繊維基材として実施
例1〜2で得られたガラス繊維基材1〜2を用いたブリ
プレグを材料とするポリイミド樹脂積層板には、ふくれ
がほとんど認められず、ハンダ耐熱性に優れていること
が確認された。
*1: O...Almost no swelling △...
- Occurrence of slight blistering As is clear from Table 2, polyimide resin laminates made of Bripreg using glass fiber base materials 1 and 2 obtained in Examples 1 and 2 as glass fiber base materials do not cause blistering. Almost no was observed, and it was confirmed that the product had excellent solder heat resistance.

これに対し、ガラス繊維基材として比較例2で得られた
ガラス繊維基材4を用いたプリプレグを材料とするポリ
イミド樹脂積層板およびエポキシ樹脂積層板には、ふく
れが発生しており、ハンダ耐熱性に劣ることが確認され
た。
On the other hand, polyimide resin laminates and epoxy resin laminates made of prepreg using the glass fiber base material 4 obtained in Comparative Example 2 as the glass fiber base material have blisters and are resistant to solder heat. It was confirmed that they are inferior in gender.

試験例3(貯蔵安定性試験) 実施例1〜2および比較例1〜2で得られたガラス繊維
基材1〜4の貯蔵安定性試験を下記の方法により行った
Test Example 3 (Storage Stability Test) A storage stability test was conducted on the glass fiber base materials 1 to 4 obtained in Examples 1 to 2 and Comparative Examples 1 to 2 by the following method.

まず、ガラス繊維基材1〜4を温度40℃、湿度90%
の雰囲気中に60日間放置した後、試験例2と同様にし
て、計4種類のポリイミド樹脂積層板と計2種類のエポ
キシ樹脂積層板とを作製した。次に、試験例2と同様に
してこれら積層板の銅泊をエッチング除去した後、J 
IS−C6481の方法に従って、ハンダ耐熱性試験お
よび絶縁抵抗の測定を行った。
First, glass fiber base materials 1 to 4 were prepared at a temperature of 40°C and a humidity of 90%.
After being left in the atmosphere for 60 days, a total of four types of polyimide resin laminates and a total of two types of epoxy resin laminates were produced in the same manner as in Test Example 2. Next, in the same manner as in Test Example 2, after removing the copper foil on these laminates by etching,
A solder heat resistance test and an insulation resistance measurement were performed according to the method of IS-C6481.

これらの結果を表−3に示す。These results are shown in Table 3.

(以下余白) 表−3から明らかなように、実施例1〜2で得られたガ
ラス繊維基材1〜2の場合には、これらのガラス繊維基
材を温度40℃、湿度90%の雰囲気中に60日間放置
した後でも、これらのガラス繊維基材を用いて、ハンダ
耐熱性に優れているとともに絶縁抵抗の高いポリイミド
樹脂積層板を得ることができ、これらのガラス繊維基材
1〜2は貯蔵安定性に優れていることが確認された。
(Margin below) As is clear from Table 3, in the case of glass fiber base materials 1 and 2 obtained in Examples 1 and 2, these glass fiber base materials were placed in an atmosphere with a temperature of 40°C and a humidity of 90%. Using these glass fiber base materials, polyimide resin laminates with excellent solder heat resistance and high insulation resistance can be obtained even after being left in the interior for 60 days, and these glass fiber base materials 1 to 2 was confirmed to have excellent storage stability.

これに対し、比較例1で得られたガラス繊維基材3の場
合には、このガラス繊維基材を温度40℃、湿度90%
の雰囲気中に60日間放置した後では、このガラス繊維
基材を用いてハンダ耐熱性に優れたポリイミド樹脂積層
板またはエポキシ樹脂積層板を得ることができず、また
積層板の絶縁抵抗の低下も認められ、このガラス繊維基
材3は貯蔵安定性に劣っていることが確認された。
On the other hand, in the case of the glass fiber base material 3 obtained in Comparative Example 1, this glass fiber base material was heated at a temperature of 40°C and a humidity of 90%.
After being left for 60 days in an atmosphere of It was confirmed that this glass fiber base material 3 had poor storage stability.

また、比較例2で得られたガラス繊維基材4の場合には
、このガラス繊維基材を温度40℃、湿度90%の雰囲
気中に60日間放置すると、実施例1〜2で得られたガ
ラス繊維基材1〜2を用いて得られるポリイミド樹脂積
層板よりもハンダ耐熱性に劣るポリイミド樹脂積層板ま
たはエポキシ樹脂積層板しか得られないことが確認され
た。
In addition, in the case of the glass fiber base material 4 obtained in Comparative Example 2, when this glass fiber base material was left in an atmosphere with a temperature of 40 ° C. and a humidity of 90% for 60 days, the results obtained in Examples 1 and 2 were obtained. It was confirmed that only a polyimide resin laminate or an epoxy resin laminate having inferior solder heat resistance than the polyimide resin laminate obtained using glass fiber base materials 1 and 2 could be obtained.

[発明の効果] 以上説明したように、本発明のポリイミド樹脂積層板用
ガラス繊維基材はポリイミド樹脂の含漫性に優れており
、短時間でポリイミド樹脂が十分に含浸される。また本
発明のポリイミド樹脂積層板用ガラス繊維基材は、貯蔵
安定性にも優れている。そして、本発明のポリイミド樹
脂積層板用ガラス繊維基材を用いたブリプレグを材料と
するポリイミド樹脂積層板は、低圧成形法により作製し
た場合でもハンダ耐熱性に優れている。
[Effects of the Invention] As explained above, the glass fiber base material for a polyimide resin laminate of the present invention has excellent polyimide resin impregnating properties, and is sufficiently impregnated with the polyimide resin in a short time. Furthermore, the glass fiber base material for polyimide resin laminates of the present invention also has excellent storage stability. A polyimide resin laminate made of Bripreg using the glass fiber base material for polyimide resin laminates of the present invention has excellent solder heat resistance even when produced by a low-pressure molding method.

したがって本発明を実施することにより、高品質のガラ
ス繊維強化ポリイミド樹脂積層板を高い生産性の下に製
造することが可能となる。
Therefore, by carrying out the present invention, it becomes possible to manufacture a high quality glass fiber reinforced polyimide resin laminate with high productivity.

Claims (1)

【特許請求の範囲】[Claims] (1)シランカップリング剤と、ポリイミド樹脂および
/またはエポキシ変性ポリイミド樹脂とが表面に付着し
たガラス繊維からなることを特徴とするガラス繊維強化
ポリイミド樹脂積層板用ガラス繊維基材。
(1) A glass fiber base material for a glass fiber-reinforced polyimide resin laminate, characterized in that it consists of glass fibers having a silane coupling agent and a polyimide resin and/or an epoxy-modified polyimide resin attached to the surface.
JP1186388A 1989-07-19 1989-07-19 Glass fiber base material for laminated board of glass fiber-reinforced polyimide resin Pending JPH0352934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1186388A JPH0352934A (en) 1989-07-19 1989-07-19 Glass fiber base material for laminated board of glass fiber-reinforced polyimide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1186388A JPH0352934A (en) 1989-07-19 1989-07-19 Glass fiber base material for laminated board of glass fiber-reinforced polyimide resin

Publications (1)

Publication Number Publication Date
JPH0352934A true JPH0352934A (en) 1991-03-07

Family

ID=16187520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1186388A Pending JPH0352934A (en) 1989-07-19 1989-07-19 Glass fiber base material for laminated board of glass fiber-reinforced polyimide resin

Country Status (1)

Country Link
JP (1) JPH0352934A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246395A (en) * 2011-05-27 2012-12-13 Hitachi Chemical Co Ltd Prepreg, laminated plate, and printed wiring board using thermocurable resin composition
JP2013071940A (en) * 2011-09-26 2013-04-22 Hitachi Chemical Co Ltd Prepreg for printed circuit board, laminated board and printed circuit board
WO2017022181A1 (en) * 2015-07-31 2017-02-09 日本板硝子株式会社 Flake-shaped glass and resin composition
JP2017145520A (en) * 2016-02-16 2017-08-24 平岡織染株式会社 High-temperature heat resistant sheet
JP2018178354A (en) * 2017-04-20 2018-11-15 オーチス エレベータ カンパニーOtis Elevator Company Fire resistant synthetic tension member
JP2020125559A (en) * 2019-02-05 2020-08-20 三菱ケミカル株式会社 Sizing agent and method for producing reinforcing fiber bundle
JP2020158945A (en) * 2020-01-22 2020-10-01 日東紡績株式会社 Glass fibers for reinforcing resin and glass fiber-reinforced resin molding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246395A (en) * 2011-05-27 2012-12-13 Hitachi Chemical Co Ltd Prepreg, laminated plate, and printed wiring board using thermocurable resin composition
JP2013071940A (en) * 2011-09-26 2013-04-22 Hitachi Chemical Co Ltd Prepreg for printed circuit board, laminated board and printed circuit board
WO2017022181A1 (en) * 2015-07-31 2017-02-09 日本板硝子株式会社 Flake-shaped glass and resin composition
CN107735378A (en) * 2015-07-31 2018-02-23 日本板硝子株式会社 Flake glass and resin combination
JPWO2017022181A1 (en) * 2015-07-31 2018-05-24 日本板硝子株式会社 Flaked glass and resin composition
US20180162764A1 (en) * 2015-07-31 2018-06-14 Nippon Sheet Glass Company, Limited Glass flakes and resin composition
US10590023B2 (en) 2015-07-31 2020-03-17 Nippon Sheet Glass Company, Limited Glass flakes and resin composition
JP2017145520A (en) * 2016-02-16 2017-08-24 平岡織染株式会社 High-temperature heat resistant sheet
JP2018178354A (en) * 2017-04-20 2018-11-15 オーチス エレベータ カンパニーOtis Elevator Company Fire resistant synthetic tension member
JP2020125559A (en) * 2019-02-05 2020-08-20 三菱ケミカル株式会社 Sizing agent and method for producing reinforcing fiber bundle
JP2020158945A (en) * 2020-01-22 2020-10-01 日東紡績株式会社 Glass fibers for reinforcing resin and glass fiber-reinforced resin molding

Similar Documents

Publication Publication Date Title
US4749614A (en) Process for coating fibers, use thereof, and product
JPH0352934A (en) Glass fiber base material for laminated board of glass fiber-reinforced polyimide resin
JPH06336533A (en) Polyimide film of improved adhesiveness
JPH03249274A (en) Glass fiber substrate and glass-fiber reinforced resin laminated board using the same glass fiber substrate as reinforcing material
JP2002187937A (en) Epoxy resin composition, prepreg, and metal-clad laminate
JPH03287628A (en) Glass fiber-reinforced resin laminate
JP3807635B2 (en) High frequency curable resin composition and high frequency curable adhesive sheet formed using the same
JP3539447B2 (en) Manufacturing method of laminated board
JP2844840B2 (en) Method for producing glass fiber substrate, glass fiber substrate and glass fiber reinforced resin laminate
JP3363388B2 (en) Epoxy resin composition, prepreg and metal foil-clad laminate
JPH11107111A (en) Glass woven fabric base material for printed wiring board
JPH03287869A (en) Glass fiber base material and glass fiber-reinforced resin laminate using the same
JP2012158681A (en) Epoxy resin composition
JPS62115038A (en) Production of reinforced epoxy resin
US4783222A (en) Glass fiber reinforced polyepoxide products and method for producing same
JPH03252336A (en) Base material of glass fiber and laminated plate of glass fiber-reinforced resin using the same as reinforcing material
EP0263895B1 (en) Surface treatment composition for glass fibers, method of coating glass fibers with said composition, and method of preparing glass fiber reinforced polyepoxide products
JP2800420B2 (en) Glass fiber substrate and glass fiber reinforced resin laminate using the same
JPH05147979A (en) Glass fiber base material and glass fiber reinforced resin laminated sheet using the same
JPS6335630A (en) Production of composite material base comprising aramid fiber
JPH01320147A (en) Fiber reinforced resin compound material
JPH04231357A (en) Glass fiber and glass fiber reinforced resin laminate
JP3243027B2 (en) Copper clad laminate
JPH0557291B2 (en)
JP2953256B2 (en) Manufacturing method of laminated board