JPH0352621A - Treatmaent of waste combustion gas - Google Patents

Treatmaent of waste combustion gas

Info

Publication number
JPH0352621A
JPH0352621A JP1184279A JP18427989A JPH0352621A JP H0352621 A JPH0352621 A JP H0352621A JP 1184279 A JP1184279 A JP 1184279A JP 18427989 A JP18427989 A JP 18427989A JP H0352621 A JPH0352621 A JP H0352621A
Authority
JP
Japan
Prior art keywords
cooling water
combustion exhaust
exhaust gas
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1184279A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
博史 佐藤
Minoru Hirano
稔 平野
Tsutomu Harunaga
春永 勤
Hidetaka Iso
礒 英隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1184279A priority Critical patent/JPH0352621A/en
Publication of JPH0352621A publication Critical patent/JPH0352621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To simply and efficiently carry out the collection of dust from waste combustion gas, the removal of SO2, HCl, etc., and the recovery of heat by connecting a cooling water feeding mechanism and an NaOH soln. feeding mechanism to the cooling water sprayer of a gas cooler so that the mechanisms can separately be controlled. CONSTITUTION:A gas cooler 1 fitted with a cooling water sprayer 8, a dry dust collector 2, a heat recovering unit 3 and a chimney 12 are arranged. A cooling water feeding mechanism 6, 13 and an NaOH soln. feeding mechanism 5, 14 are connected to the sprayer 8 so that the mechanisms can separately be controlled. Waste combustion gas is kept at 200-400 deg.C just before the dust collector 2 with the mechanism 6, 13 and the concn. of SO2 in the gas is regulated to a set value just before the chimney 12 with the mechanism 5, 14. The collection of dust from the gas, the removal of SO2, HCl, etc., and the recovery of heat are simply and efficiently carried out.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は特に焼却炉から発生する燃焼排ガスを除塵、脱
硫処理する方法に関するものである.[従来の技術] 焼却炉、ボイラー等から発生する燃焼排ガスは煤塵、S
02等を含有しているので、それらを除去して大気中に
放出することが必要である.そのためこれらの燃焼排ガ
スの処理方法として古くから種々の方法が提案され、実
施されている.排ガスの脱硫処理としては乾式吸収法、
湿式吸収法等があり、乾式吸収法の一例としてボイラー
の内部へ石灰石の粉末又は消石灰等を吹き込み、熱分解
させて酸化物とし、これを燃焼排ガスによって輸送する
間に、SO2を固定し、集塵機で補集する方法がある.
この方法ではボイラーそのものが脱硫装置ともなり、脱
硫のための付帯設備への投資が少ないという利点がある
. 湿式吸収法ではアルカリ溶液又はスラリーを吸収剤とし
て用いるが、吸収装置の前にガス予冷装置を設け、あら
かじめガスを冷却することが多い.ガス予冷装置にはス
プレー塔が多く用いられ、水が噴霧される.水の蒸発に
よって燃焼排ガス温度は断熱冷却線に沿って平衡温度5
5〜60℃まで低下すると同時に、硫酸ミスト及びダス
トの除去が行なわれる. この後、燃焼排ガス中のS Ox , H C 1等は
、苛性ソーダ溶液(以降、NaOH溶液とする)、亜硫
酸ナトリウム液(Na2 so,)、酢酸ナトリウム溶
液( C H s C O O N a >、アンモニ
ア水溶液等に吸収させて、回収又は廃棄される. [発明が解決しようとする課題] しかしながら、上述した乾式吸収法では脱硫のための付
帯設備等の節約に効果があるが、脱硫効果の点で問題が
ある. また、湿式吸収法ではSO2をアルカリ溶液又はスラリ
ーを吸収剤として処理するので、脱硫率が高く優れてい
るが、腐食等の問題があり、そのため設備費、その維持
費等が高くなる.一方、焼却炉からの燃焼排ガスの場合
は一般に600〜800℃の高温の燃焼排ガスが処理さ
れるために、湿式集塵装置等を用いた湿式吸収法では、
高温の燃焼排ガスの保有熱が回収されないで処理される
という問題がある. 本発明は上記のような問題点の解決を図ったものであり
、集塵、So2、HC l等の除去、熱回収を簡単に、
効率よく処理出来る方法を提供することを目的とする. [課題を解決するための手段及び作用コ上記目的を達戒
するために、本発明は冷却水噴霧装置を備えたガスクー
ラー、乾式集塵装置、熱回収装置、煙突を順次配設し、
ガスクーラーの冷却水噴霧装置に各々独立して制御出来
る冷却水供給機構とNaOH溶液供給機構とを設け、前
記冷却水供給機構により乾式集塵装置の直前の燃焼排ガ
ス温度を200〜400℃に保持するとともに、N a
 O H溶液供給機構により煙突の直前の燃焼排ガスの
SO2濃度を設定値に調節する燃焼排ガスの処理方法と
するものである. 本発明ではガスクーラー、乾式集塵装置、熱回収装置,
煙突を順次配設することが必要である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention particularly relates to a method for removing dust and desulfurizing combustion exhaust gas generated from an incinerator. [Conventional technology] Combustion exhaust gas generated from incinerators, boilers, etc.
02, etc., so it is necessary to remove them and release them into the atmosphere. Therefore, various methods have been proposed and implemented since ancient times to treat these combustion exhaust gases. For exhaust gas desulfurization treatment, dry absorption method,
There are wet absorption methods, etc., and an example of the dry absorption method is that limestone powder or slaked lime is blown into the inside of the boiler, thermally decomposed to form oxides, and while this is transported by combustion exhaust gas, SO2 is fixed and removed by a dust collector. There is a way to supplement it with .
This method has the advantage that the boiler itself also functions as a desulfurization device, requiring less investment in ancillary equipment for desulfurization. In the wet absorption method, an alkaline solution or slurry is used as the absorbent, but a gas pre-cooling device is often installed in front of the absorption device to cool the gas in advance. Spray towers are often used for gas precooling equipment, and water is sprayed. Due to water evaporation, the flue gas temperature decreases along the adiabatic cooling line to an equilibrium temperature of 5.
As soon as the temperature drops to 5-60°C, sulfuric acid mist and dust are removed. After this, SOx, HCl, etc. in the combustion exhaust gas are converted into a caustic soda solution (hereinafter referred to as NaOH solution), a sodium sulfite solution (Na2so,), a sodium acetate solution (CHsCOONa>, It is absorbed into an ammonia aqueous solution, etc., and then recovered or disposed of. [Problems to be solved by the invention] However, although the dry absorption method described above is effective in saving on incidental equipment for desulfurization, the desulfurization effect is limited. In addition, in the wet absorption method, SO2 is treated using an alkaline solution or slurry as an absorbent, so the desulfurization rate is high and excellent, but there are problems such as corrosion, and as a result, equipment costs and maintenance costs are high. On the other hand, in the case of combustion exhaust gas from an incinerator, high-temperature combustion exhaust gas of 600 to 800°C is generally treated, so wet absorption methods using wet dust collectors, etc.
There is a problem in that the heat retained in high-temperature combustion exhaust gas is processed without being recovered. The present invention aims to solve the above-mentioned problems, and allows easy dust collection, removal of So2, HCl, etc., and heat recovery.
The purpose is to provide an efficient processing method. [Means and effects for solving the problem] In order to achieve the above object, the present invention sequentially arranges a gas cooler equipped with a cooling water spray device, a dry dust collector, a heat recovery device, and a chimney,
The cooling water spray device of the gas cooler is equipped with a cooling water supply mechanism and a NaOH solution supply mechanism that can be controlled independently, and the temperature of the combustion exhaust gas immediately before the dry dust collector is maintained at 200 to 400°C by the cooling water supply mechanism. At the same time, Na
This is a combustion exhaust gas treatment method that uses an OH solution supply mechanism to adjust the SO2 concentration of the combustion exhaust gas just before the chimney to a set value. In the present invention, a gas cooler, a dry dust collector, a heat recovery device,
It is necessary to arrange the chimneys in sequence.

ガスクーラーで乾式集塵装置の直前の燃焼排ガスの温度
を所定の温度に保持し、乾式am装置の集塵率を向上さ
せ、その維持管理を容易にする.乾式集塵装置を出た燃
焼排ガスは高温を保持しているので、熱回収装置で熱交
換して、燃焼排ガスの保有熱を回収する.そして熱回収
された燃焼排ガスは煙突から大気中に放出される.乾式
集塵装置としては特に乾式電気集塵装直を用いることが
出来る.乾式電、気集塵装置は微細な粒子の捕集が容易
であり、ガス、およびダストの性状による影響が少ない
ことによる.熱回収装買としては廃熱ボイラー等が挙げ
られる. 上記において乾式集塵装置の直前の燃焼排ガスの温度を
200〜400℃に保持することが必要である.燃焼排
ガス温度が200℃未満では酸露点以下になり、集塵室
、ダストホッパー等の腐食が生じる.また熱回収装置で
の熱回収効率が低下する.燃焼排ガス温度が400℃を
超えた場合には装置の強度が問題であり、また集塵率が
低下する. 本発明では、ガスクーラーの冷却水噴霧装置に各々独立
して、制御出来る冷却水供給機構とNaOH溶液供給機
構とを設けて、冷却水とNaOH溶液とを各々独立して
制御するものである.本発明では上述したように、燃焼
排ガスを冷却するにあたり、200℃未満にならないよ
うにしなければならない.一方燃焼排ガスのS02濃度
を設定値までにNaOH溶液で低下するようにしなけれ
ばならない.そのため燃焼排ガスの温度の冷却と、燃焼
排ガスのSO2濃度の設定値までの調節とは、相反する
制御となる.そのため本発明ではそれらの制御を円滑に
するために各々独立して制御出来る冷却水供給機構とN
aOH溶液供給機構とをガスクーラーの冷却水噴霧装置
に設けたものである.そのため乾式tAIl1装置の直
前の燃焼排ガスの温度を200℃までに冷却する冷却水
噴霧装置から噴霧される水溶液には、燃焼排ガスのSO
2と反応して亜硫酸ソーダ(Na2SO3)を生或する
のに必要なNaOHの絶対量が含まれるようにする.水
分は蒸発して亜硫酸ソーダは粉末となり、乾式2塵装置
で捕集される。このようにして噴霧される水溶液は燃焼
排ガスの温度の所定の冷却とSO2濃度の低下とを同時
に満足出来るように作用することが出来る. [実施例] 以下に本発明の実施例を図によって説明する.第1図は
本発明の一実施例の工程を示す図である.図において、
1はガスクーラー 2は乾式電気集塵装置、3は廃熱ボ
イラー、4はSO2計、5はNaOH溶液タンク、6は
冷却水タンク、7は温度測定装置である.焼却炉として
ロータリーキルン10を用い、ロータリーキルン10か
ら発生した燃焼排ガスの煤塵、S02等を処理するため
に、ロータリーキルンlOから排出管を介してガスクー
ラー1が設けられている.ガスクーラー1にはその上部
に通常複数個の冷却水噴霧装置8が設けられている.そ
の下部には所定の温度に冷却し、所定のSO2濃度に処
理した燃焼排ガスを乾式電気集塵装置2に送入するため
の接続管9を設けている。ガスクーラー1で処理された
粗い煤塵等はガスクーラーlの底部に設けた排出口より
除去される.乾式電気arm装置2では煤塵等は集塵さ
れて底部に設けた排出口より除去される.一方除塵され
た清浄な燃焼排ガスは廃熱ボイラー3で熱交換されて、
その保有熱が回収される.熱回収された燃焼排ガスは誘
引送風機11により煙突12から大気中に放出される. 冷却水噴霧装置8には冷却水供給管13を介して冷却水
タンク6が接続されている.一方その冷却水供給管13
の途中に、一端にNaOH溶液タンク5と接続したNa
OH溶液供給管14が接続されて、燃焼排ガスのSO2
と反応して亜硫酸ソーダ(Na2 303 )を生成す
るのに必要なNaOHの絶対量をガスクーラーlに供給
出来るようにしている.燃焼排ガスの802の濃度は煙
突l2の直前に付設されたS02計4によって測定され
、その値と設定値との差異に対応してNaOH溶液注入
ボンプl6が作動して、燃焼排ガスの802の濃度を設
定値に近付けるべく、必要なNaOHの絶対量がNaO
H溶液として供給される.燃焼排ガスの温度については
.乾式電気am装置2の直前の燃焼排ガスの温度を20
0〜400℃に保持するために、温度測定装置7で測定
された燃焼排ガスの温度の値によって、冷却水供給ボン
プ17が作動して、必要な冷却水がガスクーラー1に供
給される.この場合冷却水供給Iに対して、NaOH溶
液量は1/100程度の割合であるので、NaOH溶液
量による冷却への影響は無視することが出来る. 本発明では冷却水噴霧装置として冷却水供給管のみを接
続したものを含むことが出来る.15はガスクーラー前
の燃焼排ガスの計測装置であり、これによって燃焼排ガ
スのガス温度、SO2の濃度等を測定する. 次に本発明の実施例を具体的に説明する.(実施例〉 30001−ン/月能力の焼却炉から発生した600〜
800’Cの燃焼排ガス3150Nポを本発明方法によ
って処理したものである.ガスクーラーは上部に冷却水
噴霧装置を5本備えたもので、そのうちの2本は冷却水
供給管のみを接続したものを含めた. 乾式電気集塵装置2の直前の燃焼排ガスの温度を300
℃に設定し、燃焼排ガスのSO2の濃度は煙突12の直
前で30ppmに設定するものとした. 第1表に本発明方法で16時間操業した場合の平均の実
験結果を示す. 第1表 第2図(a)、(b)は本発明における上記実施例の途
上の処理の状態を示す図である.ここにおいて横軸は測
定時間(Hr)を示す. (a)図はガスクーラー前後の燃焼排ガスの温度の状態
を示す図である.ここにおいて、Aはガスクーラー前の
燃焼排ガスの実測温度であり、Bはガスクーラーで冷却
した後の乾式電気S塵装置前の燃焼排ガスの実測温度で
ある.これらは実線で?した.Cは乾式電気集塵装置前
の燃焼排ガスの設定温度で、ここでは300℃に設定し
て、点線で示した. (a)図から明かなようにAによる燃焼排ガスの温度の
変化が激しいのに比べて、Bによる燃焼排ガスの温度の
変化は少なく、Cによる燃焼排ガスの設定温度に近似し
てお■り、的確に制御されていることがわかる. 一方(b)図は同じ時間帯におけるSO2濃度の状態を
示す図である.Aはガスクーラー前の燃焼排ガスのSO
2濃度の実測値であり、Bはガスクーラーで冷却した後
、乾式電気集塵装置でamした後の煙突前の燃焼排ガス
の802濃度の実測値である.これらは実線で示した.
Cは煙突前の燃焼排ガスのSO2濃度の設定値で,ここ
では3 0 ppmに設定して、点線で示した.図から
明らかなように、ガスクーラー前の燃焼排ガスのSO2
濃度は変化が激しいのに比べて、Bによる燃焼排ガスの
SO2濃度は変化は少な<,Cによる燃焼排ガスのS0
2濃度の設定値に近似しており、的確に制御されている
ことがわかる.本発明ではガスクーラーでの処理によっ
て、乾式集塵装置の直前の燃焼排ガスの温度と、煙突の
直前のSo2の濃度を同時に設定値に近似して制御する
ことが出来る. し発明の効果] 本発明の方法によれば、乾式集a装置の前にガスクーラ
ーを配置して、ガスクーラーの冷却水噴霧装置に設けた
冷却水供給機構とNaOH溶液供給機構で、冷却水とN
aOH溶液とを各々独立して制御し、ガス温度とSO2
濃度を設定値に同時に調節出来るので、燃焼排ガスの集
塵、SO2、MCI等の除去、熱回収を簡単に、効率よ
く処理出来る.
A gas cooler maintains the temperature of the combustion exhaust gas just before the dry dust collector at a predetermined temperature, improving the dust collection efficiency of the dry AM system and making its maintenance easier. Since the combustion exhaust gas leaving the dry dust collector retains a high temperature, heat is exchanged with the heat recovery device to recover the heat retained in the combustion exhaust gas. The heat-recovered combustion exhaust gas is then released into the atmosphere through the chimney. In particular, a dry electrostatic precipitator can be used as a dry dust collector. This is because dry electric and pneumatic dust collectors can easily collect fine particles and are less affected by the properties of gas and dust. Examples of heat recovery equipment include waste heat boilers. In the above, it is necessary to maintain the temperature of the combustion exhaust gas immediately before the dry dust collector at 200 to 400°C. If the combustion exhaust gas temperature is less than 200°C, it will be below the acid dew point, causing corrosion of the dust collection chamber, dust hopper, etc. Also, the heat recovery efficiency of the heat recovery device decreases. If the combustion exhaust gas temperature exceeds 400°C, the strength of the device becomes a problem and the dust collection rate decreases. In the present invention, a cooling water spray device for a gas cooler is provided with a cooling water supply mechanism and a NaOH solution supply mechanism that can be controlled independently, and the cooling water and NaOH solution are each independently controlled. In the present invention, as mentioned above, when cooling the combustion exhaust gas, it is necessary to prevent the temperature from dropping below 200°C. On the other hand, the S02 concentration in the combustion exhaust gas must be reduced to a set value using the NaOH solution. Therefore, cooling the temperature of the combustion exhaust gas and adjusting the SO2 concentration of the combustion exhaust gas to the set value are contradictory controls. Therefore, in the present invention, in order to smoothly control them, a cooling water supply mechanism that can be controlled independently, and a cooling water supply mechanism and N
The aOH solution supply mechanism is installed in the cooling water spray device of the gas cooler. Therefore, the aqueous solution sprayed from the cooling water spray device that cools the temperature of the flue gas to 200°C just before the dry tAIl1 device contains SO of the flue gas.
The absolute amount of NaOH required to react with sodium sulfite (Na2SO3) to produce sodium sulfite (Na2SO3) should be included. The water evaporates and the sodium sulfite turns into powder, which is collected in a dry type dust device. The aqueous solution sprayed in this manner can serve to simultaneously cool the combustion exhaust gas to a specified temperature and lower the SO2 concentration. [Examples] Examples of the present invention will be explained below using figures. FIG. 1 is a diagram showing the steps of an embodiment of the present invention. In the figure,
1 is a gas cooler, 2 is a dry electrostatic precipitator, 3 is a waste heat boiler, 4 is an SO2 meter, 5 is a NaOH solution tank, 6 is a cooling water tank, and 7 is a temperature measuring device. A rotary kiln 10 is used as an incinerator, and a gas cooler 1 is provided through a discharge pipe from the rotary kiln 10 to treat soot, S02, etc. of combustion exhaust gas generated from the rotary kiln 10. The gas cooler 1 is usually provided with a plurality of cooling water spray devices 8 on its upper part. At the bottom thereof, a connecting pipe 9 is provided for feeding combustion exhaust gas, which has been cooled to a predetermined temperature and treated to a predetermined SO2 concentration, to the dry electrostatic precipitator 2. The coarse soot and dust processed by the gas cooler 1 are removed from the exhaust port provided at the bottom of the gas cooler 1. In the dry electric arm device 2, soot and dust are collected and removed from an outlet provided at the bottom. On the other hand, the clean combustion exhaust gas from which dust has been removed is heat exchanged in the waste heat boiler 3,
The retained heat is recovered. The heat-recovered combustion exhaust gas is discharged into the atmosphere from a chimney 12 by an induced blower 11. A cooling water tank 6 is connected to the cooling water spray device 8 via a cooling water supply pipe 13. On the other hand, the cooling water supply pipe 13
In the middle of the NaOH solution tank 5 is connected to one end.
The OH solution supply pipe 14 is connected to the SO2 of the combustion exhaust gas.
The absolute amount of NaOH required to react with sodium sulfite (Na2 303) to produce it can be supplied to the gas cooler l. The concentration of 802 in the combustion exhaust gas is measured by the S02 meter 4 installed just before the chimney 12, and the NaOH solution injection pump 16 is activated in response to the difference between the measured value and the set value, and the concentration of 802 in the combustion exhaust gas is measured. In order to bring the value close to the set value, the absolute amount of NaOH required is
Supplied as an H solution. Regarding the temperature of combustion exhaust gas. The temperature of the combustion exhaust gas immediately before the dry electric AM device 2 is set to 20
In order to maintain the temperature at 0 to 400° C., the cooling water supply pump 17 is operated according to the temperature of the combustion exhaust gas measured by the temperature measuring device 7, and the necessary cooling water is supplied to the gas cooler 1. In this case, since the amount of NaOH solution is approximately 1/100 of the amount of cooling water supplied I, the influence of the amount of NaOH solution on cooling can be ignored. In the present invention, the cooling water spray device may include one to which only the cooling water supply pipe is connected. 15 is a combustion exhaust gas measuring device in front of the gas cooler, which measures the gas temperature, SO2 concentration, etc. of the combustion exhaust gas. Next, embodiments of the present invention will be explained in detail. (Example) 600 ~ generated from an incinerator with a capacity of 30,001 tons/month
3150N of combustion exhaust gas at 800'C was treated by the method of the present invention. The gas cooler was equipped with five cooling water spray devices on the top, two of which were connected only to the cooling water supply pipes. The temperature of the combustion exhaust gas immediately before the dry electrostatic precipitator 2 is set to 300℃.
℃, and the concentration of SO2 in the combustion exhaust gas was set to 30 ppm just before the chimney 12. Table 1 shows the average experimental results when the method of the present invention was operated for 16 hours. Table 1, FIGS. 2(a) and 2(b) are diagrams showing the state of processing in progress in the above embodiment of the present invention. Here, the horizontal axis indicates measurement time (Hr). Figure (a) shows the temperature state of combustion exhaust gas before and after the gas cooler. Here, A is the actually measured temperature of the combustion exhaust gas before the gas cooler, and B is the actually measured temperature of the combustion exhaust gas before the dry electric S dust device after cooling with the gas cooler. Are these solid lines? did. C is the set temperature of the combustion exhaust gas before the dry electrostatic precipitator, here it is set at 300°C and is shown by a dotted line. (a) As is clear from the figure, the change in temperature of the flue gas due to A is drastic, while the change in temperature of the flue gas due to B is small, and it approximates the set temperature of the flue gas due to C. It can be seen that it is accurately controlled. On the other hand, figure (b) shows the state of SO2 concentration during the same time period. A is the SO of the combustion exhaust gas before the gas cooler
B is the actual measured value of 802 concentration of the combustion exhaust gas in front of the chimney after cooling with a gas cooler and amping with a dry electrostatic precipitator. These are shown as solid lines.
C is the set value for the SO2 concentration of the combustion exhaust gas in front of the chimney, here it is set to 30 ppm and is shown by a dotted line. As is clear from the figure, SO2 in the combustion exhaust gas before the gas cooler
The SO2 concentration in the flue gas due to B changes little compared to the SO2 concentration in the flue gas due to B.
It can be seen that this value is close to the set value for 2 concentrations, and that it is accurately controlled. In the present invention, the temperature of the combustion exhaust gas immediately before the dry dust collector and the concentration of So2 immediately before the chimney can be controlled to approximate the set value at the same time by processing with a gas cooler. [Effects of the Invention] According to the method of the present invention, a gas cooler is disposed in front of a dry collection device, and a cooling water supply mechanism and a NaOH solution supply mechanism provided in a cooling water spraying device of the gas cooler supply cooling water. and N
The aOH solution is controlled independently, and the gas temperature and SO2
Since the concentration can be adjusted to the set value at the same time, dust collection of combustion exhaust gas, removal of SO2, MCI, etc., and heat recovery can be easily and efficiently processed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の工程を示す図、第2図は本
発明の一実施例の設定値と実測値との関係を示す図であ
る.
FIG. 1 is a diagram showing the process of one embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between set values and actual measured values in one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  冷却水噴霧装置を備えたガスクーラー、乾式集塵装置
、熱回収装置、煙突を順次配設し、ガスクーラーの冷却
水噴霧装置に各々独立して制御出来る冷却水供給機構と
苛性ソーダ溶液供給機構とを設け、前記冷却水供給機構
により乾式集塵装置の直前の燃焼排ガス温度を200〜
400℃に保持するとともに、苛性ソーダ溶液供給機構
により煙突の直前の燃焼排ガスのSO_2濃度を設定値
に調節する燃焼排ガスの処理方法。
A gas cooler equipped with a cooling water spray device, a dry dust collector, a heat recovery device, and a chimney are sequentially installed, and a cooling water supply mechanism and a caustic soda solution supply mechanism that can each be independently controlled by the cooling water spray device of the gas cooler are installed. The temperature of the combustion exhaust gas immediately before the dry dust collector is controlled by the cooling water supply mechanism to 200~200℃.
A combustion exhaust gas treatment method that maintains the temperature at 400°C and adjusts the SO_2 concentration of the combustion exhaust gas just before the chimney to a set value using a caustic soda solution supply mechanism.
JP1184279A 1989-07-17 1989-07-17 Treatmaent of waste combustion gas Pending JPH0352621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1184279A JPH0352621A (en) 1989-07-17 1989-07-17 Treatmaent of waste combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184279A JPH0352621A (en) 1989-07-17 1989-07-17 Treatmaent of waste combustion gas

Publications (1)

Publication Number Publication Date
JPH0352621A true JPH0352621A (en) 1991-03-06

Family

ID=16150538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184279A Pending JPH0352621A (en) 1989-07-17 1989-07-17 Treatmaent of waste combustion gas

Country Status (1)

Country Link
JP (1) JPH0352621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227749A (en) * 2009-03-26 2010-10-14 Jfe Engineering Corp Method of treating exhaust gas
JP2015093252A (en) * 2013-11-13 2015-05-18 日本山村硝子株式会社 Heat recovery device of exhaust gas and exhaust gas treatment system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227749A (en) * 2009-03-26 2010-10-14 Jfe Engineering Corp Method of treating exhaust gas
JP2015093252A (en) * 2013-11-13 2015-05-18 日本山村硝子株式会社 Heat recovery device of exhaust gas and exhaust gas treatment system using the same

Similar Documents

Publication Publication Date Title
US20180306509A1 (en) Method of spray drying and washing and method of controlling air pollution
CA2070853C (en) Method and apparatus for minimizing environmental release of toxic compounds in the incineration of wastes
US3533748A (en) Removal of sulfur oxides from waste gases
US5965095A (en) Flue gas humidification and alkaline sorbent injection for improving vapor phase selenium removal efficiency across wet flue gas desulfurization systems
EA002327B1 (en) Process for producing highly reactive lime in a furnace
EP0170355B1 (en) Emission control process for combustion flue gases
JP2014124590A (en) Operation method of boiler system
JPS6393328A (en) Exhaust gas scrubbing method and apparatus
CN108096988B (en) Flue gas purification method and system for realizing zero discharge of wastewater
CN209714765U (en) A kind of industrial smoke high temperature desulfurizing denitration dust removal system
CN109499238A (en) The purification system for the flue gas that Dual-barrel rotary kiln harmlessness disposing chromium-bearing sludge generates
CN109224808A (en) A kind of carbon baking kiln gas ultra-clean discharge cleaning equipment and purification method
JPH0352621A (en) Treatmaent of waste combustion gas
JPH0474513A (en) Simultaneous desulfurization and denitration in furnace
CN209138320U (en) A kind of carbon baking kiln gas ultra-clean discharge cleaning equipment
JP3823203B2 (en) Semi-dry exhaust gas desulfurization / desalination method
CN108211655B (en) Flue gas purification method for realizing zero discharge of wastewater
JPH0445311A (en) Device for treating combustion exhaust gas
JPH03249914A (en) Control of chloride in fossil fuel combustion wet process
CZ291174B6 (en) Method for suppressing the formation of sulfuric acid aerosols in exhaust gas purification systems
JPS6025531A (en) Dry purification of exhaust gas
CN109701381A (en) SO in a kind of coal-fired flue-gas3Removing system and removing process
DE3273034D1 (en) Method and apparatus for recovering calcium chloride from spent absorbent liquid in exhaust gas desulfurization process
JP2725784B2 (en) Flue gas desulfurization method
CN209501173U (en) Flue gas desulfurization is except particle evaporation humidifying device and its flue gas processing device