JPH0352535B2 - - Google Patents

Info

Publication number
JPH0352535B2
JPH0352535B2 JP4736183A JP4736183A JPH0352535B2 JP H0352535 B2 JPH0352535 B2 JP H0352535B2 JP 4736183 A JP4736183 A JP 4736183A JP 4736183 A JP4736183 A JP 4736183A JP H0352535 B2 JPH0352535 B2 JP H0352535B2
Authority
JP
Japan
Prior art keywords
target
magnetic field
magnet
sputtering
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4736183A
Other languages
Japanese (ja)
Other versions
JPS59173265A (en
Inventor
Ichiro Fujita
Hideaki Ootake
Tooru Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4736183A priority Critical patent/JPS59173265A/en
Publication of JPS59173265A publication Critical patent/JPS59173265A/en
Publication of JPH0352535B2 publication Critical patent/JPH0352535B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3458Electromagnets in particular for cathodic sputtering apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明はスパツタ法により半導体基板等の試料
上に金属膜又はシリサイド膜等を披着形成させる
スパツタ装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an improvement in a sputtering apparatus for depositing a metal film, a silicide film, etc. on a sample such as a semiconductor substrate by a sputtering method.

(b) 技術の背景 スパツタ法により形成される金属膜又はシリサ
イド膜は蒸着法に比して結晶粒径が微小均一性に
優れ、突起が少ない等の利点により微細パターン
の形成に適し、またステツプカバレツヂも良好で
あるため大規模集積回路(LSI)の電極形成には
スパツタ法が主流になりつゝある。更に二元以上
の金属膜も容易に得られ、その装置構成は蒸発源
機構が簡単であるため保守が容易で自動化に有利
である。
(b) Background of the technology Metal films or silicide films formed by the sputtering method are suitable for forming fine patterns due to their superior uniformity in crystal grain size and fewer protrusions compared to the vapor deposition method. Because of its good coverage, the sputtering method is becoming mainstream for electrode formation in large-scale integrated circuits (LSI). Furthermore, metal films of two or more elements can be easily obtained, and the device configuration has a simple evaporation source mechanism, making maintenance easy and advantageous for automation.

金属膜形成には主として直流高圧印加法及び成
膜速度の有利性からマグネトロン方式が用いられ
る。マグネトロンスパツタ装置には磁石の配置や
ターゲツト形状により種々の方式があり、プレー
ナマグネトロン、S−Gun、同軸マグネトロン方
式等がある。何れも直交電磁界を利用し、プラズ
マをターゲツト近傍の局在的空間に閉じ込める原
理を利用している。
For forming a metal film, a magnetron method is mainly used because of its advantages in direct current high voltage application and film formation speed. There are various types of magnetron sputtering devices depending on the arrangement of magnets and the shape of the target, including planar magnetron, S-Gun, and coaxial magnetron systems. All of them utilize orthogonal electromagnetic fields and the principle of confining plasma in a localized space near the target.

(c) 従来技術と問題点 第1図は従来のマグネトロンスパツタ装置を示
す構成図、第2図は従来例の磁場構成を示すター
ゲツト要部側面図、第3図はターゲツトの局部浸
食部、及び半導体基板の被膜形状を示す断面図で
ある。
(c) Prior art and problems Figure 1 is a configuration diagram showing a conventional magnetron sputtering device, Figure 2 is a side view of the main part of the target showing the magnetic field configuration of the conventional example, and Figure 3 is a locally eroded part of the target. FIG. 3 is a cross-sectional view showing the shape of a film on a semiconductor substrate.

図においてマグネトロンスパツタ装置1には一
定量のアルゴンガスを導入する導入口2及びチヤ
ンバ内を一定圧に減圧排気する排気口3を備え
る。金属又は合金素材でなるターゲツト4に負の
直流高圧を印加してカソードを構成する。ターゲ
ツト4の直下に永久磁石6を載置し、回転機構を
有するホルダー5を配設する。永久磁石6によつ
て生ずるターゲツト4上の磁場7に電子がサイク
ロイド運動し、アルゴンガスのガス分子と衝突す
る結果、密度の高いプラズマが発生する。これに
よりプラズマが磁場7に集中し、加速されたアル
ゴンイオン(Ar+)8がカソード(ターゲツト
4)に衝突してターゲツト原子9をたゝき出し、
半導体基板10に金属膜を披着形成させる。永久
磁石6を等間隔の同心円状に配設して形成する磁
場構成ではターゲツトの消耗が早い。即ちマグネ
トロン方式では電磁界によりとじこめられた高密
度プラズマの発生する領域がスパツタされ、ター
ゲツト材に鋭く深いエロージヨンエリア(局部浸
食部)を生ずるためである。その具体例を第3図
のイに示すようにターゲツト4の局部浸食4aは
その初期においては半導体基板に披着される金属
薄膜は均一性の膜厚が得られるが図のようにター
ゲツト4の使い込みによつて局部浸食4aが鋭く
深くなるにつれてロに示すように基板10に形成
される金属膜10aの膜厚分布にばらつきを生
じ、中央部及び周辺部が薄くなり特に周辺部が顕
著となり更に半導体基板の大口径化が進むにつれ
てこの傾向が増大する。このため第2図に示すよ
うにホルダー5に配設した磁石6をホルダー5の
中心よりl寸法だけずらせた位置に配し、偏心さ
せ磁石6をターゲツト4中心0のまわりに回転さ
せて磁場を変動させ、プラズマ電界を磁場の変動
に従つて変位させスパツタ領域を拡大する。これ
によつて得られるターゲツト4の局部浸食は第3
図のハに示す4bが得られる。従来の中心位置に
配設する第1図の磁石6では4aであり図より明
らかなようにスパツタ領域は拡大される。本発明
は更に有効な磁場構成を提起するものである。
In the figure, a magnetron sputtering device 1 is provided with an inlet 2 for introducing a certain amount of argon gas and an exhaust port 3 for reducing the pressure inside the chamber to a constant pressure. A negative DC high voltage is applied to a target 4 made of a metal or alloy material to form a cathode. A permanent magnet 6 is placed directly below the target 4, and a holder 5 having a rotation mechanism is provided. Electrons move cycloidally in the magnetic field 7 on the target 4 generated by the permanent magnet 6 and collide with gas molecules of argon gas, resulting in the generation of high-density plasma. As a result, the plasma is concentrated in the magnetic field 7, and the accelerated argon ions (Ar + ) 8 collide with the cathode (target 4) and eject target atoms 9.
A metal film is deposited on the semiconductor substrate 10. In a magnetic field configuration formed by arranging permanent magnets 6 in concentric circles at equal intervals, the target wears out quickly. That is, in the magnetron method, a region where high-density plasma is generated is spattered by an electromagnetic field, resulting in a sharp and deep erosion area (locally eroded part) in the target material. A specific example of this is shown in FIG. 3A, where the local erosion 4a of the target 4 causes the thin metal film deposited on the semiconductor substrate to have a uniform thickness at the initial stage, but as shown in the figure, the local erosion 4a of the target 4 As the local erosion 4a becomes sharper and deeper due to use, the thickness distribution of the metal film 10a formed on the substrate 10 becomes uneven, as shown in FIG. Furthermore, as the diameter of semiconductor substrates becomes larger, this tendency will increase. For this purpose, as shown in Fig. 2, the magnet 6 disposed in the holder 5 is placed at a position offset by l dimension from the center of the holder 5, and the magnet 6 is eccentrically rotated around the center 0 of the target 4 to generate a magnetic field. The plasma electric field is varied in accordance with the variation of the magnetic field to expand the sputter region. The local erosion of target 4 obtained by this is the third
4b shown in C of the figure is obtained. In the conventional magnet 6 of FIG. 1, which is disposed at the center position, it is 4a, and as is clear from the figure, the sputter area is enlarged. The present invention proposes a more effective magnetic field configuration.

(d) 発明の目的 本発明は上記の点に鑑みターゲツト上のスパツ
タ領域を拡大させ基板上に形成される金属膜の膜
厚が均一となるに有効な磁場構成の提供を目的と
する。
(d) Object of the Invention In view of the above points, an object of the present invention is to provide a magnetic field configuration effective for enlarging the sputtering area on a target and making the thickness of the metal film formed on the substrate uniform.

(e) 発明の構成 上記目的は本発明によれば磁場の影響下に配置
したターゲツトに高電圧を印加してスパツタリン
グを行なうマグネトロンスパツタ装置において、
該ターゲツトの周囲にリング状電磁石を配設する
と共に該リング状磁石とは逆極性の磁石を該ター
ゲツト下に配設し、且つ該磁石を該ターゲツトの
中心に対して偏心回転させる回転機構を設けるこ
とによつて達せられる。
(e) Structure of the Invention According to the present invention, the above object is to provide a magnetron sputtering apparatus that performs sputtering by applying a high voltage to a target placed under the influence of a magnetic field.
A ring-shaped electromagnet is disposed around the target, a magnet with a polarity opposite to that of the ring-shaped magnet is disposed below the target, and a rotation mechanism is provided for eccentrically rotating the magnet with respect to the center of the target. This can be achieved by

(f) 発明の実施例 以下本発明の実施例を図面により詳述する。(f) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第4図は本発明の一実施例であるマグネトロン
スパツタ装置を示す構成図、第5図は本発明に係
わる磁場の変動を説明するための図、第6図の
イ,ロ図は本発明の磁場構成によつて得られるタ
ーゲツトの局部浸食部イ及び基板の被膜形状ロを
示す断面図である。ターゲツト11に隣接する位
置にリング状の磁石15を配設し、例えば磁石1
5をS極とし、これに対してターゲツト11を固
定しその直下にはN極磁石16を載置した回転機
構を有するホルダー12を配設する。磁石16は
ターゲツト11の中心からl1だけずらせた位置に
配置し偏心させて構成する。これによつてN極の
磁石16は固定したターゲツト11の中心軸0か
らl′ずれた位置で回転運動をするから磁場13,
14は図示するように中心に対して対象の磁場構
成とはならずターゲツト11の周辺部まで磁界が
拡がる。これによりターゲツト上に生ずるエロー
ジヨンエリアはその周辺部まで拡大されることに
なる。即ち磁石16はターゲツト11の中心0に
沿つて軌道17を描いて回転運動し磁界が拡大さ
れる。この磁界にプラズマが集中することにより
加速されたアルゴンイオンがターゲツトに衝突し
てターゲツト原子をたゝき出す。このように磁場
が拡大するに伴いターゲツト11の局部浸食部1
1aは第6図イの斜線で示すように拡大する。ま
た基板18上で形成される金属被膜18aは第6
図ロで示すように略均一性のある膜厚分布が得ら
れる。
Fig. 4 is a configuration diagram showing a magnetron sputtering device which is an embodiment of the present invention, Fig. 5 is a diagram for explaining the fluctuation of the magnetic field related to the present invention, and Figs. FIG. 3 is a sectional view showing a locally eroded portion (a) of a target and a coating shape (b) of a substrate obtained by the magnetic field configuration of FIG. A ring-shaped magnet 15 is arranged at a position adjacent to the target 11, for example, the magnet 1
5 is an S pole, a target 11 is fixed to the S pole, and a holder 12 having a rotating mechanism on which a N pole magnet 16 is placed is disposed directly below the target 11. The magnet 16 is arranged at a position offset by l 1 from the center of the target 11 and is eccentrically constructed. As a result, the N-pole magnet 16 rotates at a position l' shifted from the central axis 0 of the fixed target 11, so that the magnetic field 13,
As shown in the figure, the magnetic field 14 does not have a symmetrical magnetic field configuration with respect to the center, but extends to the periphery of the target 11. As a result, the erosion area generated on the target is expanded to its periphery. That is, the magnet 16 rotates along a trajectory 17 along the center 0 of the target 11, and the magnetic field is expanded. Argon ions accelerated by the concentration of plasma in this magnetic field collide with the target and eject target atoms. As the magnetic field expands in this way, the local erosion part 1 of the target 11
1a is enlarged as shown by diagonal lines in FIG. 6A. Further, the metal coating 18a formed on the substrate 18 is the sixth metal coating 18a.
As shown in the bottom of the figure, a substantially uniform film thickness distribution is obtained.

本実施例によりターゲツトの有効利用率は従来
の30%から50%に向上することが確認された。
It was confirmed that the effective utilization rate of the target was improved from the conventional 30% to 50% by this example.

(g) 発明の効果 以上詳細に説明したように本発明の磁場構成を
有するスパツタ装置とすることにより半導体基板
上に披着形成される金属膜又は合金膜は均一な膜
厚分布が得られ、しかもターゲツト材の有効利用
率も向上する等大きな効果がある。
(g) Effects of the invention As explained in detail above, by using the sputtering apparatus having the magnetic field configuration of the present invention, the metal film or alloy film deposited on the semiconductor substrate can have a uniform film thickness distribution, Moreover, it has great effects such as improving the effective utilization rate of the target material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のマグネロトンスパツタ装置を示
す構成図、第2図は従来例の磁場構成を示すター
ゲツト要部側面図、第3図はターゲツトの局部浸
食部及び半導体基板の被膜形状を示す断面図、第
4図は本発明の一実施例であるマグネトロンスパ
ツタ装置を示す構成図、第5図は本発明に係わる
磁場の変動を説明するための図、第6図のイ,ロ
は本発明の磁場構成によつて得られるターゲツト
の局部浸食部イ及び基板の被膜形状ロを示す断面
図である。 図中、11……ターゲツト、12……ホルダ
ー、13,14……磁場、15,16……磁石、
17……軌道、18……基板。
Fig. 1 is a configuration diagram showing a conventional magnetroton sputtering device, Fig. 2 is a side view of the main part of the target showing the magnetic field configuration of the conventional example, and Fig. 3 shows the locally eroded portion of the target and the shape of the coating on the semiconductor substrate. 4 is a configuration diagram showing a magnetron sputtering device which is an embodiment of the present invention, FIG. 5 is a diagram for explaining the fluctuation of the magnetic field related to the present invention, and A and B in FIG. FIG. 3 is a cross-sectional view showing a locally eroded portion (a) of a target and a coating shape (b) of a substrate obtained by the magnetic field configuration of the present invention. In the figure, 11... target, 12... holder, 13, 14... magnetic field, 15, 16... magnet,
17...Orbit, 18...Substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 磁場の影響下に配置したターゲツトに高電圧
を印加してスパツタリングを行なうマグネトロン
スパツタ装置において、該ターゲツトの周囲にリ
ング状電磁石を配設すると共に該リング状磁石と
は逆極性の磁石を該ターゲツト下に配設し、且つ
該磁石を該ターゲツトの中心に対して偏心回転さ
せる回転機構を設けたことを特徴とするスパツタ
装置。
1. In a magnetron sputtering device that performs sputtering by applying a high voltage to a target placed under the influence of a magnetic field, a ring-shaped electromagnet is arranged around the target, and a magnet with a polarity opposite to that of the ring-shaped magnet is arranged around the target. 1. A sputtering device comprising a rotation mechanism disposed below a target and rotating the magnet eccentrically with respect to the center of the target.
JP4736183A 1983-03-22 1983-03-22 Sputtering device Granted JPS59173265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4736183A JPS59173265A (en) 1983-03-22 1983-03-22 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4736183A JPS59173265A (en) 1983-03-22 1983-03-22 Sputtering device

Publications (2)

Publication Number Publication Date
JPS59173265A JPS59173265A (en) 1984-10-01
JPH0352535B2 true JPH0352535B2 (en) 1991-08-12

Family

ID=12772973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4736183A Granted JPS59173265A (en) 1983-03-22 1983-03-22 Sputtering device

Country Status (1)

Country Link
JP (1) JPS59173265A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260866A (en) * 1985-08-02 1987-03-17 Fujitsu Ltd Magnetron sputtering device
GB8909747D0 (en) * 1989-04-27 1989-06-14 Ionic Coatings Limited Sputtering apparatus
US5417833A (en) * 1993-04-14 1995-05-23 Varian Associates, Inc. Sputtering apparatus having a rotating magnet array and fixed electromagnets
GB9606920D0 (en) * 1996-04-02 1996-06-05 Applied Vision Ltd Magnet array for magnetrons
JP4371569B2 (en) * 2000-12-25 2009-11-25 信越化学工業株式会社 Magnetron sputtering apparatus and photomask blank manufacturing method using the same
CN104862653B (en) * 2015-05-20 2017-07-07 魏永强 Arc ion plating and the compound deposition process of high-power impulse magnetron sputtering
CN105803411A (en) * 2016-05-11 2016-07-27 魏永强 Combined method of arc ion plating and twin target bipolar high-power pulsed magnetron sputtering
CN109989039A (en) * 2017-12-30 2019-07-09 魏永强 A kind of combination field, compound tube and the compound vacuum deposition method of perforated baffle

Also Published As

Publication number Publication date
JPS59173265A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
AU746645C (en) Method and apparatus for deposition of biaxially textured coatings
US4179351A (en) Cylindrical magnetron sputtering source
EP0884761A1 (en) Sputtering apparatus with a rotating magnet array
US5865961A (en) Magnetron sputtering apparatus and method
JP2003268543A (en) Rmim electrode, production method therefor and sputtering system provided with the electrode
JP2970317B2 (en) Sputtering apparatus and sputtering method
US6468387B1 (en) Apparatus for generating a plasma from an electromagnetic field having a lissajous pattern
JPH0352535B2 (en)
TWM592875U (en) Tilted magnetron in a pvd sputtering deposition chamber
JPH11158625A (en) Magnetron sputtering film forming device
JPS61221363A (en) Sputtering apparatus
JP3056222B2 (en) Sputtering apparatus and sputtering method
JPS6176673A (en) Sputtering method
RU2242821C2 (en) Magnetron spraying system
JPH0878333A (en) Plasma apparatus for formation of film
JPS62167877A (en) Plasma transfer type magnetron sputtering apparatus
JP2001271163A (en) Magnetic neutral loop discharge sputtering system
JPS6233764A (en) Sputtering device
JPS63307272A (en) Ion beam sputtering device
JPS63247366A (en) Magnetron sputtering device
CN217052380U (en) Magnetron with uniform deposition
TW200523394A (en) Plasma-assisted sputter deposition system
KR100205682B1 (en) Planar magnetron sputtering source prodcing improved coating thickness uniformity step coverage and step coverage uniformity
JPH10330935A (en) Sputtering device
JPH01240648A (en) Thin multicomponent-system film forming equipment