JPH0351083B2 - - Google Patents

Info

Publication number
JPH0351083B2
JPH0351083B2 JP59129603A JP12960384A JPH0351083B2 JP H0351083 B2 JPH0351083 B2 JP H0351083B2 JP 59129603 A JP59129603 A JP 59129603A JP 12960384 A JP12960384 A JP 12960384A JP H0351083 B2 JPH0351083 B2 JP H0351083B2
Authority
JP
Japan
Prior art keywords
vertical
duct
radial dimension
vertical duct
ducts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59129603A
Other languages
Japanese (ja)
Other versions
JPS618909A (en
Inventor
Takao Kumasaka
Shigetaka Fujiwara
Kazuyuki Kyono
Yoshito Ueno
Masaru Higaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12960384A priority Critical patent/JPS618909A/en
Publication of JPS618909A publication Critical patent/JPS618909A/en
Publication of JPH0351083B2 publication Critical patent/JPH0351083B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は静止誘導電器の巻線構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a winding structure for a stationary induction appliance.

〔発明の背景〕[Background of the invention]

第2図にはSF6ガス絶縁変圧器の従来例が示さ
れている。同図に示されているように円筒巻線1
は、鉄心脚に巻回された内側絶縁筒2の外周に複
数の垂直ダクト3を形成するように各巻線単位
(以下コイルと称する)4を垂直スペーサ5を介
して巻回すると共に、水平スペーサ6を上下端部
に配置し、垂直ダクト3と連通する水平ダクト7
を設けて形成されている。この垂直ダクト3の間
隔δはほぼ等間隔に構成されている。なお同図に
おいて8は絶縁リング、9は外側絶縁筒である。
FIG. 2 shows a conventional example of an SF 6 gas insulated transformer. As shown in the figure, the cylindrical winding 1
In this method, each winding unit (hereinafter referred to as a coil) 4 is wound through a vertical spacer 5 so as to form a plurality of vertical ducts 3 on the outer periphery of an inner insulating cylinder 2 wound around an iron core leg, and a horizontal spacer is 6 are arranged at the upper and lower ends, and a horizontal duct 7 communicates with the vertical duct 3.
It is formed by providing The vertical ducts 3 are arranged at substantially equal intervals δ. In the figure, 8 is an insulating ring, and 9 is an outer insulating cylinder.

このように構成されたSF6ガス絶縁変圧器で
は、冷却媒体は図中に矢印で示されているように
巻線下部おいて水平ダクト7から流入し、この流
入した冷媒はコイル4間の垂直ダクト3を上昇し
て各コイル4を冷却する。ところでこの冷媒流量
は各垂直ダクト3でほぼ等しく、巻線1の最内周
側および最外周側の垂直ダクト3では与えられる
熱量が中央部の垂直ダクト3の約3の約1/2と小
さいため、冷却媒体の温度上昇が他の垂直ダクト
3における冷媒の温度上昇より小さくなる。最内
周側および最外周側の垂直ダクト3に与えられる
熱量が中央部の垂直ダクト3の約1/2と小さいの
は、中央部の垂直ダクト3に与えられる熱量はそ
の垂直ダクト3をはさんでいる両側のコイル4か
ら与えられるのに対し、最内周側および最外周側
の垂直ダクト3に与えられる熱量はその最内周側
または最外周側のコイル4から与えられるだけで
あるからである。
In the SF 6 gas insulated transformer configured in this way, the cooling medium flows from the horizontal duct 7 at the bottom of the winding as shown by the arrow in the figure, and this flowing cooling medium flows vertically between the coils 4. The duct 3 is ascended to cool each coil 4. By the way, this refrigerant flow rate is almost equal in each vertical duct 3, and the amount of heat given to the vertical ducts 3 on the innermost and outermost sides of the winding 1 is small, about 1/2 of that of the vertical duct 3 in the center. Therefore, the temperature rise of the coolant is smaller than the temperature rise of the coolant in other vertical ducts 3. The reason why the amount of heat given to the vertical ducts 3 on the innermost and outermost sides is about 1/2 that of the vertical duct 3 in the center is that the amount of heat given to the vertical ducts 3 in the center is smaller than that of the vertical ducts 3 in the center. The amount of heat given to the vertical ducts 3 on the innermost and outermost sides is only given from the coils 4 on the innermost and outermost sides, whereas the heat is given from the coils 4 on both sides of the sandwich. It is.

従つて各コイル4の平均温度上昇は縦軸に温度
をとり横軸にコイル番号をとつて温度とコイル番
号との関係が示されている第3図のように、最内
周側のコイル(No.1)および最外周側のコイル
(No.4)の温度が低く、中央部のコイル(No.2、
3)の温度が高く、各コイルの温度が不均一にな
る傾向があつた。
Therefore, the average temperature rise of each coil 4 is determined by the innermost coil ( No. 1) and the outermost coil (No. 4) are low in temperature, and the central coil (No. 2,
3) The temperature was high, and the temperature of each coil tended to be uneven.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたであり、各コ
イルの温度上昇を均等化することを可能とした静
止誘導電器の巻線構造を提供することを目的とす
るものである。
The present invention was made in view of the above points, and it is an object of the present invention to provide a winding structure for a stationary induction appliance that makes it possible to equalize the temperature rise of each coil.

〔発明の概要〕[Summary of the invention]

すなわち本発明は内側絶縁筒の外周に径方向に
複数の垂直ダクトを形成するように垂直スペーサ
を介して同心筒状に巻回された複数の円筒巻線ま
たはシート巻線の巻線単位を、前記垂直ダクトと
連通し前記巻線単位の上下端部に水平ダクトを形
成する上、下水平スペーサ間に配置した静止誘導
電器の巻線構造において、最内外周側の垂直ダク
トの少なくとも一方もしくは両方の径方向寸方
を、この他の部分の前記垂直ダクトの径方向寸方
より小さくしたことを特徴とするものであり、こ
れによつて最内外周側の垂直ダクトの少なくとも
一方もしくは両方の径方向寸方は、この他の部分
の垂直ダクトの径方向寸法より小さく形成される
ようになる。
That is, the present invention includes a winding unit of a plurality of cylindrical windings or sheet windings that are concentrically wound through vertical spacers so as to form a plurality of vertical ducts in the radial direction on the outer periphery of an inner insulating cylinder. In a winding structure of a stationary induction appliance arranged between upper and lower horizontal spacers that communicate with the vertical duct to form horizontal ducts at the upper and lower ends of the winding unit, at least one or both of the vertical ducts on the innermost and outermost circumferential sides. is characterized in that the radial dimension of the vertical duct is smaller than the radial dimension of the vertical duct in the other portions, whereby the diameter of at least one or both of the vertical ducts on the innermost and outermost circumferential sides is smaller. The directional dimension is smaller than the radial dimension of the vertical duct in other parts.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明
する。第1図には本発明の一実施例が示されてい
る。なお従来と同じ部品には同じ符号を付したの
で説明を省略する。本実施例では最内周側および
最外周側の垂直ダクト3の径方向寸法δ1を、この
他の部分の垂直ダクト3の径方向寸方δ2より小さ
くした。このようにすることにより最内周側およ
び最外周側の垂直ダクト3の径方向寸法δ1はこの
他の部分の垂直ダクト3の径方向寸法δ2より小さ
くなつて、各コイルの温度上昇を均等化すること
を可能とした静止誘導電器の巻線構造を得ること
ができる。
The present invention will be explained below based on the illustrated embodiments. FIG. 1 shows an embodiment of the invention. Note that parts that are the same as those in the conventional system are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the radial dimension δ 1 of the vertical duct 3 on the innermost circumferential side and the outermost circumferential side is made smaller than the radial direction dimension δ 2 of the vertical duct 3 on the other parts. By doing this, the radial dimension δ 1 of the vertical duct 3 on the innermost and outermost periphery sides becomes smaller than the radial dimension δ 2 of the vertical duct 3 on the other parts, thereby reducing the temperature rise of each coil. It is possible to obtain a winding structure for a stationary induction appliance that enables equalization.

この垂直ダクト3の径方向寸法δ1,δ2は次に述
べるようにして定めることができる。一般に垂直
ダクト3の冷媒流量Q(m3/S)は、垂直ダクト
3相互間の圧力損失h(mmAq)が等しくなるよう
に配分される。垂直ダクト3の圧力損失hは、垂
直ダクト3を第4図にも示されているように径方
向寸法δ(m)、長さL(m)、奥行方向の長さW
(m)の矩形ダクトとみなすことができ、(1)式を
用いて近似的に求めることができる。
The radial dimensions δ 1 and δ 2 of the vertical duct 3 can be determined as follows. Generally, the refrigerant flow rate Q (m 3 /S) of the vertical ducts 3 is distributed so that the pressure loss h (mmAq) between the vertical ducts 3 is equal. The pressure loss h of the vertical duct 3 is determined by the radial dimension δ (m), length L (m), and depth direction length W of the vertical duct 3, as shown in FIG.
(m) can be regarded as a rectangular duct, and can be approximately determined using equation (1).

h=(γλL/4gW2) Q2/δ3 ……(1) ここでγは冷媒の比重量(Kg/m3)、gは重力
加速度(m/S2)、λは管摩擦損失係数である。
h=(γλL/4gW 2 ) Q 23 ...(1) Here, γ is the specific weight of the refrigerant (Kg/m 3 ), g is the gravitational acceleration (m/S 2 ), and λ is the pipe friction loss coefficient It is.

普通SF6ガスのように粘度が小さい冷媒では流
量Qが多少変化しても管摩擦損失係数λはほぼ一
定の値となる。従つて(1)式のλL/4gW2の値も本
考察においては一定と考えてよい。このλL/
4gW2の値をCとすれば、圧力損失hは(2)式で表
わされ、Q2/δ3に比例する。
Normally, in the case of a refrigerant with a low viscosity such as SF 6 gas, the pipe friction loss coefficient λ remains approximately constant even if the flow rate Q changes somewhat. Therefore, the value of λL/4gW 2 in equation (1) can also be considered constant in this discussion. This λL/
If the value of 4gW 2 is C, the pressure loss h is expressed by equation (2) and is proportional to Q 23 .

h=CQ2/δ3 ……(2) 一方、最内周側および最外周側の垂直ダクト3
に加えられる熱量は上述のように中央部の垂直ダ
クト3の約1/2になつていいるので、各垂直ダク
ト3の冷媒と温度上昇を均等するには、最内周側
および最外周側の垂直ダクト3を流れる流量もこ
の他の中央部垂直ダクト3の流量の約1/2にする
必要がある。これを実現するには(2)式において、
圧力損失hが一定の条件で冷媒流量Qを1/2にし
た場合の垂直ダクト3の径方向寸法(間隔)δ1
求めればよい。そしてこの他の部分である中央部
の垂直ダクト3の径方向寸法(間隔)を上述のよ
うにδ2とすれば、 (1/2Q)2/δ1 3=Q2/δ2 3 ……(3) となる。従つて、 となり、最内周側および最外周側の垂直ダクト3
の径方向寸法δ1とこの他の部分の垂直ダクト3の
径方向寸法δ2との関係が得られる。そして実際の
製品と製作において、垂直ダクト3の冷媒流量Q
のばらつきとして±20%程度が許容されるとすれ
ば、垂直ダクト間隔に関する許容量は(5)式のよう
になる。
h=CQ 23 ...(2) On the other hand, the innermost and outermost vertical ducts 3
As mentioned above, the amount of heat added to the central vertical duct 3 is approximately 1/2, so in order to equalize the refrigerant and temperature rise in each vertical duct 3, it is necessary to add heat to the innermost and outermost ducts. The flow rate flowing through the vertical duct 3 must also be approximately 1/2 of the flow rate through the other central vertical duct 3. To achieve this, in equation (2),
What is necessary is to find the radial dimension (spacing) δ 1 of the vertical duct 3 when the refrigerant flow rate Q is halved under the condition that the pressure loss h is constant. If the radial dimension (interval) of the vertical duct 3 in the center, which is the other part, is δ 2 as described above, then (1/2Q) 21 3 =Q 22 3 ... (3) becomes. Therefore, Therefore, the innermost and outermost vertical ducts 3
The relationship between the radial dimension δ 1 of the vertical duct 3 and the radial dimension δ 2 of the vertical duct 3 of this other portion is obtained. In the actual product and manufacturing, the refrigerant flow rate Q of the vertical duct 3 is
If a variation of about ±20% is allowed, then the permissible amount for the vertical duct spacing is as shown in equation (5).

従つてδ1とδ2との関係は理論的には(4)式の値と
なるが、実用的には(5)式で与えられる範囲に設定
される。
Therefore, although the relationship between δ 1 and δ 2 is theoretically the value of equation (4), it is practically set within the range given by equation (5).

このように最内周反側および最外周側の垂直ダ
クト3の径方向寸法δ1をこの他の部分の垂直ダク
ト3の径方向寸法δ2より小さくすることにより、
最内周側および最外周側の垂直ダクト3を流れる
冷媒の流量を減少させ、その分だけ中央部の垂直
ダクト3を流れる冷媒流量を増加させることがで
きるようになる。すなわち各垂直ダクト3に与え
られる熱量の大小に応じて冷媒の流量が調整でき
るようになつて、各垂直ダクト3における冷媒の
温度上昇を均等化することができるようになり、
縦軸に温度をとり、横軸にコイル番号をとつて温
度とコイル番号との関係が示されている第5図に
も示されているように、各コイル4の温度上昇を
均等にすることができる。そして巻線1全体の径
方向寸法を殆んど増加させることなく巻線1の温
度分布が均等化できるので、最も高い所の温度上
昇が低下した分だけ冷却器台数の減少や電流密度
の増大により、静止用誘導電器全体が小型化でき
る。
In this way, by making the radial dimension δ 1 of the vertical duct 3 on the opposite side of the innermost circumference and the outermost circumference smaller than the radial dimension δ 2 of the vertical duct 3 on the other parts,
The flow rate of refrigerant flowing through the vertical ducts 3 on the innermost and outermost circumferential sides can be reduced, and the flow rate of refrigerant flowing through the vertical duct 3 in the center can be increased accordingly. In other words, the flow rate of the refrigerant can be adjusted according to the amount of heat given to each vertical duct 3, and the temperature rise of the refrigerant in each vertical duct 3 can be equalized.
As shown in Figure 5, which shows the relationship between temperature and coil number by plotting temperature on the vertical axis and coil number on the horizontal axis, the temperature rise of each coil 4 should be made equal. I can do it. Furthermore, since the temperature distribution of the winding 1 can be equalized without increasing the radial dimension of the entire winding 1, the number of coolers can be reduced and the current density can be increased by the reduction in temperature rise at the highest point. As a result, the entire stationary induction electric appliance can be downsized.

なお全体の垂直ダクト3の寸法は、例えば周辺
部の垂直ダクト3を従来構造より小さくした場合
には、中央部の垂直ダクト3を従来構造より大き
くとつて、全体の冷媒の流量を減少させないよう
に設定してもよい。
The overall dimensions of the vertical duct 3 are such that, for example, if the vertical duct 3 at the periphery is made smaller than the conventional structure, the vertical duct 3 at the center is made larger than the conventional structure so as not to reduce the overall refrigerant flow rate. It may be set to

なおまた本実施例は円筒巻線の場合について説
明したが、シート巻線の場合も同様にして実施で
きることは云うまでもない。
Furthermore, although this embodiment has been described in the case of a cylindrical winding, it goes without saying that it can be implemented in the same manner in the case of a sheet winding.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は各垂直ダクトに与えられ
る熱量の大小に応じて冷媒が流れるようになつ
て、各コイルの温度上昇を均等化することができ
るようになり、各コイルの温度上昇が均等化する
ことを可能とした静止誘導同電器の巻線構造を得
ることができる。
As described above, the present invention allows the refrigerant to flow in accordance with the amount of heat given to each vertical duct, making it possible to equalize the temperature rise of each coil. It is possible to obtain a winding structure for a stationary induction device that allows for

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の静止誘導電器の巻線構造の一
実施例の縦断側面図、第2図は従来の静止誘導電
器の巻線構造の縦断側面図、第3図は従来の静止
誘導電器の巻線構造の径方向の温度分布図、第4
図は本発明の静止誘導電器の巻線構造の一実施例
の垂直ダクトの斜視図、第5図は同じく一実施例
の径方向の温度分布図である。 1……円筒巻線、2……内側絶縁筒、3……垂
直ダクト、4……コイル(巻線単位)、5……垂
直スペーサ、6……水平スペーサ、7……水平ダ
クト、9……外側絶縁筒、δ1……最内周および最
外周側の垂直ダクトの径方向寸法、δ2……最内周
および最外側以外の垂直ダクトの径方向寸法。
FIG. 1 is a vertical side view of an embodiment of the winding structure of a stationary induction electric appliance according to the present invention, FIG. 4th radial temperature distribution diagram of the winding structure of
The figure is a perspective view of a vertical duct of an embodiment of the winding structure of a stationary induction appliance according to the present invention, and FIG. 5 is a temperature distribution diagram in the radial direction of the same embodiment. 1... Cylindrical winding, 2... Inner insulating tube, 3... Vertical duct, 4... Coil (winding unit), 5... Vertical spacer, 6... Horizontal spacer, 7... Horizontal duct, 9... ...Outer insulation cylinder, δ 1 ... Radial dimension of the vertical duct on the innermost and outermost sides, δ 2 ... Radial dimension of the vertical duct other than the innermost and outermost circumference.

Claims (1)

【特許請求の範囲】 1 内側絶縁筒の外周に径方向に複数の垂直ダク
トを形成するように垂直スペーサを介して同心円
筒状に巻回された複数の円筒巻線またはシート巻
線の巻線単位を、前記垂直ダクトと連通し前記巻
線単位の上下端部に水平ダクトを形成する上、下
水平スペーサ間に配置した静止誘導電器の巻線構
造において、最内外周側の前記垂直ダクトの少な
くとも一方もしくは両方の径方向寸法を、この他
の部分の前記垂直ダクトの径方向寸法より小さく
したことを特徴とする静止誘導電器の巻線構造。 2 前記最内外周側の垂直ダクトの少なくとも一
方もしくは両方の径方向寸方δ1とこの他の部分の
垂直ダクトの径方向寸方δ2が、 0.56δ2δ10.73δ2の範囲に設定されるものであ
る特許請求の範囲第1項記載の静止誘導電器の巻
線構造。
[Claims] 1. A plurality of cylindrical windings or sheet windings wound in a concentric cylindrical shape via vertical spacers so as to form a plurality of vertical ducts in the radial direction on the outer periphery of an inner insulating cylinder. In a winding structure of a stationary induction appliance in which a unit communicates with the vertical duct and is arranged between upper and lower horizontal spacers to form a horizontal duct at the upper and lower ends of the winding unit, A winding structure for a stationary induction electric appliance, characterized in that the radial dimension of at least one or both of the vertical ducts is smaller than the radial dimension of the other portion of the vertical duct. 2. The radial dimension δ 1 of at least one or both of the vertical ducts on the innermost and outer circumferential sides and the radial dimension δ 2 of the other vertical ducts are set in the range of 0.56 δ 2 δ 1 0.73 δ 2 A winding structure for a stationary induction electric appliance according to claim 1.
JP12960384A 1984-06-22 1984-06-22 Winding construction of stationary induction electric apparatus Granted JPS618909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12960384A JPS618909A (en) 1984-06-22 1984-06-22 Winding construction of stationary induction electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12960384A JPS618909A (en) 1984-06-22 1984-06-22 Winding construction of stationary induction electric apparatus

Publications (2)

Publication Number Publication Date
JPS618909A JPS618909A (en) 1986-01-16
JPH0351083B2 true JPH0351083B2 (en) 1991-08-05

Family

ID=15013538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12960384A Granted JPS618909A (en) 1984-06-22 1984-06-22 Winding construction of stationary induction electric apparatus

Country Status (1)

Country Link
JP (1) JPS618909A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE048385T2 (en) 2015-08-14 2020-07-28 Abb Power Grids Switzerland Ag Cooling of a static electric induction system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4116508Y1 (en) * 1964-09-12 1966-07-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4116508Y1 (en) * 1964-09-12 1966-07-30

Also Published As

Publication number Publication date
JPS618909A (en) 1986-01-16

Similar Documents

Publication Publication Date Title
US4207550A (en) Winding structure of electric devices
JPH0351083B2 (en)
US4032873A (en) Flow directing means for air-cooled transformers
US2685677A (en) Cooling system for electrical apparatus
JPH0927426A (en) Stationary induction device wiring
JPS593545Y2 (en) Forced cooling windings for stationary equipment
JPS607447Y2 (en) Boiling cooling electromagnet coil
JP2998407B2 (en) Cooling structure of electromagnetic induction disk winding
JPS593546Y2 (en) Forced cooling windings for stationary equipment
JP2554696B2 (en) Gas insulated transformer
JPS5651813A (en) Transformer winding
JPH0416408Y2 (en)
JPS61131516A (en) Winding of stationary induction apparatus
JPS5932117A (en) Winding of induction electric apparatus
JPS5810157Y2 (en) Coil for nuclear fusion device
JPS6021512A (en) Stationary induction electric apparatus winding
JPH06338422A (en) Gas-cooled stationary electric apparatus
JPH06275444A (en) Gas insulated transformer
JPS6317222Y2 (en)
JPS5875816A (en) Leaf winding transformer
JPS59155108A (en) Winding for natural cooling induction electric apparatus
JPS6113365B2 (en)
JPS58202514A (en) Self-cooling system transformer winding
JPH0864426A (en) Stationary induction device
JPS6344962Y2 (en)