JPH0350977B2 - - Google Patents

Info

Publication number
JPH0350977B2
JPH0350977B2 JP3861783A JP3861783A JPH0350977B2 JP H0350977 B2 JPH0350977 B2 JP H0350977B2 JP 3861783 A JP3861783 A JP 3861783A JP 3861783 A JP3861783 A JP 3861783A JP H0350977 B2 JPH0350977 B2 JP H0350977B2
Authority
JP
Japan
Prior art keywords
deterioration
temperature
dynamic viscoelastic
time
dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3861783A
Other languages
Japanese (ja)
Other versions
JPS59163552A (en
Inventor
Tsutomu Oshama
Yoshifusa Tsubone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP3861783A priority Critical patent/JPS59163552A/en
Publication of JPS59163552A publication Critical patent/JPS59163552A/en
Publication of JPH0350977B2 publication Critical patent/JPH0350977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気機器絶縁に用いられる絶縁樹脂
などの熱劣化を検出する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting thermal deterioration of an insulating resin or the like used for insulating electrical equipment.

〔従来技術〕[Prior art]

一般に電気機器の絶縁には、固体絶縁材料、液
体絶縁材料、気体絶縁材料が単独に、又は組み合
わせて使用されている。
Generally, solid insulating materials, liquid insulating materials, and gas insulating materials are used singly or in combination for insulating electrical equipment.

油入変圧器などの液体絶縁や、ガス絶縁開閉装
置などの気体絶縁においては、分解生成ガス分析
などの物理化学的手法による絶縁劣化判定方法が
提案され、一部実用化されているが、回転機など
の固体絶縁においては、電気的試験による、いわ
ゆる絶縁診断法がその中心となつている。
For liquid insulation such as oil-immersed transformers and gas insulation such as gas-insulated switchgear, methods for determining insulation deterioration using physicochemical methods such as decomposition gas analysis have been proposed, and some have been put into practical use. The so-called insulation diagnosis method based on electrical testing is central to the solid insulation of machines and other equipment.

しかし、現状の電気的試験による絶縁診断法
(直流試験法、交流試験法、誘電正接試験法、部
分放電試験法、接地線漏れ電流試験法)では、試
験電圧が被測定電気機器の定格電圧までしか印加
できないため、得られる諸特性の変化は小さく、
加えてその試験結果は試験時の環境条件、特に湿
度の影響を受けるため、絶縁劣化との安定した対
応がとれないまま経験的に劣化状況を推測するに
とどまつている。
However, with the current insulation diagnostic methods using electrical tests (DC test method, AC test method, dielectric loss tangent test method, partial discharge test method, and grounding wire leakage current test method), the test voltage does not exceed the rated voltage of the electrical equipment under test. Since only a small amount of energy can be applied, the changes in the obtained characteristics are small.
In addition, the test results are affected by the environmental conditions at the time of the test, especially humidity, so the deterioration situation can only be estimated empirically without a stable response to insulation deterioration.

また、物理化学的手法としては、絶縁樹脂中の
水素原子数と炭素原子数の比の変化による絶縁寿
命等が提唱されてはいるが、それらは寿命点近傍
で急激に低下する絶縁破壊電圧の変化に対応した
ものであり、連続的に進行する絶縁劣化の、広い
範囲にわたる劣化度を判定することができない。
In addition, as a physicochemical method, it has been proposed to measure the insulation life by changing the ratio of the number of hydrogen atoms to the number of carbon atoms in the insulating resin. It is not possible to determine the degree of deterioration over a wide range of continuously progressing insulation deterioration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、実働機器の絶縁劣化との安定した対
応をとることができ、また連続的に進行する絶縁
劣化の広い範囲にわたる劣化度を判定することを
目的とする。
An object of the present invention is to be able to take stable measures against insulation deterioration in actual equipment, and to determine the degree of deterioration over a wide range of continuously progressing insulation deterioration.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するため、本発明の熱劣化検出
方法は、被測定物質と同一材料の試料を種々の温
度で劣化させ、その試料の劣化による動的粘弾性
特性の変化を求め、一方の軸にアレニウス速度反
応式に基づく劣化温度と劣化時間の関数の換算時
間をとり、他方の軸に動的粘弾性特性をとり、前
記種々の温度での動的粘弾性特性の変化を前記2
軸で表される座標上にプロツトしてマスタカーブ
を求め、実働機器から採取した物質の動的粘弾性
特性を前記マスタカーブに対比させて実働機器の
劣化度を検出することを特徴とする。
In order to achieve this objective, the thermal deterioration detection method of the present invention deteriorates a sample of the same material as the substance to be measured at various temperatures, determines the change in dynamic viscoelastic properties due to the deterioration of the sample, and The conversion time of the function of deterioration temperature and deterioration time based on the Arrhenius rate reaction formula is taken as the axis, and the dynamic viscoelastic property is taken as the other axis, and the changes in the dynamic viscoelastic property at the various temperatures are expressed as described above.
The present invention is characterized in that a master curve is obtained by plotting on the coordinates represented by the axes, and the degree of deterioration of the actual equipment is detected by comparing the dynamic viscoelastic properties of the material sampled from the actual equipment with the master curve.

前記動的粘弾性特性としては、動的弾性率と損
失弾性率の比の、温度分散特性におけるピーク値
や、定められた温度での値を用いることができ
る。
As the dynamic viscoelastic property, a peak value of the ratio of the dynamic elastic modulus to the loss modulus in the temperature dispersion property or a value at a predetermined temperature can be used.

〔作用〕[Effect]

一般に、熱劣化による電気機器絶縁物において
は、化学構造量(化学構造、分子運動及び集合状
態)の変化は化学反応速度論に従い、かつ動的粘
弾性特性は化学構造量で一義的に決まる。
Generally, in electrical equipment insulators due to thermal deterioration, changes in chemical structural quantities (chemical structure, molecular motion, and aggregation state) follow chemical reaction kinetics, and dynamic viscoelastic properties are uniquely determined by the chemical structural quantities.

即ち熱劣化による化学構造量xの変化が化学反
応速度論に従うとすれば、化学構造量xの変化
は、 dx/dt=A・exp(−ΔE/RT)g(x) …第1式 で表される。ここで、tは劣化時間、Aは頻度因
子、ΔEは劣化の活性化エネルギー、Rはガス定
数、Tは劣化の絶対温度、g(x)は反応機構を
表す関数である。
In other words, if the change in the chemical structure amount x due to thermal deterioration follows chemical reaction kinetics, then the change in the chemical structure amount x is as follows: dx/dt=A・exp(−ΔE/RT)g(x) expressed. Here, t is the deterioration time, A is the frequency factor, ΔE is the activation energy of deterioration, R is the gas constant, T is the absolute temperature of deterioration, and g(x) is a function representing the reaction mechanism.

絶縁材料の劣化が時間0からtまで進み、化学
構造量がX0からxまで変化したとして第1式を
積分すると、 ∫x x0dx/g(x)=A∫t 0exp(−ΔE/RT)dt…第2
式 となる。右辺の積分は時間の次元となるので換算
時間θと呼ばれている。
Assuming that the deterioration of the insulating material progresses from time 0 to t and the chemical structure changes from X 0 to RT) dt…Second
The formula becomes The integral on the right side has the dimension of time, so it is called the reduced time θ.

θ=∫t 0exp(−ΔE/RT)dt …第3式 従つて、第2式は ∫x x0dx/g(x)=A・θ …第4式 で表される。 θ=∫ t 0 exp (−ΔE/RT) dt...Third equation Therefore, the second equation is expressed as ∫ x x0 dx/g(x)=A·θ...Fourth equation.

反応機構を表す関数g(x)と頻度因子Aとが
一定の劣化領域では、種々の温度条件下で劣化が
生じても、換算時間θが等しければ化学構造量x
の変化も等しくなり、 θ=f(x) …第5式 と表される。
In a deterioration region where the function g(x) expressing the reaction mechanism and the frequency factor A are constant, even if deterioration occurs under various temperature conditions, if the conversion time θ is the same, the chemical structure amount x
The changes in are also equal, and θ=f(x) is expressed as the fifth equation.

更に、動的粘弾性特性Pが、化学構造量で一義
的に決まるとすると、 P=h(x) …第6式 となり、換算時間θと動的粘弾性特性Pは、 θ=f{h-1(P)} …第7式 と表され、動的粘弾性特性Pを測定することによ
り熱劣化の指標となる換算時間θを求めることが
できる。
Furthermore, if the dynamic viscoelastic property P is uniquely determined by the amount of chemical structure, then P=h(x)...Equation 6 becomes, and the converted time θ and the dynamic viscoelastic property P are as follows: θ=f{h -1 (P)}...It is expressed as Equation 7, and by measuring the dynamic viscoelastic property P, the converted time θ, which is an index of thermal deterioration, can be determined.

〔実施例〕〔Example〕

以下に、電気絶縁材料として多く用いられてい
るポリエチレンテレフタレートを試料として用
い、動的粘弾性特性として、損失弾性率E″と動
的弾性率E′との比〔E″/E′〕(以下M−tanδとい
う)の温度分散特性を用いた実施例により本発明
を具体的に説明する。なお、試料には厚さ125μm
のフイルムを用い、槽内温度が160℃,180,200
℃の熱風循環式恒温槽中で劣化させた。
Below, using polyethylene terephthalate, which is often used as an electrical insulating material, as a sample, the dynamic viscoelastic properties are expressed as the ratio of the loss modulus E'' to the dynamic elastic modulus E'[E''/E'] (hereinafter referred to as The present invention will be specifically explained using an example using the temperature dispersion characteristic (referred to as M-tan δ). Note that the sample has a thickness of 125 μm.
The temperature inside the tank was 160℃, 180℃, 200℃.
It was aged in a hot air circulation constant temperature bath at ℃.

この試料のうち、直読式動的粘弾性測定器で測
定した槽内温度180℃における劣化によるM−
tanδの温度分散特性の変化の一例を第1図に示
す。試料は、未劣化、180℃×50時間及び180℃×
700時間のものとした。
Of this sample, M-
An example of changes in the temperature dispersion characteristics of tan δ is shown in FIG. Samples were undegraded, 180℃×50 hours and 180℃×
It was assumed to be 700 hours.

第1図で表されているように、劣化の進行とと
もに、M−tanδのピーク値はそれぞれ0.135,
0.09,0.05と低下し、ピーク温度も138℃,145
℃,148℃と高温側にシフトしている。実施例に
おけるポリエチレンテレフタレートでは、ピーク
温度のシフト幅よりもピーク値の低下幅が大きい
ので、ピーク値の変化に着目した。
As shown in Figure 1, as the deterioration progresses, the peak values of M-tanδ increase to 0.135 and 0.135, respectively.
It decreased to 0.09, 0.05, and the peak temperature was 138℃, 145
℃, 148℃, which is a shift to the high temperature side. In the case of polyethylene terephthalate in the examples, since the range of decrease in peak value was larger than the range of shift in peak temperature, attention was paid to the change in peak value.

槽内温度160℃及び200℃で劣化させた他の試料
についても同様に測定した各劣化温度における劣
化時間とM−tanδピーク値との関係を第2図に示
す。ピーク値は劣化時間の対数に対して直線的に
低下していることがわかる。
FIG. 2 shows the relationship between the deterioration time and the M-tan δ peak value at each deterioration temperature, which was similarly measured for other samples that were deteriorated at bath temperatures of 160° C. and 200° C. It can be seen that the peak value decreases linearly with the logarithm of the deterioration time.

次に、第2図の劣化温度をパラメータとしたM
−tanδピーク値の低下直線から、劣化の換算時間
θを用いたマスタ−カーブを作成するため、第2
図の低下直線から求めたM−tanδピーク値が
0.09,0.07,0.05に低下するまでの劣化温度と劣
化時間との関係を、第3図に示すアレニウスプロ
ツトで表し、その勾配(ΔE/R)から求めた劣
化の活性化エネルギーΔEを求める。すなわち、
第3図のグラフの縦軸を劣化時間tの対数目盛、
横軸を劣化温度T(絶対温度)の逆数とすると、
特性直線は次のように表される。
Next, M
In order to create a master curve using the deterioration conversion time θ from the decreasing straight line of the -tanδ peak value, the second
The M-tanδ peak value obtained from the decreasing straight line in the figure is
The relationship between the deterioration temperature and the deterioration time until the temperature decreases to 0.09, 0.07, and 0.05 is represented by the Arrhenius plot shown in FIG. 3, and the activation energy ΔE of deterioration determined from the slope (ΔE/R) is determined. That is,
The vertical axis of the graph in Figure 3 is the logarithmic scale of the deterioration time t,
If the horizontal axis is the reciprocal of the deterioration temperature T (absolute temperature),
The characteristic line is expressed as follows.

すなわち、 logt=B−ΔE/R・1/T (Bは特性直線が縦軸と交わる点の座標) この式より、2つの点の座標を求めると特性直
線の勾配(ΔE/R)が得られる。ガス定数Rは
既知の値であるので、ΔEを求めることができる。
In other words, logt=B-ΔE/R・1/T (B is the coordinate of the point where the characteristic line intersects the vertical axis) From this formula, when the coordinates of the two points are determined, the slope of the characteristic line (ΔE/R) can be obtained. It will be done. Since the gas constant R is a known value, ΔE can be determined.

この求められたΔEと試料を劣化させた各温度
及び時間を第3式に代入して換算時間θを計算
し、第4図に示すように横軸に換算時間θをと
り、縦軸にM−tanδのピーク値をプロツトして試
料の熱劣化によるM−tanδピーク値の低下のマス
タ−カーブAを得た。
The converted time θ is calculated by substituting the obtained ΔE and each temperature and time at which the sample deteriorated into the third equation, and as shown in Figure 4, the horizontal axis is the converted time θ, and the vertical axis is M -tan δ peak values were plotted to obtain a master curve A of the decrease in M-tan δ peak value due to thermal deterioration of the sample.

その結果、示した各劣化温度160℃,180℃,
200℃におけるM−tanδピーク値のそれぞれが一
本の直線上に乗つており、劣化の換算時間θとM
−tanδピーク値との間に、非常に良い相関がある
ことがわかる。これは第7式の換算時間θと動的
粘弾性特性(M−tanδピーク値)との間の関係が
一義的に求められたことを意味する。
As a result, each deterioration temperature shown was 160℃, 180℃,
Each of the M-tanδ peak values at 200°C is on a straight line, and the conversion time of deterioration θ and M
It can be seen that there is a very good correlation between -tanδ peak value. This means that the relationship between the converted time θ in the seventh equation and the dynamic viscoelastic property (M-tan δ peak value) has been uniquely determined.

いま、電気機器絶縁線輪の耐熱寿命が130℃の
温度雰囲気中で20000時間であるとすると、第3
図の直線の勾配から求めた劣化の活性化エネルギ
ーΔEを用いると、第3式より換算時間θaは5.6×
10-2secとなる。この寿命の劣化度を1とし、第
4図の横軸に目盛ると第5図が得られる。
Now, assuming that the heat-resistant life of electrical equipment insulated wire is 20,000 hours in an atmosphere at a temperature of 130℃, the third
Using the activation energy ΔE of deterioration found from the slope of the straight line in the figure, the converted time θa is 5.6 ×
10 -2 sec. If this degree of life deterioration is set as 1 and the horizontal axis of FIG. 4 is scaled, FIG. 5 is obtained.

次に、このようにして得られたマスタ−カーブ
Aに基づいて、実働機器の絶縁材料の劣化度を求
める方法について説明する。
Next, a method for determining the degree of deterioration of the insulating material of the actual equipment will be explained based on the master curve A obtained in this manner.

試料と同一の材料を、図示しない電気機器絶縁
線輪に用い、所要時間稼働した後、前記電気機器
絶縁線輪より微少量の絶縁物を採取し、M−tanδ
の温度分散特性のピーク値Caを測定し、第5図
の縦軸上のCaとマスタ−カーブAとの交叉する
点の座標より換算時間θbを得る。この換算時間
θbは、温度と時間の関数であるので、電気機器
の運転時間がわかれば、その間の平均的な温度が
わかる。運転時の温度がわかれば運転時間が第3
式より算出でき、熱劣化の度合を検出することが
できる。また、換算時間θbを、第5図の換算時
間に目盛り、直線との交点を求め、電気機器絶縁
線輪の余寿命を検出することができる。
The same material as the sample was used for an electrical equipment insulating wire ring (not shown), and after operation for the required time, a small amount of insulator was collected from the electrical equipment insulating wire ring, and M-tanδ
The peak value Ca of the temperature dispersion characteristic is measured, and the converted time θb is obtained from the coordinates of the point where Ca intersects with the master curve A on the vertical axis in FIG. This converted time θb is a function of temperature and time, so if you know the operating time of the electrical equipment, you can know the average temperature during that time. If you know the temperature during operation, you can determine the operation time.
It can be calculated from the formula, and the degree of thermal deterioration can be detected. Further, the remaining life of the electrical equipment insulated wire ring can be detected by finding the intersection of the converted time θb with the scale and the straight line in the converted time shown in FIG. 5.

上記実施例では、M−tanδの温度分散特性のピ
ーク値の変化で劣化度を判定したが、M−tanδの
温度分散特性のピーク温度や、他の動的粘弾性特
性の変化からも劣化度の判定が可能である。
In the above example, the degree of deterioration was determined based on the change in the peak value of the temperature dispersion characteristic of M-tanδ, but the degree of deterioration was also determined from the peak temperature of the temperature dispersion characteristic of M-tanδ and changes in other dynamic viscoelastic characteristics. It is possible to determine

また、実施例で述べたポリエチレンテレフタレ
ート以外にも、他のフイルム材に適用できること
は勿論、エナメル線塗剤やコイル含浸剤などにも
適用でき、また被測定物質から採取したが、モニ
ター材を被測定物質に着脱自在に取り付けてもよ
い。
In addition to polyethylene terephthalate mentioned in the examples, it can of course be applied to other film materials, as well as enamel wire coatings and coil impregnating agents. It may be detachably attached to the substance to be measured.

また、本発明の熱劣化検出方法は、電気機器絶
縁物に限ることなく、他の分野に使用される樹脂
などの熱劣化検出にも応用できることは言うまで
もない。
Furthermore, it goes without saying that the thermal deterioration detection method of the present invention is not limited to electrical equipment insulators, but can also be applied to thermal deterioration detection of resins used in other fields.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明の熱劣化検出方法によれ
ば、電気機器の絶縁物を構成する絶縁材料の動的
粘弾性特性の変化から、絶縁組織の劣化度を温度
と時間の関数として予め求めておき、連続的な劣
化の進行過程より抽出された実働電気機器からの
試料との対比により熱劣化度を検出するので、実
働電気機器の絶縁劣化との安定した対応がとれ、
広い範囲にわたつて劣化度を判定することができ
る。したがつて、電気機器などの保全における修
理や更新などの処置を、データベースに信頼度高
く行なうことができ、また電気機器などの絶縁設
計を直接的に検証し、絶縁設計にフイードバツク
することにより電気機器などの信頼性向上を図る
ことができる。
As described above, according to the thermal deterioration detection method of the present invention, the degree of deterioration of the insulating structure is determined in advance as a function of temperature and time from changes in the dynamic viscoelastic properties of the insulating material that constitutes the insulator of electrical equipment. Since the degree of thermal deterioration is detected by comparison with samples from actual electrical equipment extracted from the continuous progress of deterioration, it is possible to take stable measures against the insulation deterioration of actual electrical equipment.
The degree of deterioration can be determined over a wide range. Therefore, repairs and updates during maintenance of electrical equipment can be carried out with high reliability based on the database, and the insulation design of electrical equipment can be directly verified and feedback can be provided to the insulation design. It is possible to improve the reliability of equipment, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はM−tanδの温度分散特性の変化を表す
グラフ、第2図は熱劣化によるM−tanδのピーク
値の変化を表すグラフ、第3図はM−tanδピーク
値が低下するまでの劣化温度と劣化時間との関係
をアレニウスプロツトで表したグラフ、第4図は
劣化によるM−tanδピーク値低下のマスタ−カー
ブを表すグラフ、第5図はマスタ−カーブと劣化
度との関係を表すグラフである。
Figure 1 is a graph showing changes in the temperature dispersion characteristics of M-tanδ, Figure 2 is a graph showing changes in the peak value of M-tanδ due to thermal deterioration, and Figure 3 is a graph showing changes in the peak value of M-tanδ due to thermal deterioration. A graph showing the relationship between the deterioration temperature and the deterioration time using an Arrhenius plot. Figure 4 is a graph representing the master curve of M-tanδ peak value decrease due to deterioration. Figure 5 is the relationship between the master curve and the degree of deterioration. This is a graph representing

Claims (1)

【特許請求の範囲】 1 被測定物質と同一材料の試料を種々の温度で
劣化させ、その試料の劣化による動的粘弾性特性
の変化を求め、一方の軸にアレニウス速度反応式
に基づく劣化温度と劣化時間の関数の換算時間を
とり、他方の軸に動的粘弾性特性をとり、前記
種々の温度での動的粘弾性特性の変化を前記2軸
で表される座標上にプロツトしてマスタカーブを
求め、実働機器から採取した物質の動的粘弾性特
性を前記マスタカーブに対比させて実働機器の劣
化度を検出することを特徴とする熱劣化検出方
法。 2 動的粘弾性特性が、動的弾性率と損失弾性率
の比の、温度分散特性におけるピーク値である特
許請求の範囲第1項記載の熱劣化検出方法。 3 動的粘弾性特性が、動的弾性率と損失弾性率
の比の、温度分散特性における定められた温度で
の値である特許請求の範囲第1項記載の熱劣化検
出方法。
[Claims] 1. A sample made of the same material as the substance to be measured is degraded at various temperatures, and changes in dynamic viscoelastic properties due to the sample degradation are determined, and one axis is the deterioration temperature based on the Arrhenius rate reaction equation. and the conversion time of the function of deterioration time, the dynamic viscoelastic properties are plotted on the other axis, and the changes in the dynamic viscoelastic properties at the various temperatures are plotted on the coordinates represented by the two axes. 1. A method for detecting thermal deterioration, which comprises determining a master curve, and comparing dynamic viscoelastic properties of a substance sampled from an actual device with the master curve to detect the degree of deterioration of the actual device. 2. The thermal deterioration detection method according to claim 1, wherein the dynamic viscoelastic property is the peak value of the ratio of the dynamic elastic modulus to the loss modulus in the temperature dispersion property. 3. The thermal deterioration detection method according to claim 1, wherein the dynamic viscoelastic property is a value of the ratio of the dynamic elastic modulus to the loss modulus at a predetermined temperature in the temperature dispersion property.
JP3861783A 1983-03-08 1983-03-08 Thermal deterioration detecting method Granted JPS59163552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3861783A JPS59163552A (en) 1983-03-08 1983-03-08 Thermal deterioration detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3861783A JPS59163552A (en) 1983-03-08 1983-03-08 Thermal deterioration detecting method

Publications (2)

Publication Number Publication Date
JPS59163552A JPS59163552A (en) 1984-09-14
JPH0350977B2 true JPH0350977B2 (en) 1991-08-05

Family

ID=12530205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3861783A Granted JPS59163552A (en) 1983-03-08 1983-03-08 Thermal deterioration detecting method

Country Status (1)

Country Link
JP (1) JPS59163552A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247540A (en) * 1985-08-27 1987-03-02 Yaskawa Electric Mfg Co Ltd Detection of thermal deterioration
US5141329A (en) * 1990-09-27 1992-08-25 Alcor, Inc. Micro freeze point analysis apparatus and method
JP5505291B2 (en) * 2010-12-20 2014-05-28 住友電装株式会社 Evaluation method of thermal stability and degree of deterioration of resin products
JP2013064679A (en) * 2011-09-20 2013-04-11 Nippon Telegr & Teleph Corp <Ntt> Method for detecting deterioration of coating film
JP5563538B2 (en) * 2011-09-20 2014-07-30 日本電信電話株式会社 Method for detecting film deterioration
JP5718787B2 (en) * 2011-10-26 2015-05-13 日本電信電話株式会社 Method for detecting film deterioration
JP5833590B2 (en) * 2013-03-22 2015-12-16 日本電信電話株式会社 Method for evaluating deterioration of coating film

Also Published As

Publication number Publication date
JPS59163552A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
CN108508337A (en) Dielectric analysis method for assessing XLPE cable insulation ag(e)ing state
Arvind et al. Condition monitoring of power transformer: A review
JPH0350977B2 (en)
Koch et al. On-site methods for reliable moisture determination in power transformers
Ohlen et al. Dielectric frequency response and temperature dependence of power factor
Ciuriuc et al. Lifetime estimation of vegetable and mineral oil impregnated paper for power transformers
Batruni et al. Determining the effect of thermal loading on the remaining useful life of a power transformer from its impedance versus frequency characteristic
Morrison Evaluation of the thermal stability of electrical insulating paper
Linde et al. Comparison of Dielectric Loss Measuring Methods on Epoxy Samples under Harmonic Distorted Voltages
Sumereder et al. Moisture determination and degradation of solid insulation system of power transformers
Raetzke et al. Modern insulation condition assessment for instrument transformers
Gutten et al. Frequency Domain Diagnostics of Transformer Insulation
Bassi et al. Conductivity and Dielectric Dissipation Factor (tan δ) Measurements of Insulating Oils of New and Aged Power Transformers—Comparison of Results Between Portable Square Wave and Conventional Bridge Methods
JPH0311978A (en) Gas-insulated water-cooled thyristor bulb
Pan et al. Research on the Influence of Temperature on the Frequency Domain Spectroscopy Characteristics of AC Oil-Paper Insulated Bushings
Phalphale et al. Investigation of transformer oil exposed to the atmosphere
KR100776641B1 (en) Evaluation method on degradation of polymeric materials by using dielectric relaxation properties
Zhang et al. Research on the variation of dielectric properties of oil‐paper insulation for power equipment over a wide temperature range
JPS6247532A (en) Heat deterioration detecting method for insulation characteristic in electric apparatus
JPH068793B2 (en) Thermal deterioration detection method
Yadav et al. Understanding the dielectric properties of pressboard material thermally aged in dibenzyl disulphide (DBDS) included transformer oil
JP3864063B2 (en) Degradation evaluation method for coil insulation paper
JPH0564294B2 (en)
Perez et al. Influence of Stabilization Time and Post Processing Methods on the Accuracy of DC Conductivity Measurements
JPS6247540A (en) Detection of thermal deterioration