JPH03505103A - Heat treatment method for high speed steel - Google Patents

Heat treatment method for high speed steel

Info

Publication number
JPH03505103A
JPH03505103A JP50458990A JP50458990A JPH03505103A JP H03505103 A JPH03505103 A JP H03505103A JP 50458990 A JP50458990 A JP 50458990A JP 50458990 A JP50458990 A JP 50458990A JP H03505103 A JPH03505103 A JP H03505103A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
bath
cycle
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50458990A
Other languages
Japanese (ja)
Inventor
シマトフ アレクサンドル アナトリエビチ
ボロシニン レオニド グリゴリエビチ
カチャロフ バディム アドルフォビチ
Original Assignee
ベロルススキ ポリテフニチェスキ インスティテュト
ナウチノ―プロイズボドストベンニ コーペラティフ“ベラグロテフニカ”
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベロルススキ ポリテフニチェスキ インスティテュト, ナウチノ―プロイズボドストベンニ コーペラティフ“ベラグロテフニカ” filed Critical ベロルススキ ポリテフニチェスキ インスティテュト
Publication of JPH03505103A publication Critical patent/JPH03505103A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • C21D1/785Thermocycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 高速度鋼の熱処理方法 技術分野 本発明は冶金学に係り、衝撃負荷に強く、粉末冶金技術や鍛造によって好ましく 高速度鋼から作られる主に金属切削工具及び種々の工具に用いられる高速度鋼の 熱処理方法に関する。[Detailed description of the invention] Heat treatment method for high speed steel Technical field The present invention relates to metallurgy, is resistant to impact loads, and is preferably produced by powder metallurgy technology or forging. Mainly metal cutting tools made from high speed steel and high speed steel used for various tools. It relates to a heat treatment method.

従来技術 圧延において耐疲労性を増す主軸受鋼の熱処理方法、すなわち、982−103 7℃に製品を加熱し、その温度でその製品を保持し、427−649℃に冷却し 、オーステナイトがパーライトあるいはベーナイトに変化する迄その温度に保持 する方法が知られている(Us、 A、 4023988)。硬化のために、9 27℃に加熱し、急冷し、149−204℃での焼き戻しがそれに続く。Conventional technology Heat treatment method for main bearing steel to increase fatigue resistance during rolling, i.e. 982-103 Heat the product to 7°C, hold the product at that temperature, and cool to 427-649°C. , maintained at that temperature until austenite changes to pearlite or bainite. A method is known (Us, A, 4023988). For hardening, 9 Heating to 27°C followed by rapid cooling and tempering at 149-204°C.

オーステナイト化の前にパーライト及びベーナイト変態が生じる結果として、層 状炭化物が硬化のための加熱中に鋼の組織のオーステナイト粒界にでき、急冷後 光の状態を維持しながらこれらの組織が圧延中に耐疲労性を付加する。As a result of pearlitic and bainitic transformations occurring before austenitization, the layer Carbides are formed at the austenite grain boundaries of the steel structure during heating for hardening, and after quenching. These structures add fatigue resistance during rolling while maintaining light conditions.

この方法は高速度鋼の工具の高性能を保証できない。低い硬化温度と2つの熱処 理サイクルのみが炭化物形成元素との最大固溶合金化を防止する。従って、耐熱 性、硬さ、強度及び高速度鋼の他の特性も何ら改良できない6また10%未満の 合金元素を有する過共析鋼の方法、すなわち高温オーステナイト化、オーステナ イトがパーライトに変化する迄480−720℃で保持しながらの等温硬化、炭 化物の完全溶解の温度未満のオーステナイト化温度以下への再加熱、急冷、焼戻 しの方法が知られている(US、 A、 3922181)。This method cannot guarantee the high performance of high speed steel tools. Low curing temperature and two heat treatments Only the chemical cycle prevents maximum solid solution alloying with carbide-forming elements. Therefore, heat resistant 6 or less than 10% without any improvement in properties such as hardness, strength and other properties of high speed steel. Methods of hypereutectoid steels with alloying elements, i.e. high temperature austenitization, austenitization Isothermal curing while holding at 480-720℃ until the pearlite changes, charcoal Reheating, quenching, and tempering below the austenitizing temperature below the temperature of complete dissolution of the compound. A method is known (US, A, 3922181).

その方法は微細粒の形成や組織全体で炭化物が分散されれば最も好ましい分布の 形成に導き硬化中のミクロ欠陥を防止する。これは特性に対して積極的な効果を 有する。従って接触中に耐疲労性が2.5−3倍増加し、圧縮耐力が30−35 %増加する。また過共析鋼の耐摩耗性が増加する。This method achieves the most favorable distribution by forming fine grains and dispersing carbides throughout the structure. It leads to the formation and prevents micro-defects during curing. This has a positive effect on the property have Therefore, the fatigue resistance increases by 2.5-3 times during contact, and the compressive strength increases by 30-35 times. %To increase. It also increases the wear resistance of hypereutectoid steel.

しかしながら、高速度鋼に関するかぎり、この方法は耐摩耗、耐熱、強度及び他 の特性の改良が認められないので有用でない。低い硬化温度と小数の熱処理サイ クル(2回のみ)は炭化物形成元素との高い合金固溶度を達成できない。従って 上記方法は欠点を有する。However, as far as high-speed steel is concerned, this method can improve wear resistance, heat resistance, strength and other It is not useful because no improvement in the properties of Low curing temperature and small heat treatment size (only twice) cannot achieve high alloy solid solubility with carbide-forming elements. Therefore The above method has drawbacks.

更に、当業界でアルミニウム加工ダイスを製造する方法、すなわち1100−1 .300℃で初期均熱、熱間媒体中での急冷、800−900℃以下への再加熱 、硬化及び焼戻しを行う方法が知られている(JP、 A、 6l−52015 0)。Furthermore, a method for manufacturing aluminum machining dies in the art, namely 1100-1 .. Initial soaking at 300℃, rapid cooling in hot medium, reheating to below 800-900℃ , a method of hardening and tempering is known (JP, A, 6l-52015 0).

この方法で製造された工具は高度の安定性、高温強度、靭性及び耐熱性に特徴が ある。しかしながら、使用された熱処理は、低硬化温度と少数の熱処理サイクル (2回のみ)から生ずる低固溶合金化度のため高速度鋼工具の性能が改良できな い。Tools produced in this way are characterized by a high degree of stability, high temperature strength, toughness and heat resistance. be. However, the heat treatment used has a low curing temperature and a small number of heat treatment cycles. The performance of high speed steel tools cannot be improved due to the low solid solution alloying degree resulting from (only twice) stomach.

高速度鋼の熱処理方法、すなわち、種々の組織を有する組織変態の温度以上に加 熱し、サイクル熱処理、硬化及び焼戻しを行い、それによって硬化温度を該サイ クル熱処理の過程で最大温度迄の最終加熱と組合わせる方法が当業界で同様に知 られている(SU、 A、 1014938)。サイクル熱処理中の加熱は標準 硬化温度に対応する融点以下2O−50tの温度で実施され、冷却が800℃以 上の温度で続く。サイクル熱処理過程で最も低い700℃の温度への特定の冷却 が4−8時間保持と室温への冷却により続けられる。Heat treatment method for high-speed steel, that is, heating above the temperature of structural transformation with various structures. heat, cycle heat treatment, hardening and tempering, thereby adjusting the hardening temperature to that size. It is also known in the art to combine the process of heat treatment with a final heating to a maximum temperature. (SU, A, 1014938). Heating during cycle heat treatment is standard It is carried out at a temperature of 2O-50t below the melting point corresponding to the curing temperature, and cooling is carried out at a temperature of 800℃ or higher. Continue at above temperature. Specific cooling to the lowest temperature of 700℃ during cycle heat treatment process is followed by holding for 4-8 hours and cooling to room temperature.

熱処理サイクルの最も望ましい回数はこの方法を実施する上で組織上の異種性度 に依存して5回から7回の間で変化する。サイクル熱処理の上下温度は種々の組 織を有する組織(亜共晶)変態と標準硬化の温度間の狭い範囲内に入り、いくつ かの亜共晶変態の可能性が全体的に排除される。サイクル熱処理は該方法の全て の段階で一定の最大及び最小温度で実施される。The most desirable number of heat treatment cycles depends on the degree of structural heterogeneity in implementing this method. Varies between 5 and 7 times depending on. The upper and lower temperatures of cycle heat treatment are different from each other. Within a narrow range between the temperatures of textured (hypoeutectic) transformation and standard hardening, several The possibility of such a hypoeutectic transformation is totally excluded. Cycle heat treatment is all part of this method. The steps are carried out at constant maximum and minimum temperatures.

しかしながら、この方法によって鋳物以外(鍛造されアニールされた鋼、鋼粉末 等)の高速度鋼から作られた工具は耐摩耗性に欠ける。その点は元々鍛造高速度 鋼のろの炭化物共晶の幾何学的配置が機械的に、あるいは周知方法に影響する他 の方法で壊されて、鍛造されてアニールした鋼や粉末鋼の工具に利用されない。However, this method does not apply to castings (forged and annealed steel, steel powder). Tools made from high-speed steel (e.g.) lack wear resistance. The point is that it was originally forged at high speed. The geometry of the carbide eutectic in the steel filter affects mechanically or otherwise It is not used in forged and annealed steel or powder steel tools.

これは鋳物以外の元の高速度鋼工具を高速機械加工の用途に合わせない。This makes the original high speed steel tools other than castings unsuitable for high speed machining applications.

発明の要旨 本発明の主な目的は適当に選択された最も好ましい条件下で金属切削工具用高速 度鋼を熱処理する方法を提供することであり、その方法によって炭化物形成元素 さの固溶合金度が増大し、組織成分(粒子、炭化物層)の大きさを縮小でき、そ して相の歪硬化に有効な目的を持たせ、それにより高速度鋼の全体の強度、衝撃 強度、硬度及び耐熱性そして長時間作業での工具の耐久性が増大しそれに伴い労 働生産性も向上する。Summary of the invention The main object of the present invention is to provide high speed cutting tools for metal cutting tools under suitably selected most favorable conditions. The object of the present invention is to provide a method for heat treating hardened steel, whereby carbide-forming elements are The degree of solid solution alloying increases, the size of the structural components (particles, carbide layer) can be reduced, and the The strain hardening of the phase has an effective purpose, thereby increasing the overall strength and impact of high-speed steel. Increased strength, hardness and heat resistance, and tool durability over long periods of time, resulting in reduced labor. Work productivity will also improve.

本発明の要旨は数回の加熱と冷却による鋼のサイクル熱処理と、種々の結晶組織 を有する組織変態の温度を超える温度で開始する冷却によって硬化しそれにより 硬化用加熱が最終のサイクル加熱と組合わされ、次に焼戻す高速度鋼を加熱する 方法において、本発明によれば前記サイクル熱処理が、マルテンサイト変態の開 始温度で融点でもある160℃から1305℃迄の温度範囲にわたり実施される ことにより実現される。The gist of the present invention is the cyclic heat treatment of steel by heating and cooling several times and the treatment of various crystal structures. hardens by cooling starting at a temperature above the temperature of structural transformation with Hardening heating is combined with final cycle heating to heat the high speed steel which is then tempered. In the method, according to the present invention, the cyclic heat treatment initiates martensitic transformation. It is carried out over a temperature range from 160°C to 1305°C, which is also the initial temperature and melting point. This is achieved by

この方法を実現する方法は固溶合金度の増大と、組織成分(粒子、炭化物ラメラ )の太さの縮小、と、相の歪硬化の有効な目的への利用とに導き、それにより高 速度鋼の全体の強度、衝撃強度、硬化及び耐熱性の増大が図れ、長時間作業で工 具の耐久性が伸びる。サイクル熱処理中に元へ戻された温度範囲が選択された。The method for realizing this method is to increase the solid solution alloy content and to increase the structural components (particles, carbide lamellae). ) and the effective use of strain hardening of the phase, thereby increasing the The overall strength, impact strength, hardening and heat resistance of speed steel are increased, making it easier to work with for long periods of time. Increases the durability of tools. A temperature range was selected that was restored during the cyclic heat treatment.

というのはこれらの温度が相変態と他の組織変化を促進し高速度鋼の特性を改良 するためである。This is because these temperatures promote phase transformations and other structural changes that improve the properties of high-speed steels. This is to do so.

サイクル加熱の上限として融点が選ばれる。それはより高い温度が粒子の溶融、 粗大化をもたらし、それによって高速度鋼の機械的特性が、熱処理サイクルの回 数に無関係に激しく低下するからである。マルテンサイト変態の開始温度はサイ クル冷却の下限きして適用される。それはこの焦眉下の数回の冷却がマルテンサ イト変態と他の組織変化をもたらし、強度と靭性を劣化させシルキー(Silk y)破断のような直すのが困難な欠陥や微細割れを生ずる。マルテンサイト変態 の開始温度は硬化用加熱温度、高速度鋼の種類、冷却速度及び他の要因で変化す る。高速度鋼がサイクル熱処理過程で1000−1100℃に全ての前に予備冷 却されることが好ましい。The melting point is chosen as the upper limit for cyclic heating. The higher the temperature the particles melt, coarsening and thereby the mechanical properties of the high speed steel are affected by the number of heat treatment cycles. This is because the number decreases drastically regardless of the number. The starting temperature of martensitic transformation is Applies to lower limits for cooling. It is the cooling of the martensa several times under this hot eyebrow. Silk y) Causes defects and microcracks that are difficult to repair, such as fractures. martensitic metamorphosis The starting temperature will vary depending on the hardening heating temperature, type of high speed steel, cooling rate and other factors. Ru. High speed steel is pre-cooled to 1000-1100℃ before every cycle heat treatment process preferably rejected.

これは完全な相変化を促進し、拡散による合金元素の再分布を助長し、工具の断 面にわたり多かれ少なかれ温度を一定レベルにもたらす。従ってわずかな程度で 変形し、高衝撃強度と高耐熱性を示し、従来より長い耐久寿命が与えられる。This promotes a complete phase change, aids in the redistribution of alloying elements by diffusion, and causes tool breakage. bring the temperature to a more or less constant level over the surface. Therefore, to a small extent It deforms and exhibits high impact strength and high heat resistance, giving it a longer durable life than conventional materials.

1000℃以下の温度での冷却は工具の可塑性を損い、その衝撃強度と硬度を減 少するか微細クラックが硬化中に生ずる。Cooling at temperatures below 1000°C impairs the plasticity of the tool and reduces its impact strength and hardness. Some or microcracks may occur during curing.

1100″C以上の温度への冷却は、拡散と、工具の断面にわたり温度の均一性 が生ずるため元素の完全な再分布には時間を要しない。Cooling to temperatures above 1100"C relies on diffusion and uniformity of temperature across the cross-section of the tool. occurs, so complete redistribution of the elements does not require time.

予備冷却は雰囲気をシールする必要がないため大気中が実際的である。これは工 程を単純化し、そのコストを下げる。Precooling in the atmosphere is practical because there is no need to seal the atmosphere. This is engineering Simplify the process and lower the cost.

それに添加された塩浴は炭酸塩でありそれらの還元剤はサイクル加熱中及び冷却 中種々の結晶組織を有する組織変態を超える温度で用いられることも好ましい。The salt bath added to it is a carbonate and those reducing agents are used during heating and cooling cycles. It is also preferable to use the temperature above the structural transformation with various crystal structures.

この場合付加的な硬さと耐摩耗性を有する層が高速度鋼の表面に形成され、鋼の 酸化度、脱炭度が同時に減少する。還元剤を伴なう炭酸塩は還元媒体を作るため に作用する。In this case a layer with additional hardness and wear resistance is formed on the surface of the high-speed steel, Oxidation degree and decarburization degree decrease at the same time. Carbonate with reducing agent to create reducing medium It acts on

処理された工具に対する塩浴の腐食の影響を減少させるためにバリウム及びカリ ウムの炭酸塩の形で炭酸塩を使用することが更に好ましい。barium and potassium to reduce the corrosive effects of salt baths on treated tools. It is further preferred to use the carbonate in the form of um carbonate.

炭酸塩の還元剤としてカルシウムとシリコンの炭化物を用いることが好ましい。It is preferable to use carbides of calcium and silicon as the carbonate reducing agent.

これらの還元剤は塩浴中で炭素の付加源として作用し、還元媒体を作るのに作用 し、そして工具の酸化度と脱炭度を量水発明を実施するための最良の形態 好ましくは金属切削工具用の高速度鋼の方法は本発明では以下のように実行され る。These reducing agents act as an additional source of carbon in the salt bath and act to create a reducing medium. and measure the degree of oxidation and decarburization of the tool.The best form for implementing the water invention. Preferably, the method of high speed steel for metal cutting tools is carried out in the present invention as follows: Ru.

高速度鋼工具を、加熱用塩浴から冷却用塩浴に連続的に移し次に加熱用の同じ浴 等に再び戻すサイクル熱処理にかける。The high speed steel tool is successively transferred from a heating salt bath to a cooling salt bath and then in the same bath for heating. etc., and then subjected to cycle heat treatment.

サイクル加熱及び冷却用浴の温度を、融点とマルテンサイト変態の開始温度間の 範囲に保持する。Adjust the temperature of the cycle heating and cooling baths to between the melting point and the onset temperature of martensitic transformation. Keep in range.

サイクル熱処理の最終加熱は硬化用加熱と組合わされ、工具をサイクル冷却用浴 から移すことによって最終的に達成される。最終サイクルの温度は種々の組織を 有する組織(亜共晶ン変態の温度と融点の間の範囲で変化する。硬化媒体中での 冷却期間が続く硬化温度での時間で硬化作業を終了する。The final heat of the cycle heat treatment is combined with the hardening heat and the tool is placed in a cycle cooling bath. This is finally achieved by moving from The temperature of the final cycle is different for different tissues. structure (varies in the range between the temperature of the hypoeutectic transformation and the melting point in the hardening medium) A period of time at the curing temperature followed by a cooling period completes the curing operation.

硬化された工具は2回あるいは3回焼戻しされる。最初の300−650℃での 焼戻しは0.5−60分間続き、残りの焼戻しは鋼種及び工具の大きさにより5 40−560℃で1−1.5時間続けられる。The hardened tool is tempered two or three times. Initially at 300-650℃ Tempering lasts 0.5-60 minutes, remaining tempering lasts 5 minutes depending on steel grade and tool size. Continued at 40-560°C for 1-1.5 hours.

工具のサイクル予備冷却は大気中で3−10秒間実施される。Cycle pre-cooling of the tool is carried out in air for 3-10 seconds.

種々の組織を有する組織変態の温度以上の温度でのサイクル熱処理は炭酸バリウ ムか炭酸カリウム及び炭酸カルシウムか炭化シリコンの適当な還元剤をそれぞれ 添加した塩浴内で行われる。種々の組織を有する組織変態の温度以下の温度での サイクル熱処理は全ての塩浴、アルカリ浴あるいは熱油浴に制約される。浴の数 は採用されたサイクル加熱及び冷却で変化し、自動化の量に依存する。工具の多 数の加熱と冷却中の保持時間は使用された規準で決められた長さである。Cyclic heat treatment at a temperature higher than the temperature of structural transformation with various structures is performed on barium carbonate. or potassium carbonate and a suitable reducing agent of calcium carbonate or silicon carbide, respectively. It is carried out in an added salt bath. At temperatures below the temperature of tissue transformation with various textures. Cyclic heat treatment is limited to all salt baths, alkaline baths or hot oil baths. number of baths will vary with the heating and cooling cycles employed and will depend on the amount of automation. many tools The holding times during heating and cooling are determined by the standards used.

実施例1 工具、たとえば8世直径のP18高速度鋼のman end m1llはNa  1の組成(62%BaCf 2 + 18%NaCf+10%に2CO3+lO %5iC)の塩浴中に置かれ、850℃以下5分間加熱される。その工具はtJ n2の組成(92%BaCf 2 + 3%BaCO5+5%CaC2)の浴内 に、使用された高速度鋼の融点でありサイクル熱処理の上限温度である1305 ℃で移される。その温度で0.5分間保持し、その工具は、Nα1組成の浴内で 850℃、すなわちマルテンサイト変態(160℃)の開始温度以上の点従って サイクル熱処理の下限温度以上の点、に冷却される。上記温度に15分間保持す ることにより工具の最初の熱処理サイクルを完了する。Example 1 Tools, for example, P18 high speed steel with a diameter of 8th diameter, man end ml is Na Composition of 1 (62% BaCf 2 + 18% NaCf + 10% 2CO3 + lO %5iC) and heated below 850°C for 5 minutes. The tool is tJ In the bath with the composition of n2 (92% BaCf 2 + 3% BaCO5 + 5% CaC2) 1305, which is the melting point of the high-speed steel used and the upper limit temperature of cycle heat treatment. Transferred at °C. Holding at that temperature for 0.5 minutes, the tool is placed in a bath of Nα1 composition. 850℃, that is, the point above the starting temperature of martensitic transformation (160℃) Therefore It is cooled to a point above the lower limit temperature of cycle heat treatment. Hold at the above temperature for 15 minutes. This completes the tool's first heat treatment cycle.

第2のそしてそれに続くサイクルはNα1組成の850℃の浴からNα2組成の 1305℃の浴内に工具を移すことで開始し、前述のNα1の組成の850℃の 浴内でその工具を冷却することで終了する。これらのサイクルは4回繰返される 。最後、すなわち第5のサイクルの過程で、工具が850℃の温度のNα1組成 の浴からNα2組成の浴に移されそこで1270℃に硬化のために加熱される。The second and subsequent cycle runs from a 850°C bath of Nα1 composition to a bath of Nα2 composition. Start by transferring the tool into a bath at 1305°C, Finish by cooling the tool in the bath. These cycles are repeated 4 times . At the end, i.e. in the course of the fifth cycle, the tool has a Nα1 composition at a temperature of 850 °C. bath to a bath of Nα2 composition where it is heated to 1270° C. for curing.

従って硬化のための加熱は最終サイクル加熱とその最終名の浴と組合わされる。The heating for curing is therefore combined with the final cycle heating and its final name bath.

1270℃の硬化温度はこの段階で815℃の亜共晶変態の温度を超える。12 70℃の硬化温度で2分間保持し、N[13組成(30%BaCA2+2Q%N aCβ+50%CaC12)の浴中で650℃で10分間での等温冷却を行い、 大気中でその温度で予備冷却が続けられる。硬化の後、3つの段階の温度、第1 は600℃10分間、第2と第3はNα3組成の浴で各々560℃1時間で行わ れる。The curing temperature of 1270°C exceeds the temperature of hypoeutectic transformation of 815°C at this stage. 12 Hold at a curing temperature of 70°C for 2 minutes, and then Isothermal cooling was performed at 650 °C for 10 minutes in a bath of aCβ + 50% CaC12), Precooling continues at that temperature in the atmosphere. After curing, three stages of temperature, the first was conducted at 600°C for 10 minutes, and the second and third were each conducted at 560°C for 1 hour in a bath with Nα3 composition. It will be done.

実施例2 工具はNo、 1組成(66%BaCj! 2 +19%NaCE + 9%に 2C03+6%CaC2)の850℃塩浴内に置かれ、そこで3分間加熱される 。その工具は冷却され、マルテンサイト変態開始温度と同時にサイクル熱処理の 下限の160℃の油浴中で5分間保持される。これは熱処理の第1サイクルを完 了する。Example 2 The tool is No. 1 composition (66% BaCj! 2 + 19% NaCE + 9% 2C03 + 6% CaC2) in an 850°C salt bath and heated there for 3 minutes. . The tool is cooled and cycle heat treated at the same temperature as the start of martensitic transformation. It is kept in an oil bath at the lower limit of 160°C for 5 minutes. This completes the first cycle of heat treatment. Complete.

第2サイクルとそれに続くサイクルは160℃の油浴から850℃のNα1の塩 浴内にその工具を移すことから開始し、160℃の油浴内で再びその工具を冷却 することで終了する。The second cycle and subsequent cycles were performed from a 160°C oil bath to a 850°C Nα1 salt. Start by transferring the tool into the bath and cool it again in the 160°C oil bath. This will end the process.

850℃の温度は融点(1305℃)以下でサイクル熱処理の温度上限以下であ ることが注目される。これらのサイクルは5回である。最後の、すなわち第6の サイクルでは、工具は160℃の油浴から、硬化のための加熱が行われる127 0℃のNα2の組成(92%BaCj22 + 4%BaCL+4%CaC2) の浴に移される。最終名の塩浴では硬化のための加熱が最終サイクル加熱に組合 わされる。硬化温度は所定の鋼で815℃である亜共晶変態の温度を超える。1 270℃の硬化温度で2.5分の保持の後、560℃での等温冷却がNn3組成 (30%BaC12+20%NaC1+50%(:aCA2)の浴内で行われ、 大気中でその温度で予備冷却が続く。硬化後、3つの段階、第1に電気炉で30 0℃1時間、第2及び第3でNα3組成の浴中で各々560℃1時間、焼戻しを 行う。The temperature of 850°C is below the melting point (1305°C) and below the upper limit of temperature for cycle heat treatment. It is noteworthy that These cycles are 5 times. the last or sixth In the cycle, the tool is heated from a 160°C oil bath to 127°C for hardening. Composition of Nα2 at 0°C (92% BaCj22 + 4% BaCL + 4% CaC2) transferred to a bath. In the final salt bath, heating for curing is combined with final cycle heating. I will be forgotten. The hardening temperature exceeds the temperature of the hypoeutectic transformation, which is 815° C. for the given steel. 1 After holding for 2.5 minutes at a curing temperature of 270°C, isothermal cooling at 560°C cured the Nn3 composition. (Carried out in a bath of 30% BaC12 + 20% NaC1 + 50% (:aCA2), Precooling continues at that temperature in the atmosphere. After curing, three stages, firstly in electric furnace for 30 Tempering was performed at 0°C for 1 hour, and in the second and third baths at 560°C for 1 hour each. conduct.

実施例3 工具は800℃の温度のN(L 1組成(78%BaCji!、 +21.3% NaCβ+0.7%N 8.2 B 40 ? )の塩浴中に5分間の加熱のた めに置かれ、次に、1100℃、すなわち融点以下でサイクル熱処理の温度上限 以下の温度でN(12組成(90%BaC”jl! 2+ 5%Bad:Os+ 5%5iC)の塩浴中に移される。工具を上記温度に2.5分間保持して、80 0℃−すなわちマルテンサイト変態開始温度(160℃)以上で、しかもサイク ル熱処理の下限温度以上の温度への冷却が15分間行われる。従って工具の熱処 理の第1サイクルが終了する。第2サイクルとそれに続くサイクルはNa 1組 成の800℃の浴から第2組成の1100℃の浴中に工具を移すことから開始し て前述のNα1組成の800℃の浴中で冷却するこ乏で終了する。そのサイクル 熱処理は7回繰返される。Example 3 The tool was made of N (L1 composition (78% BaCji!, +21.3%) at a temperature of 800°C. NaCβ+0.7%N 8.2 B 40? ) in a salt bath for 5 minutes. and then the upper temperature limit for cycle heat treatment at 1100°C, i.e. below the melting point. At the following temperatures, N (12 composition (90%BaC"jl! 2+ 5%Bad:Os+ 5% 5iC) salt bath. Hold the tool at the above temperature for 2.5 minutes and 0°C - that is, the temperature at which martensitic transformation starts (160°C), and Cooling to a temperature above the lower limit temperature of the heat treatment is performed for 15 minutes. Therefore heat treatment of tools The first cycle of the process is completed. The second cycle and the subsequent cycle are Na 1 set Start by transferring the tool from the 800°C bath of the composition to the 1100°C bath of the second composition. The process ends without cooling in the 800° C. bath having the aforementioned Nα1 composition. that cycle The heat treatment is repeated 7 times.

最終の第8のサイクルで工具はNu 1組成の800℃の浴からN(12組成の 浴に移され、硬化のため1100℃への加熱がなされる。最終名の浴中で硬化の ための加熱が最終サイクル加熱と組合わされる。1100℃の硬化温度は所定鋼 で815℃の種々の組織を有する組織(亜共晶)変態の温度を超える。1100 ℃の硬化温度を2.5分間保持して、工具はNa3組成(30%BaC!!。In the eighth and final cycle, the tool was moved from a bath at 800°C with a composition of Nu 1 to a bath of N (with a composition of 12). It is transferred to a bath and heated to 1100° C. for curing. Hardening in the final name bath heating is combined with final cycle heating. The hardening temperature of 1100℃ is the specified steel. The temperature of the texture (hypoeutectic) transformation with various textures is exceeded at 815°C. 1100 The curing temperature of ℃ was held for 2.5 minutes, and the tool was made of Na3 composition (30% BaC!!).

+20%NaCj?+50%CaCA 2)の塩浴内で560℃で10分間等温 的に冷却され、次に大気中でその温度で冷却される。3段階焼戻し、第1に65 0℃1分間、第2及び第3にNα3浴内で500℃で各々1時間が硬化後行われ る。+20%NaCj? +50% CaCA 2) Isothermal at 560℃ for 10 minutes in a salt bath and then cooled to that temperature in the atmosphere. 3 stage tempering, first 65 After curing for 1 minute at 0°C, second and third at 500°C for 1 hour each in an Nα3 bath. Ru.

実施例4 工具はNa 1組Jijl: (70%BaCj’ 2 +20%NaC1+  7%に、CO。Example 4 Tools are Na 1 set Jijl: (70% BaCj' 2 + 20% NaC1 + 7%, CO.

+3%CaC−)の塩浴中で、850℃、3分間加熱のために置かれ、1270 ℃のNa2組成(93%BaCj! 2+ 2%BaCO5+5%5iC)浴内 に移され融点(1305℃)以下でサイクル熱処理の下限温度以下の温度で2分 間保持される。工具はその温度で2分間保持され、その後大気中1100℃で5 秒間予備冷却され更にその工具はNa3組成(30%BaCl 2 + 20% NaCj2+50%CaCf2)の、マルテンサイト変態(160℃)の開始温 度以上でしかもサイクル熱処理の下限温度以上の650℃の温度の塩浴内に移さ れる。その浴の温度に10分間保持することにより工具の熱処理の第1サイクル を完了する。第2とそれに続くサイクルはその工具を650℃のNα3塩浴から 1270℃のNa2組成の塩浴へ移すことから、予備冷却とNa3組成の塩浴内 で工具を650℃に冷却することで終了する。これらのサイクルは3回繰返され る。熱処理の最終の4回目のサイクル中に工具はNa3組成の650℃の浴から Na 1組成の850℃の浴に移され硬化のため加熱が行われる。硬化のための 加熱が最終サイクル加熱と組合わされるのは最終2浴である。850℃の硬化温 度は所定鋼で815℃である亜共晶変態の温度を超える。850℃の硬化温度で 3分間保持した後、工具は大気温度で池内で冷却される。+3% CaC−) in a salt bath at 850 °C for 3 min and heated to 1270 °C. °C Na2 composition (93% BaCj! 2+ 2% BaCO5 + 5% 5iC) in the bath for 2 minutes at a temperature below the melting point (1305℃) and below the lower limit temperature of cycle heat treatment. held for a while. The tool was held at that temperature for 2 minutes and then heated to 1100°C in air for 5 minutes. The tool is pre-cooled for seconds and the tool has a Na3 composition (30% BaCl2 + 20% Starting temperature of martensitic transformation (160°C) of NaCj2+50%CaCf2) ℃ or higher and at a temperature of 650℃, which is higher than the lower limit temperature for cycle heat treatment. It will be done. The first cycle of heat treatment of the tool by holding it at its bath temperature for 10 minutes complete. The second and subsequent cycle removes the tool from a 650°C Nα3 salt bath. Pre-cooling and transfer to a salt bath with Na composition at 1270°C. The process ends by cooling the tool to 650°C. These cycles are repeated 3 times Ru. During the fourth and final cycle of heat treatment, the tool was removed from a 650°C bath with Na3 composition. It is transferred to a bath of Na1 composition at 850°C and heated for curing. for curing It is in the final two baths that heating is combined with the final cycle heating. Curing temperature of 850℃ The temperature exceeds the temperature of hypoeutectic transformation, which is 815° C. for the given steel. At a curing temperature of 850℃ After holding for 3 minutes, the tool is cooled in a pond at ambient temperature.

3段階焼戻し7、第1段階350℃で1時間、第2及び第3段階でNa3組成の 浴中で560℃各1時間硬化後に行われる。3-stage tempering 7, first stage at 350°C for 1 hour, second and third stages with Na3 composition After curing for 1 hour each at 560° C. in a bath.

実施例5 工具はNa 1組成(78%BaCA * + 21.3%NaCf 十0.7 %NaJ40t)の800℃の塩浴中に5分間の加熱のために置かれ、次にNa 2組成(30%BaCA’ 2 +20%NaCj?+50%CaC1!z)の 、マルテンサイト変態(160℃)の開始温度を超え、しかもサイクル熱処理の 下限温度を超える560℃の浴に移される。Example 5 The tool has a Na1 composition (78% BaCA * + 21.3% NaCf 10.7 %NaJ40t) in a salt bath at 800 °C for 5 min, then Na 2 composition (30%BaCA'2 +20%NaCj?+50%CaC1!z) , exceeding the starting temperature of martensitic transformation (160°C), and even after cyclic heat treatment. Transferred to a bath at 560° C. above the lower temperature limit.

その浴温度で10分間の保持により熱処理の第1サイクルを終了する。第2及び 第3のサイクルは工具をNa2組成の560℃の浴からNa1組成の800℃の 浴に移すことで開始し、Na2組成の560℃の浴で冷却するごとで終了する。A 10 minute hold at the bath temperature completes the first cycle of heat treatment. 2nd and The third cycle takes the tool from a 560°C bath with Na2 composition to an 800°C bath with Na1 composition. It begins with transfer to a bath and ends with cooling in a 560° C. bath with Na2 composition.

これらのサイクルは3回繰返される。第4のサイクル中で、工具はNa2組成の 560℃の浴からNCL3組成(94%BaCl2+1%BaCO5+ 5%C aC2)で1270℃すなわち融点(1305℃)未満でしかもサイクル熱処理 の温度上限未満の温度の浴に移される。この温度で2.5分間保持して、工具は 大気中で1050℃に7秒間予備冷却され、5分間800℃で保持するためにN a1組成の塩浴に移される。5回目のサイクルはNa1組成の800℃の塩浴か らNa3組成の1270℃の塩浴に工具を移すことで開始し、大気中での予備冷 却そしてNu 1の塩浴での冷却で終了する。そのサイクルは2回繰返される。These cycles are repeated three times. During the fourth cycle, the tool has a Na2 composition of NCL3 composition (94% BaCl2 + 1% BaCO5 + 5% C aC2) at 1270°C, i.e. below the melting point (1305°C), and cycle heat treatment is transferred to a bath at a temperature below the upper temperature limit of . Hold at this temperature for 2.5 minutes and remove the tool. N Transferred to a salt bath of composition a1. The 5th cycle is a salt bath at 800℃ with Na1 composition. Start by transferring the tool to a 1270°C salt bath with Na3 composition, and pre-cooling in the atmosphere. Cooling and cooling in a Nu 1 salt bath completes the process. The cycle is repeated twice.

熱処理の第6及び最終サイクル中に工具はNa1組成の800℃の浴から、硬化 用加熱のためにNo、 3組成の1305℃の浴内に移される。従って最終名の 浴では硬化のための加熱は最終サイクル加熱と組合わされる。1305℃の硬化 温度は亜共晶変態温度(815℃)を超えるが所定の鋼の融点に等しい。130 5℃の硬化温度で0.5時間保持し、工具は大気中で1000℃に10秒間そし て次にNo、 2組成の560℃の塩浴中で予備冷却される。560℃で10分 間の保持と大気中で大気温度での冷却により硬化作業を終了する。Na2組成の 560℃の浴中で1時間各々続<トリプル段階の焼戻しがそのwakeになる。During the sixth and final cycle of heat treatment, the tool is hardened from a bath at 800°C with Na1 composition. The sample was transferred to a No. 3 composition bath at 1305°C for heating. Therefore the final name In the bath, heating for curing is combined with final cycle heating. Curing at 1305℃ The temperature is above the hypoeutectic transformation temperature (815° C.) but equal to the melting point of the given steel. 130 Holding at a curing temperature of 5°C for 0.5 hours, the tool was heated to 1000°C for 10 seconds in air. Then, it is pre-cooled in a salt bath of No. 2 composition at 560°C. 10 minutes at 560℃ The curing operation is completed by holding in between and cooling in air at ambient temperature. Na2 composition Its wake is followed by triple step tempering for 1 hour each in a bath at 560°C.

実施例6 工具はNu 1組成(62%BaCl2+ 18%NaC1+10%CaC2) の塩浴中に850℃5分間加熱するために置かれ、No、2組成(93%BaC l12 + 2%BaCO5+ 5%5iC)の浴に、1320℃、すなわち融 点(1305℃)を超え、しかもサイクル熱処理の温度上限を超える温度で0, 5分間保持するために移される。次に、工具は、Na3組成(30%BaCA’  2+20%NaCI!→−50%CaCj22)の650℃、すなわちマルテ ンサイト変態の開始温度以上でしかもサイクル熱処理の下限温度以上の温度の塩 浴中に移される前に大気中で1100℃に7秒間で予備冷却される。Example 6 The tool has Nu 1 composition (62% BaCl2 + 18% NaC1 + 10% CaC2) No. 2 composition (93% BaC 112 + 2% BaCO5 + 5% 5iC) at 1320°C, that is, melting temperature. 0, at a temperature that exceeds the temperature limit (1305℃) and also exceeds the upper limit of the temperature of cycle heat treatment. Transfer to hold for 5 minutes. Next, the tool was constructed with Na3 composition (30% BaCA' 2+20% NaCI! →-50% CaCj22) at 650℃, i.e. Salt at a temperature that is above the starting temperature of site transformation and above the lower limit temperature of cycle heat treatment. It is precooled to 1100° C. for 7 seconds in air before being transferred to the bath.

その浴温度に10分間保持することにより、第1のサイクルを終了する。第2及 びそれに続くサイクルはNa3組成の650℃の塩浴からNa2組成の1320 ℃の塩浴に移すことで各々開始し前述のNa3組成の650℃の塩浴での冷却が 続く大気中での予備冷却で終了する。これらのサイクルは4回繰返される。5回 目と最終サイクル中に工具はNa3組成の650℃の浴から1270℃での硬化 用の加熱のためNo、 2組成の浴に移される。このように、この浴内では硬化 用加熱が最後のサイクル加熱と組合わされる。1270℃の硬化温度は所定の鋼 で8N5℃である亜共晶変態の温度を超える。1270℃の硬化温度で2分間、 工具を保持して、大気中でその温度への冷却が続く、等温冷却がNa3組成の浴 内で15分間行なう。次の560℃1時間の硬化温度はNa3組成の浴に制限さ れる。The first cycle is ended by holding the bath temperature for 10 minutes. 2nd time and subsequent cycles from a 650°C salt bath with a Na3 composition to a 1320°C salt bath with a Na2 composition. Each was started by transferring to a salt bath at 650 °C with the above-mentioned Na3 composition. The process ends with subsequent preliminary cooling in the atmosphere. These cycles are repeated four times. 5 times During the second and final cycle the tool is cured at 1270°C from a 650°C bath with Na3 composition. No. 2 composition bath for heating. In this way, hardening occurs in this bath. The second heating is combined with the last cycle heating. The hardening temperature of 1270℃ is the specified steel. The temperature of the hypoeutectic transformation, which is 8N5°C, is exceeded. 2 minutes at a curing temperature of 1270℃, Isothermal cooling is carried out in a bath of Na3 composition, where the tool is held and cooling continues to that temperature in the atmosphere. Do this for 15 minutes inside. The curing temperature for the next 1 hour at 560°C was limited to a bath with Na3 composition. It will be done.

実施例7 工具はNa 1組成(66%BaCjl’2+19%NaCl1+10%に、C D。Example 7 The tool has a Na1 composition (66% BaCjl'2 + 19% NaCl1 + 10%, C D.

+5%5iC)の塩浴に置かれ、850℃で3分間加熱し、Na2組成(95% BaC7’ 2 + 1%BaCO3+4%5iC)の浴内に移され1270℃ 、すなわち、融点(1305℃)以下でしかもサイクル熱処理の温度上限以下の 温度で2分間保持される。工具は次に、マルテンサイト変態の開始温度以下でし かもサイクル熱処理の下限温度以下である大気温度の油中冷却が続く、大気中で の1100℃への冷却を5分間行う。第2及びそれに続くサイクルは油からNa 2組成の1270℃の塩浴中に各々工具を移すことで開始し、大気中で次に油中 で周囲温度に冷却することで終了する。これらのサイクルは3回繰返される。第 4及び最終のサイクル中で工具は周囲温度の油から、硬化用に1270℃に加熱 するためNa2組成の浴内に移される。このよ・うに、この塩浴中では硬化のた めの加熱が最終のサイクル加熱と組合わされる。1270℃での硬化温度は所定 鋼では815υである亜共晶変態の温度を超える。〕270℃の硬化温度で2分 間保持した後、大気中で1100℃に5秒間予備冷却して、そして油中でその周 囲温度で冷却する。硬化後、工具はNa3組成(30%BaCA 2 +20% NaCj?+50%CaC!12)の浴中で560℃で各々1時間続く3段階で 焼戻される。Na2 composition (95% BaC7'2+1%BaCO3+4%5iC) bath at 1270℃ , that is, below the melting point (1305°C) and below the upper limit of the temperature of cycle heat treatment. Hold at temperature for 2 minutes. The tool is then cooled below the onset temperature of martensitic transformation. In the atmosphere, cooling continues in oil at an atmospheric temperature that is below the lower limit temperature of the heat cycle heat treatment. Cooling to 1100° C. is performed for 5 minutes. The second and subsequent cycle is from oil to Na Start by transferring each tool into a 1270°C salt bath of two compositions, then in air and then in oil. Terminate by cooling to ambient temperature. These cycles are repeated three times. No. During the fourth and final cycle the tool is heated from ambient temperature oil to 1270°C for curing. It is then transferred to a bath of Na2 composition. As shown, in this salt bath, hardening occurs. The second heating is combined with the final cycle heating. Curing temperature at 1270℃ is specified The temperature of hypoeutectic transformation, which is 815υ for steel, is exceeded. ] 2 minutes at a curing temperature of 270℃ After holding for a period of time, it was precooled to 1100°C for 5 seconds in air and then cooled in oil. Cool at ambient temperature. After hardening, the tool has a Na3 composition (30% BaCA2 + 20% NaCj? +50%CaC! 12) in three steps lasting 1 hour each at 560°C in a bath of Tempered.

本方法によって熱処理された工具の耐摩耗性は切削速度、Ve=33.4m/分 (1330rpm) ;送り量、f t = 0.010mm (42世/分) :切削深さ、de=2InIII:切削幅、W、=5gの標準条件の下でモデル 676 RU切削機を用いチェコスロバキア製でヴイッカース硬さ180の鋼種 12050構造用鋼(0,45%C)の加工片を切削する間、鋼種PI3鋼(1 8%W)の8InII+径の3重両エンドミルのテスト結果から決定された。The wear resistance of the tool heat-treated by this method was determined by the cutting speed, Ve = 33.4 m/min. (1330rpm); Feed amount, ft = 0.010mm (42nd/min) :Cutting depth, de=2InIII: Cutting width, W, = 5g model under standard conditions. Made in Czechoslovakia using a 676RU cutting machine and has a Vickers hardness of 180. While cutting a workpiece of 12050 structural steel (0.45% C), steel type PI3 steel (1 It was determined from the test results of an 8InII+ diameter triple double end mill with 8% W).

以下で与えられる非標準条件のテストも行われた。切削速度、VC=41.6m /分(1655rpm) ;送り量、f 、 = 0.010am(52mm/ 分):切削深さ、de=2mm;切削幅、W、=5mm。Tests were also conducted for non-standard conditions given below. Cutting speed, VC=41.6m /min (1655rpm); Feed amount, f, = 0.010am (52mm/ ): cutting depth, de = 2 mm; cutting width, W, = 5 mm.

その切削工具の耐摩耗性刃先の摩耗量に対し切削刃の使用期間とをプロットして なる通常方法によるテストデータから決定された。テストされた切削刃の耐久性 は0.35mmの仮想臨界摩耗に基づいて比較された。耐久性要因は、同じ熱処 理にかけられた3−5の切削カッターをテストした後、平均して決定された。Plot the amount of wear on the wear-resistant cutting edge of the cutting tool versus the period of use of the cutting blade. It was determined from test data using the usual method. Durability of cutting blades tested were compared based on a hypothetical critical wear of 0.35 mm. The durability factor is the same heat treatment. Determined as an average after testing 3-5 cutting cutters subjected to processing.

本実施例に記載された熱処理を施した高速度鋼切削カッターの耐摩耗性の検討結 果は以下の表に示す。Conclusion of the study on the wear resistance of the heat-treated high-speed steel cutting cutter described in this example. The results are shown in the table below.

伝統的方法で熱処理された使用前の切削カッターの使用寿命は切削速度の増大と 共に短くなるが本熱処理方法は工具の耐久性を改良することが理解される。The service life of pre-cutting cutters heat-treated by traditional methods is limited by the increase in cutting speed and It is understood that the present heat treatment method improves the durability of the tool, although both lengths are shorter.

このように得られた結果の分析から、本発明の熱処理がなされた高速度鋼の切削 工具は標準切削条件下で10−40%、切削速度を増大した場合、伝統的な熱処 理と比較して20−70%工具の耐摩耗性が増大しているのが明らかである。ま た送り速度が42mm/分から52M/分へ増大するならば労働生産性は24% 増大する。From the analysis of the results thus obtained, it was found that cutting of high speed steel heat treated according to the present invention The tool can be heated 10-40% under standard cutting conditions and when the cutting speed is increased. It is clear that the wear resistance of the tool is increased by 20-70% compared to the conventional method. Ma If the feed rate increases from 42mm/min to 52m/min, labor productivity will increase by 24%. increase

表 伝統的な熱処理  1960   1080   1    −開示熱処理 実施例 1   2190   2350   1.1   1.2実施例 2    2310   3070   1.2   1.6実施例 3   25 60   2740   1.3   1.4実施例 4   2430    2510   1.2   1.3実施例 5   2800   3380    1.4   1.7実施例 6   670   480    (130 ,2実施例 7   830   570   0.4   0.3産業上の利 用可能性 本開示の方法は高速度鋼を熱処理するため、様々な工学、無線工学、工具製造、 設備を有する機械製造工場で用いられる。table Traditional heat treatment 1960 1080 1 - Disclosure heat treatment Example 1 2190 2350 1.1 1.2 Example 2 2310 3070 1.2 1.6 Example 3 25 60 2740 1.3 1.4 Example 4 2430 2510 1.2 1.3 Example 5 2800 3380 1.4 1.7 Example 6 670 480 (130 , 2 Example 7 830 570 0.4 0.3 Industrial benefits Possibility of use The disclosed method is useful for heat treating high speed steel in various engineering, radio engineering, tool manufacturing, Used in machine manufacturing factories with equipment.

手続補正書(方式) %式% 1、事件の表示 PCT/SU90100044 平成2年特許願第504589号 2、発明の名称 高速度鋼の熱処理方法 3、補正をする者 事件との関係   特許出願人 名称  ベロルススキ ポリテフニチェスキインスティテユト      (外 14)4、代理人 住所 〒105東京都港区虎ノ門−丁目8番10号〕 6、補正の対象 明細書及び請求の範囲の翻訳文 7、補正の内容 明細書、請求の範囲の翻訳文の浄書(内容に変更なし) 8、添付書類の目録 明細書及び請求の範囲の翻訳文  各 1 通国際調査報告Procedural amendment (formality) %formula% 1.Display of the incident PCT/SU90100044 1990 Patent Application No. 504589 2. Name of the invention Heat treatment method for high speed steel 3. Person who makes corrections Relationship to the case Patent applicant Name Berolski Politevnicieski Institute (outside) 14) 4. Agent Address: 8-10 Toranomon-chome, Minato-ku, Tokyo 105] 6. Subject of correction Translation of the description and claims 7. Contents of correction Translation of the specification and claims (no changes to the content) 8. List of attached documents Translations of the description and claims, one copy each, international search report

Claims (6)

【特許請求の範囲】[Claims] 1.数回の加熱と冷却による鋼のサイクル熱処理と、種々の結晶組織を有する組 織変態の温度を超える温度で開始する冷却によって硬化し、それにより硬化用加 熱が最終のサイクル加熱と組合わされ、次に焼戻す高速度鋼を加熱する方法にお いて、前記サイクル熱処理が、マルテンサイト変態の開始温度で融点でもある1 60℃から1305℃迄の温度範囲にわたり実施されることを特徴とする高速度 鋼を熱処理する方法。1. Cyclic heat treatment of steel by heating and cooling several times and combinations with various crystal structures. Hardens by cooling starting at a temperature above the temperature of the weave transformation, thereby allowing hardening processing. The heat is combined with a final cycle heating and then tempered in a method of heating high speed steel. The cycle heat treatment is performed at a temperature at which the martensitic transformation starts and which is also the melting point. High speed characterized by being carried out over a temperature range of 60°C to 1305°C How to heat treat steel. 2.前記鋼がサイクル熱処理過程で1000−1100℃に全ての前に予備冷却 されることを特徴とする請求項1記載の方法。2. The steel is pre-cooled to 1000-1100℃ before every cycle heat treatment process The method according to claim 1, characterized in that: 3.前記予備冷却が大気中で実施されることを特徴とする請求項2記載の方法。3. 3. A method according to claim 2, characterized in that the precooling is carried out in air. 4.それに添加された塩浴は炭酸塩でありそれらの還元剤はサイクル加熱中及び 冷却中種々の結晶組織を有する組織変態を超える温度で用いられることを特徴と する請求項1記載の方法。4. The salt bath added to it is carbonate and those reducing agents are It is characterized by being used at temperatures exceeding the structural transformation with various crystal structures during cooling. 2. The method according to claim 1. 5.前記炭酸塩がバリウムとカリウムの炭酸塩であることを特徴とする請求項4 記載の方法。5. Claim 4, wherein the carbonate is a carbonate of barium and potassium. Method described. 6.カルシウムとシリコンの炭化物が前記還元剤として用いられることを特徴と する請求項4記載の方法。6. A carbide of calcium and silicon is used as the reducing agent. 5. The method according to claim 4.
JP50458990A 1989-02-17 1990-02-15 Heat treatment method for high speed steel Pending JPH03505103A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SU4647623 1989-02-17
SU4647623/02 1989-02-17

Publications (1)

Publication Number Publication Date
JPH03505103A true JPH03505103A (en) 1991-11-07

Family

ID=21427428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50458990A Pending JPH03505103A (en) 1989-02-17 1990-02-15 Heat treatment method for high speed steel

Country Status (3)

Country Link
EP (1) EP0411161A1 (en)
JP (1) JPH03505103A (en)
WO (1) WO1990009459A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2471878C1 (en) * 2012-01-10 2013-01-10 Открытое акционерное общество "Завод им. В.А. Дегтярева" Method of thermal treatment of heads and heavy-load dies
RU2563382C1 (en) * 2013-09-09 2015-09-20 Александр Анатольевич Шматов Production of small-size cutting tools from high-speed steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU67222A1 (en) * 1943-09-30 1945-11-30 Н.С. Власов The composition for the heating salt baths
SU679154A3 (en) * 1974-06-17 1979-08-05 Мицубиси Дзюкогио Кабусики Кайся (Фирма) Metal chemical heat treatment method
SU749912A1 (en) * 1978-06-19 1980-07-23 За витель Salt bath composition for heating articles before tempering
SU1014938A1 (en) * 1981-07-14 1983-04-30 Красноярский Ордена Трудового Красного Знамени Институт Цветных Металлов Им.М.И.Калинина Method for heat treating cast high-speed steel

Also Published As

Publication number Publication date
EP0411161A1 (en) 1991-02-06
WO1990009459A1 (en) 1990-08-23

Similar Documents

Publication Publication Date Title
JP2006200003A (en) Heat-treated article and heat treatment method
JPH09279295A (en) Steel for soft-nitriding excellent in cold forgeability
JP5405325B2 (en) Differential gear and manufacturing method thereof
JPH03505103A (en) Heat treatment method for high speed steel
JP2009263767A (en) Method for manufacturing high-strength case hardened steel part
JPS5967365A (en) Production of machine parts
JP2000063935A (en) Production of nitrided part
JPH11269630A (en) Surface treated steel member
JP2003027135A (en) Method for producing steel for high temperature carburization, and steel for high temperature carburization produced by the method
US3141801A (en) Method of hardening a case hardened steel
US1950549A (en) Manufacturing hardened articles
JPS6040504B2 (en) Resistance alloy soft chamber steel with excellent machinability
KR102348549B1 (en) Steel having excellent workability and manufacturing method thereof
JPH0533301B2 (en)
JPH05320748A (en) Production of high strength shaft parts excellent in form rollability and machinability
JP2003201536A (en) Non-heat-treated steel for hot working having excellent wear resistance and hot worked product
JP2005336560A (en) High-carbon steel sheet for precision-blanked parts, and precision-blanked parts
JPS626612B2 (en)
JPS6364488B2 (en)
JPH10298709A (en) Tool steel for hot working excellent in wear resistance, and tool steel product
JP3339795B2 (en) Method for manufacturing linear motion bearing member
Šolić et al. Cutting performance of deep cryogenic treated and nitrided HSS cutting tool inserts
JP2004027273A (en) Method for producing steel part for machine structural use and steel part for machine structural use
JPH11310824A (en) Carburized and quenched steel member and its manufacture
JPH0967625A (en) Production of carburized high strength screw excellent in delayed fracture resistance