JPH0350367B2 - - Google Patents

Info

Publication number
JPH0350367B2
JPH0350367B2 JP27766884A JP27766884A JPH0350367B2 JP H0350367 B2 JPH0350367 B2 JP H0350367B2 JP 27766884 A JP27766884 A JP 27766884A JP 27766884 A JP27766884 A JP 27766884A JP H0350367 B2 JPH0350367 B2 JP H0350367B2
Authority
JP
Japan
Prior art keywords
transparent conductive
substrate
conductive film
target
targets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27766884A
Other languages
Japanese (ja)
Other versions
JPS61158622A (en
Inventor
Uchitsugu Minami
Shinzo Takada
Hidehito Nanto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA TOKUSHU GOKIN KK
Original Assignee
OOSAKA TOKUSHU GOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA TOKUSHU GOKIN KK filed Critical OOSAKA TOKUSHU GOKIN KK
Priority to JP27766884A priority Critical patent/JPS61158622A/en
Publication of JPS61158622A publication Critical patent/JPS61158622A/en
Publication of JPH0350367B2 publication Critical patent/JPH0350367B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、透明導電膜の製造方法及びその装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a transparent conductive film and an apparatus therefor.

(従来の技術) 一般に、液晶表示素子等においては透明導電膜
が必要不可欠であるが、この透明導電膜として
は、酸化インジウム一酸化スズ系薄膜(ITO膜)
が汎用されている。このITO膜は、可視光の範囲
で高い透過率を示し、また最も低い抵抗率を実現
できるという利点があるが、資源的に問題のある
希少金属のインジウムを主原料とするため、原材
料が高価で製品コストが高くなるという問題があ
つた。このため、原材料の安価な酸化亜鉛系薄膜
が、最近、透明導電膜の有望な材料として注目さ
れている。
(Prior art) Generally, a transparent conductive film is essential for liquid crystal display elements, etc., and as this transparent conductive film, indium oxide tin monoxide thin film (ITO film)
is widely used. This ITO film has the advantage of exhibiting high transmittance in the visible light range and being able to achieve the lowest resistivity, but it is expensive as its main raw material is indium, a rare metal that has resource issues. The problem was that the product cost was high. For this reason, zinc oxide thin films, which are inexpensive raw materials, have recently attracted attention as promising materials for transparent conductive films.

(発明が解決しようとする問題点) しかしながら、この酸化亜鉛系薄膜は、その製
造方法によつて特性が著しく左右され、良質のも
のを多量生産することができないという問題があ
ることが明らかとなつた。即ち、酸化亜鉛系薄膜
は、マグネトロンスパツタリングによりITO膜に
劣らぬ高い可視光透過率と低い抵抗率を持つ透明
導電膜の製造が可能であるが、低抵抗率の透明導
電膜を得るためには基板をターゲツトの表面に対
してほぼ垂直に配置しなければならず、その結
果、ターゲツト表面に近い所と遠い所で基板上の
膜厚が不均一となり、膜厚及び抵抗率の均一な大
面積の透明導電膜を製造することが不可能であ
る。また、酸化亜鉛系薄膜の膜厚が不均一になる
を防止するためには、基板をターゲツト表面と平
行に配置してスパツタリングすれば良いが、低抵
抗率を得るための必須条件、即ち、基板をターゲ
ツト表面に対して垂直に配置するという条件を満
足させることができないため、低抵抗率の透明導
電膜が得られないという問題がある。
(Problems to be Solved by the Invention) However, it has become clear that the properties of this zinc oxide-based thin film are significantly affected by its manufacturing method, and there is a problem in that it is not possible to mass-produce high-quality products. Ta. In other words, zinc oxide thin films can be used to produce transparent conductive films with visible light transmittance as high as ITO films and low resistivity by magnetron sputtering, but it is difficult to obtain transparent conductive films with low resistivity. The substrate must be placed almost perpendicular to the target surface, resulting in uneven film thickness on the substrate near and far from the target surface, resulting in uniform film thickness and resistivity. It is impossible to manufacture a large area transparent conductive film. In addition, in order to prevent the thickness of the zinc oxide thin film from becoming non-uniform, sputtering can be performed with the substrate placed parallel to the target surface, but the essential condition for obtaining low resistivity is that There is a problem in that a transparent conductive film with low resistivity cannot be obtained because the condition that the conductive film is arranged perpendicularly to the target surface cannot be satisfied.

従つて、本発明の目的は、可視光透過率が高く
低抵抗の透明導電膜、特に、酸化亜鉛系薄膜から
なる透明導電膜を安価に製造できる方法及びその
装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method and an apparatus for manufacturing a transparent conductive film having high visible light transmittance and low resistance, particularly a transparent conductive film made of a zinc oxide thin film, at a low cost.

(問題点を解決するための手段) 本発明は、前記問題を解決する為、所定間隔を
おいて相対して配置された二つのターゲツトの表
面とそれぞれ表面がほぼ同一レベルに位置するよ
うに二つのアノードを相対して配置し、基板を前
記ターゲツト間にターゲツトの表面に対してほぼ
垂直に配置して、外部よりプラズマ集束磁界を印
加しつつマグネトロンスパツタリングするように
したものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides two targets arranged oppositely at a predetermined interval so that their respective surfaces are located at approximately the same level. Two anodes are placed facing each other, and a substrate is placed between the targets, approximately perpendicular to the surface of the target, and magnetron sputtering is performed while applying a plasma focusing magnetic field from the outside.

本発明方法により製造される透明導電膜は、高
純度の酸化亜鉛のみであつても良いが、10wt%
以下の酸化アルミニウム、酸化インジウム、酸化
ガリウムなどを含有させるようにしても良い。こ
れらの酸化物を10wt%以下としたのは、10wt%
を越えると、結晶性が悪化してしまい、低い抵抗
率が得られないからである。
The transparent conductive film produced by the method of the present invention may be made of only high-purity zinc oxide, but 10wt%
The following aluminum oxide, indium oxide, gallium oxide, etc. may be contained. The reason why these oxides are 10wt% or less is 10wt%
This is because, if it exceeds this, crystallinity deteriorates and low resistivity cannot be obtained.

前記本発明方法の実施に使用する装置は、所定
間隔をおいて相対して配設された二つのマグネト
ロンカソードと、各マグネトロンカソードに装着
される各ターゲツトの表面とそれぞれ表面がほぼ
同一レベルに位置するように相対して配設された
二つのアノードと、前記ターゲツト間に基板をタ
ーゲツトの表面に対してほぼ垂直に保持する基板
保持手段と、前記アノードを包囲して配設された
プラズマ集束用コイルと、これらの部材を収容す
る真空槽とから構成されている。
The apparatus used to carry out the method of the present invention has two magnetron cathodes arranged opposite to each other at a predetermined interval, and the surfaces of each target attached to each magnetron cathode are located at approximately the same level. two anodes arranged opposite to each other, a substrate holding means for holding the substrate between the targets substantially perpendicular to the surface of the target, and a plasma focusing means arranged surrounding the anodes. It consists of a coil and a vacuum chamber that houses these members.

具体的には、前記方法を実施するための本発明
に係るマグネトロンスパツタ装置は、第1図およ
び第2図に示すように、各々電磁石または永久磁
石を内蔵する二つのマグネトロンカソード5が所
定間隔をおいて相対して配設され、各々相対する
面にターゲツト1を装着するようにしてあり、二
つのアノード2はその相対する表面が各ターゲツ
ト1の表面とそれぞれほぼ同一レベルに位置する
ように、実際には、ターゲツト1の周辺より若干
内側に位置するように相対して配設されている。
アノード2は、その中央部に開口部2aが形成さ
れ、その開口部に臨むようにターゲツト1がそれ
ぞれマグネトロンカソード5に装着されている。
Specifically, in the magnetron sputtering device according to the present invention for implementing the method, as shown in FIGS. The two anodes 2 are arranged opposite to each other with a distance between them, and the targets 1 are mounted on their opposing surfaces, and the two anodes 2 are arranged so that their opposing surfaces are located at approximately the same level as the surface of each target 1. , in fact, are arranged facing each other so as to be located slightly inside the periphery of the target 1.
The anode 2 has an opening 2a formed in its center, and the targets 1 are attached to the magnetron cathode 5 so as to face the opening.

他方、各アノード2を包囲してソレノイドコイ
ル4が配設され、マグネトロン放電により生成さ
れるプラズマを集束させるようにしてある。前記
ターゲツト1間に形成される空間6内には基板ホ
ルダ7が配設され、基板3をターゲツトの表面に
対してほぼ垂直に保持するようにしてある。これ
らの部材はいずれも真空槽6内に配置される。
On the other hand, a solenoid coil 4 is disposed surrounding each anode 2 to focus the plasma generated by the magnetron discharge. A substrate holder 7 is disposed within the space 6 formed between the targets 1, and is adapted to hold the substrate 3 substantially perpendicular to the surface of the targets. All of these members are placed within the vacuum chamber 6.

(作用) 前記本発明方法及び装置においては、基板を相
対するターゲツト間にターゲツトの表面に対し垂
直に配置していること、アノードをターゲツト表
面とほぼ同一レベルに位置するように配置してい
ること、及び外部からプラズマ集束磁界を印加す
るようにしていることとが相まつて、膜の特性等
に次のような作用効果を与える。
(Operation) In the method and apparatus of the present invention, the substrate is arranged between opposing targets perpendicularly to the surface of the targets, and the anode is arranged so as to be located at approximately the same level as the target surface. , and applying a plasma focusing magnetic field from the outside combine to have the following effects on the properties of the film.

(1) 通常使用されるマグネトロンスパツタ装置と
異なり、アノードを基板側でなく相対して配置
されたターゲツト表面とほぼ同一レベルに位置
するように配置しているため、抵抗率を高くす
る原因となるイオン種、例えば、負にイオン化
した酸素(O2 -)の基板への飛来を少なくし、
キヤリヤア密度の減少を防止する働きをする。
(1) Unlike the normally used magnetron sputtering equipment, the anode is placed at almost the same level as the target surface, which is placed opposite, rather than on the substrate side, which is a cause of high resistivity. This reduces the amount of ion species, such as negatively ionized oxygen (O 2 - ), that fly to the substrate.
It works to prevent the carrier density from decreasing.

(2) また、(1)で述べたことと、基板がターゲツト
の表面に対して垂直に配置されていることが相
乗して、膜中への酸素やアルゴンガスの吸着を
少なくする。
(2) Furthermore, the fact that the substrate is arranged perpendicularly to the surface of the target, combined with the above mentioned in (1), reduces the adsorption of oxygen and argon gas into the film.

(3) 外部印加磁界の作用によりプラズマ中の荷電
粒子(アルゴンイオン、スパツタされたイオ
ン、電子)がローレンツ力を受けるため、基板
表面に平行方向の運動エネルギを付与され、基
板上に飛来した各種の粒子が基板表面に衝突す
ることによつて、結晶核の形成及び原子や分子
の再配列を促進するエネルギを与える。
(3) Due to the action of an externally applied magnetic field, charged particles (argon ions, sputtered ions, electrons) in the plasma are subjected to Lorentz force, which imparts kinetic energy in a direction parallel to the substrate surface, causing various particles flying onto the substrate to By colliding with the substrate surface, the particles provide energy that promotes the formation of crystal nuclei and the rearrangement of atoms and molecules.

(4) これらの効果はいずれも多結晶質酸化亜鉛膜
の結晶性を改善するため、膜のキヤリヤ移動度
を増大させ、従つて、この移動度の増大効果及
び前記のイオン化O2の導入阻止効果によるキ
ヤリヤ密度の減少防止が低い抵抗率を実現する
要因となつている。
(4) Both of these effects improve the crystallinity of the polycrystalline zinc oxide film, thereby increasing the carrier mobility of the film, and therefore, this mobility increasing effect and the aforementioned prevention of the introduction of ionized O 2 Preventing the carrier density from decreasing due to the effect is a factor in achieving low resistivity.

(5) さらに、外部から磁界を印加しているため、
プラズマのピンチ効果によつて低ガス圧での安
定なプラズマ生成を行わせることができると同
時に、プラズマを集束させターゲツトの表面で
のスパツタガスArの電離効率を高めるため、
大きな膜形成速度を達成でき、透明導電膜を安
価に製造するのを可能にしている。
(5) Furthermore, since a magnetic field is applied from the outside,
Stable plasma generation at low gas pressure can be achieved by the plasma pinch effect, and at the same time, this method focuses the plasma and increases the ionization efficiency of the sputtering gas Ar on the target surface.
A high film formation rate can be achieved, making it possible to manufacture transparent conductive films at low cost.

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例 1 第1図に示す装置を用い、高純度(99.999%)
の酸化亜鉛(ZnO)に2wt%の酸化アルミニウム
(Al2O3)を添加して焼結させた幅8cm、長さ15
cmの長方形状の焼結体をターゲツト1とし、スパ
ツタガスとして純アルゴンを用いて、ターゲツト
1の幅方向の中心線を結ぶ面Pを挟んで2枚の基
板3を配置し、その面Pと基板間のLを変えて、
下記の条件下で5分間スパツタリングを行い、透
明導電膜を形成した。なお、基板3はガラスで特
に加熱すること無く、常温から温度の自然変化の
ままスパツタリングした。また、この時の成膜速
度は60nm/minであつた。
Example 1 Using the apparatus shown in Figure 1, high purity (99.999%)
Width 8cm, length 15cm made by adding 2wt% aluminum oxide (Al 2 O 3 ) to zinc oxide (ZnO) and sintering it.
Using a rectangular sintered body of cm as the target 1, using pure argon as a sputtering gas, two substrates 3 are placed with a plane P connecting the center line in the width direction of the target 1 in between, and the plane P and the substrate Change the L in between,
Sputtering was performed for 5 minutes under the following conditions to form a transparent conductive film. Note that the substrate 3 was glass and was sputtered without being particularly heated, with the temperature naturally changing from room temperature. Further, the film formation rate at this time was 60 nm/min.

スパツタ条件 アルゴン圧 0.75Pa 高周波電力 200W ターゲツト間距離 12cm プラズマ集束磁界 50G 基板 10cm×12cm 距離L 2cm、3.5cm、6cm 得られた透明導電膜について基板間の距離Lを
変えた場合の膜厚分布状態を調べたところ、第3
図に示すような結果が得られた。第3図から明ら
かなように、前記スパツタ条件の下では距離Lが
3.5cmの場合、基板の上下方向約10cmにわたつて
膜厚の変化率が±3%以内である厚さの均一な透
明導電膜が得られた。また、その最低抵抗率は
1.4×10-4Ωcmで、可視光透過率が85%以上であ
つた。
Sputtering conditions Argon pressure 0.75Pa High frequency power 200W Distance between targets 12cm Plasma focusing magnetic field 50G Substrate 10cm x 12cm Distance L 2cm, 3.5cm, 6cm Thickness distribution state of the obtained transparent conductive film when the distance L between the substrates is changed When I investigated, I found that the third
The results shown in the figure were obtained. As is clear from Fig. 3, under the sputtering conditions, the distance L is
In the case of 3.5 cm, a transparent conductive film with a uniform thickness was obtained with a change rate of film thickness within ±3% over approximately 10 cm in the vertical direction of the substrate. Also, its minimum resistivity is
It was 1.4×10 -4 Ωcm, and the visible light transmittance was 85% or more.

実施例 2 高純度(99.999%)の酸化亜鉛からなる焼結体
をターゲツトとして用い、距離Lを3.5cmに設定
し、実施例1と同条件下でスパツタリングし、厚
さ約200nmの透明導電膜を形成した。
Example 2 A sintered body made of high purity (99.999%) zinc oxide was used as a target, the distance L was set to 3.5 cm, and sputtering was performed under the same conditions as in Example 1 to form a transparent conductive film with a thickness of about 200 nm. was formed.

透明導電膜は上下方向約10cmにわたつて膜厚の
変化率が±3%以内の均一な厚さを有し、その最
低抵抗率4.2×10-4Ωcmで、可視光透過率が90%
以上であつた。
The transparent conductive film has a uniform thickness over approximately 10 cm in the vertical direction with a change rate of film thickness within ±3%, has a minimum resistivity of 4.2 × 10 -4 Ωcm, and a visible light transmittance of 90%.
That's all.

実施例 3 高純度(99.999%)の酸化亜鉛に1wt%の酸化
インジウムを添加してなる焼結体をターゲツトと
して用い、距離Lを3.5cmに設定し、実施例1と
同条件下でスパツタリングして、透明導電膜を形
成した。
Example 3 A sintered body made of high purity (99.999%) zinc oxide added with 1 wt% indium oxide was used as a target, distance L was set to 3.5 cm, and sputtering was carried out under the same conditions as in Example 1. A transparent conductive film was formed.

透明導電膜は上下方向約10cmにわたつて膜厚の
変化率が±3%以内の均一な厚さを有し、その最
低抵抗率は3.0×10-4Ωcmで、可視光透過率が85
%以上であつた。
The transparent conductive film has a uniform thickness over approximately 10 cm in the vertical direction with a change rate of film thickness within ±3%, the minimum resistivity is 3.0 × 10 -4 Ωcm, and the visible light transmittance is 85
% or more.

実施例 4 高純度(99.999%)の酸化亜鉛に3wt%の酸化
ガリウムを添加してなる焼結体をターゲツトとし
て用い、距離Lを3.5cmに設定し、実施例1と同
条件下でスパツタリングして、透明導電膜を形成
した。
Example 4 A sintered body made by adding 3 wt% gallium oxide to high purity (99.999%) zinc oxide was used as a target, the distance L was set to 3.5 cm, and sputtering was carried out under the same conditions as in Example 1. A transparent conductive film was formed.

透明導電膜は上下方向約10cmにわたつて膜厚の
変化率が±3%以内の均一な厚さを有し、その最
低抵抗率は2.5×10-4Ωcmで、可視光透過率が80
%以上であつた。
The transparent conductive film has a uniform thickness over approximately 10 cm in the vertical direction with a change rate of film thickness within ±3%, the minimum resistivity is 2.5 × 10 -4 Ωcm, and the visible light transmittance is 80
% or more.

前記実施例では、ターゲツトとして酸化物を使
用しているが、亜鉛(Zn)とアルミニウム(Al)
の合金をターゲツトとし、スパツタガスとして
ArとO2の混合ガスを使用しても良い。さらに、
ターゲツトとしての他の透明導電膜用材料を採用
すれば、前記低抵抗率効果が同様に得られる。プ
ラスマ生成ガスとして酸素を使用する場合には、
アルゴンと80%以下の酸素との混合ガスが良い。
In the above example, oxides are used as targets, but zinc (Zn) and aluminum (Al) are used as targets.
as a sputter gas, targeting alloys of
A mixed gas of Ar and O 2 may also be used. moreover,
If other materials for the transparent conductive film are used as targets, the low resistivity effect described above can be similarly obtained. When using oxygen as the plasma generating gas,
A gas mixture of argon and less than 80% oxygen is good.

また、装置を公知のクローズトエンド式連続ス
パツタ装置のように基板キヤリヤを一方の方向に
移動させるようにしても良く、また、第4図に示
すように、基板としてフイルムシートを用い、こ
れをフイルム供給ロール10からガイドロール1
1を介して送給し、透明導電膜を形成して巻取ロ
ール12で巻き取るようにしても良い。
Further, the apparatus may be configured such that the substrate carrier is moved in one direction like a known closed-end continuous sputtering apparatus, or as shown in FIG. 4, a film sheet may be used as the substrate and this From film supply roll 10 to guide roll 1
Alternatively, the transparent conductive film may be fed through a winding roll 12 to form a transparent conductive film, and the film may be wound up by a winding roll 12.

なお、前記実施例では、2枚の基板3を開口部
2aの縁に沿つて相対して配置しているが、二つ
のターゲツト1の中心を結ぶ面Pをはさみ2枚の
基板3を密着させて配置してもよく、また、1枚
の基板3を配置するとその両面に薄膜を形成する
こともできる。さらに、ターゲツトの寸法、ター
ゲツト間の間隔、外部印加磁界の強さを変えるこ
とにより、均一な膜厚と低い抵抗率を有し、大面
積の透明導電膜を製造することができる。
In the above embodiment, the two substrates 3 are arranged opposite to each other along the edge of the opening 2a, but the two substrates 3 are placed in close contact with each other by sandwiching the plane P connecting the centers of the two targets 1. Alternatively, if one substrate 3 is arranged, thin films can be formed on both surfaces thereof. Furthermore, by varying the dimensions of the targets, the spacing between the targets, and the strength of the externally applied magnetic field, it is possible to produce a large-area transparent conductive film with uniform film thickness and low resistivity.

前記実施例においては、いずれも酸化亜鉛系薄
膜を形成しているが、本発明に係る装置は薄膜形
成速度が速いのでITO膜その他の透明導電膜を製
造するのにも使用できる。
In all of the above examples, zinc oxide thin films were formed, but since the apparatus according to the present invention can form thin films at a high speed, it can also be used to produce ITO films and other transparent conductive films.

(発明の効果) 本発明によれば、通常使用されるスパツタ装置
と異なり、アノードを基板側でなく相対して配置
されたターゲツト表面とほぼ同一レベルに位置す
るように配置し、しかも基板がターゲツトの表面
に対して垂直に配置してマグネトロンスパツタリ
ングを行なうため、イオン化した酸素(O2 -)の
基板への飛来を少なくし、実質的にキヤリヤ密度
の増加を図ることができ、また膜中への酸素やア
ルゴンガスの吸着を少なくできるので、抵抗率の
増加を防止できる。さらに、外部印加磁界の作用
によりプラズマ中の粒子が基板表面に平行方向の
運動エネルギを付与され、基板上に飛来したこれ
らの各種の粒子が基板表面に衝突することによつ
て、結晶核の形成及び原子や分子の再配列を促進
するエネルギを与えるため、多結晶質酸化亜鉛膜
の結晶性を改善し、キヤリアの移動度を増大さ
せ、一段と抵抗率の低減化を実現できる。また、
外部から磁界を印加しているため、プラズマのピ
ンチ効果によつて低ガス圧での安定なプラズマ生
成を行わせることができると同時に、プラズマを
集束させターゲツトの表面でのスパツタガスの電
離効率を高めることができ、大きな膜形成速度を
達成できる。従つて、本発明によれば、特性的に
ITO膜に優る大面積の酸化亜鉛系透明導電膜を安
価に多量生産できるなど優れた効果が得られる。
(Effects of the Invention) According to the present invention, unlike a commonly used sputtering device, the anode is arranged not on the substrate side but at almost the same level as the target surface, which is placed opposite to it, and moreover, Since magnetron sputtering is carried out perpendicular to the surface of the substrate, it is possible to reduce the amount of ionized oxygen (O 2 - ) flying to the substrate, substantially increasing the carrier density, and to increase the Since adsorption of oxygen and argon gas into the interior can be reduced, an increase in resistivity can be prevented. Furthermore, particles in the plasma are given kinetic energy in a direction parallel to the substrate surface by the action of an externally applied magnetic field, and these various particles that fly onto the substrate collide with the substrate surface, resulting in the formation of crystal nuclei. In addition, since energy is provided to promote the rearrangement of atoms and molecules, the crystallinity of the polycrystalline zinc oxide film is improved, the carrier mobility is increased, and the resistivity can be further reduced. Also,
Since a magnetic field is applied from the outside, it is possible to generate stable plasma at low gas pressure due to the plasma pinch effect, and at the same time, it focuses the plasma and increases the ionization efficiency of the sputter gas on the target surface. , and a high film formation rate can be achieved. Therefore, according to the present invention, characteristically
Excellent effects can be obtained, such as the ability to inexpensively mass-produce large-area zinc oxide-based transparent conductive films that are superior to ITO films.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に使用するマグネト
ロンスパツタ装置の概略断面図、第2図はその要
部斜視図、第3図は本発明方法により各種条件下
で製造された透明導電膜の膜厚分布を示すグラ
フ、第4図は本発明方法の実施に使用する他のマ
グネトロンスパツタ装置の要部斜視図である。 1……ターゲツト、2……アノード、3……基
板、4……プラズマ集束用コイル、5……マグネ
トロンカソード、6……真空槽、7……基板ホル
ダ。
Fig. 1 is a schematic cross-sectional view of a magnetron sputtering device used to carry out the method of the present invention, Fig. 2 is a perspective view of the main parts thereof, and Fig. 3 is a diagram of transparent conductive films produced under various conditions by the method of the present invention. FIG. 4, a graph showing the film thickness distribution, is a perspective view of a main part of another magnetron sputtering device used for carrying out the method of the present invention. 1... Target, 2... Anode, 3... Substrate, 4... Plasma focusing coil, 5... Magnetron cathode, 6... Vacuum chamber, 7... Substrate holder.

Claims (1)

【特許請求の範囲】 1 所定間隔をおいて相対して配置された二つの
ターゲツトの表面とそれぞれほぼ同一レベルに位
置するように二つのアノードを相対して配置し、
基板を前記ターゲツト間に、かつターゲツトの表
面に対してほぼ垂直に配置し、外部よりプラズマ
集束磁界を印加しつつマグネトロンスパツタリン
グすることを特徴とする透明導電膜の製造方法。 2 前記ターゲツトが高純度の酸化亜鉛の焼結体
からなる特許請求の範囲第1項記載の透明導電膜
の製造方法。 3 前記ターゲツトが酸化アルミニウム、酸化イ
ンジウムまたは酸化ガリウムを10wt%以下含有
する酸化亜鉛の焼結体からなる特許請求の範囲第
1項記載の透明導電膜の製造方法。 4 前記ターゲツトがアルミニウム、インジウム
またはガリウムを5wt%以下含有する亜鉛合金か
らなり、プラスマ生成ガスがアルゴンと80%以下
の酸素との混合ガスからなる特許請求の範囲第1
項記載の透明導電膜の製造方法。 5 所定間隔をおいて相対して配設された二つの
マグネトロンカソードと、各マグネトロンカソー
ドに装着される各ターゲツトの表面とそれぞれ表
面がほぼ同一レベルに位置するように相対して配
設された二つのアノードと、前記ターゲツト間に
基板をターゲツトの表面に対してほぼ垂直に保持
する基板保持手段と、前記アノードを包囲して配
設されたプラズマ集束用コイルと、これらの部材
を収容する真空槽とからなる透明導電膜の製造装
置。 6 前記基板保持手段が真空槽内に固定されてい
る特許請求の範囲第5項記載の装置。 7 前記基板保持手段が真空槽の一端側から他端
側へ移動する基板キヤリヤからなる特許請求の範
囲第5項記載の装置。
[Claims] 1. Two anodes are disposed opposite each other so as to be located at approximately the same level as the surfaces of two targets disposed oppositely at a predetermined interval,
A method for producing a transparent conductive film, comprising placing a substrate between the targets and substantially perpendicular to the surface of the targets, and carrying out magnetron sputtering while applying a plasma focusing magnetic field from the outside. 2. The method for manufacturing a transparent conductive film according to claim 1, wherein the target is a sintered body of high-purity zinc oxide. 3. The method for manufacturing a transparent conductive film according to claim 1, wherein the target is a sintered body of zinc oxide containing 10 wt% or less of aluminum oxide, indium oxide, or gallium oxide. 4. Claim 1, wherein the target is made of a zinc alloy containing 5 wt% or less of aluminum, indium, or gallium, and the plasma generating gas is a mixed gas of argon and 80% or less of oxygen.
A method for producing a transparent conductive film as described in Section 1. 5. Two magnetron cathodes arranged opposite to each other with a predetermined interval, and two magnetron cathodes arranged opposite to each other so that the surfaces of each target attached to each magnetron cathode are located at approximately the same level. a substrate holding means for holding the substrate between the targets substantially perpendicular to the surface of the target, a plasma focusing coil disposed surrounding the anode, and a vacuum chamber housing these members. A transparent conductive film manufacturing device comprising: 6. The apparatus according to claim 5, wherein the substrate holding means is fixed within a vacuum chamber. 7. The apparatus of claim 5, wherein said substrate holding means comprises a substrate carrier that moves from one end of the vacuum chamber to the other.
JP27766884A 1984-12-29 1984-12-29 Method and apparatus for manufacturing transparent conducting film Granted JPS61158622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27766884A JPS61158622A (en) 1984-12-29 1984-12-29 Method and apparatus for manufacturing transparent conducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27766884A JPS61158622A (en) 1984-12-29 1984-12-29 Method and apparatus for manufacturing transparent conducting film

Publications (2)

Publication Number Publication Date
JPS61158622A JPS61158622A (en) 1986-07-18
JPH0350367B2 true JPH0350367B2 (en) 1991-08-01

Family

ID=17586632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27766884A Granted JPS61158622A (en) 1984-12-29 1984-12-29 Method and apparatus for manufacturing transparent conducting film

Country Status (1)

Country Link
JP (1) JPS61158622A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787003B2 (en) * 1999-12-03 2004-09-07 N.V. Bekaert S.A. Sputtering target and methods of making and using same
CN105132862A (en) * 2012-06-29 2015-12-09 株式会社半导体能源研究所 Method for using sputtering target and method for manufacturing oxide film

Also Published As

Publication number Publication date
JPS61158622A (en) 1986-07-18

Similar Documents

Publication Publication Date Title
JP2936276B2 (en) Method and apparatus for manufacturing transparent conductive film
US5009922A (en) Method of forming a transparent conductive film
JP2000040429A (en) Manufacturing of zinc oxide transparent conductive film
JP4599595B2 (en) Method and apparatus for producing transparent conductive film
JP2635385B2 (en) Ion plating method
EP0318441B1 (en) Apparatus and process for the deposition of a thin layer on a transparent substrate, in particular for the manufacture of sheets of glass
JPH0350367B2 (en)
JPH04929B2 (en)
JP4614936B2 (en) Composite type sputtering apparatus and composite type sputtering method
JP3254782B2 (en) Double-sided sputter film forming method and apparatus, and sputter film forming system
JP2004332030A (en) Method of producing transparent electroconductive film
JPH0329216A (en) Formation of transparent conductive film
JPH056286B2 (en)
JP4999602B2 (en) Deposition equipment
KR20010005515A (en) Magnesium oxide sputtering apparatus
JPH11195333A (en) Manufacture of transparent conductive film and this transparent conductive film
JPH056287B2 (en)
JPH0273963A (en) Formation of thin film on low-temperature substrate
JPH03260067A (en) Sputtering device
JPH1192927A (en) Magnetron sputtering device
JP2878299B2 (en) Ion plating method
JPS63140079A (en) Sputtering device
JPH0116912B2 (en)
JPH09176853A (en) Magnetron sputtering apparatus for forming transparent conductive film and production of transparent conductive film by using the same
Matsuda et al. Development of large area sputter-coating method using magnetized ac plasmas with inclined electrodes