JPH0348647A - (meth)acrylamide derivative, its production and rubber modifier containing the same derivative as active ingredient - Google Patents

(meth)acrylamide derivative, its production and rubber modifier containing the same derivative as active ingredient

Info

Publication number
JPH0348647A
JPH0348647A JP18563389A JP18563389A JPH0348647A JP H0348647 A JPH0348647 A JP H0348647A JP 18563389 A JP18563389 A JP 18563389A JP 18563389 A JP18563389 A JP 18563389A JP H0348647 A JPH0348647 A JP H0348647A
Authority
JP
Japan
Prior art keywords
rubber
formula
meth
group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18563389A
Other languages
Japanese (ja)
Inventor
Naoki Inui
直樹 乾
Hideo Nagasaki
英雄 長崎
Shinichi Yago
八児 真一
Miyuki Oikawa
幸 老川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP18563389A priority Critical patent/JPH0348647A/en
Priority to CA 2021194 priority patent/CA2021194A1/en
Priority to EP90307807A priority patent/EP0409565A1/en
Publication of JPH0348647A publication Critical patent/JPH0348647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

NEW MATERIAL:A compound expressed by formula I (R<1> and R<2> are H, 1-8C alkyl, phenyl, halogen, OH or NH2; R<3> is H or methyl). EXAMPLE:4-(4-methylphenoxy)phenyl airylamide. USE:Used as modifier for improve dissipation factor of rubber at high temperature. Rubber composition containing said modifier is made as fire having excellent grip properties especially in a case of adopting to tread part of fire. PREPARATION:Phenoxyanilines expressed by formula II is subjected to condensation reaction with halide of (meth)acrylic acid in an inert solvent and in the presence of de-hydrogen halide agent to afford the compound expressed by formula I.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ゴムの改質剤として、特にゴムの高温におけ
る損失係数を向上させる改質剤として有用な新規化合物
、その製造法、およびその化合物のゴム用改質剤として
の用途に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a novel compound useful as a rubber modifier, particularly as a modifier that improves the loss coefficient of rubber at high temperatures, a method for producing the same, and a method for producing the same. This invention relates to the use of the compound as a rubber modifier.

〈従来の技術〉 近年、自動車の高性能化、道路の舗装化および高速道路
網の発達に伴い、自動車の加速性能やブレーキ性能と密
接な関連をもつタイヤのグリップ性能に対する向上要請
が増加してきている。
<Conventional technology> In recent years, as automobiles have become more sophisticated, roads have become more paved, and expressway networks have developed, there has been an increasing demand for improved tire grip performance, which is closely related to automobile acceleration and braking performance. There is.

高グリップ性能を得るためには、タイヤのトレッド部と
路面との間の摩擦によるエネルギーロスを増加させれば
よいことが知られており、これに対応して変形時の損失
係数(tanδ〉 の大きいトレッドゴム材料が求めら
れている。
It is known that in order to obtain high grip performance, it is sufficient to increase the energy loss due to friction between the tire tread and the road surface. Larger tread rubber materials are required.

従来、変形時のtanδを大きくする技術としては、ス
チレン含有量の高い不チレンーブタジエン共重合ゴムを
ベースゴムとして使用する方法、プロセス油を多量に添
加する方法、高補強性のカーボンブラックを多量に充填
する方法などが提案されている。
Conventionally, techniques for increasing tan δ during deformation include a method of using non-styrene-butadiene copolymer rubber with a high styrene content as a base rubber, a method of adding a large amount of process oil, and a method of adding a large amount of highly reinforcing carbon black. Methods have been proposed to fill the

〈発明が解決しようとする課題) しかしながら、スチレン含有量の高いスチレン−ブタジ
ェン共重合ゴムをベースゴムとする方法では、ある温度
領域まではグリップ性能が優れるものの、この種のゴム
の特性としてガラス転移温度(rg )が高く、かつt
anδの温度依存性が大きいため、路面温度の高い場合
、あるいは走行時の発熱によりタイヤ温度が上昇した場
合には、tanδが急激に低下し、それに伴いグリップ
性能も低下するという問題点を有していた。また、プロ
セス油や高補強性のカーボンブラックを多量に充填する
方法では、グリップ性能の向上はみられるものの、高充
填によるゴムの発熱のため、強度特性や耐摩耗性が著し
く低下するという問題点があった。
<Problems to be Solved by the Invention> However, in the method of using styrene-butadiene copolymer rubber with a high styrene content as the base rubber, although the grip performance is excellent up to a certain temperature range, the glass transition characteristic of this type of rubber is The temperature (rg) is high and t
Since the temperature dependence of an δ is large, when the road surface temperature is high or when the tire temperature rises due to heat generation during driving, tan δ rapidly decreases, resulting in a problem that grip performance also decreases. was. In addition, although grip performance can be improved by filling a large amount of process oil or highly reinforcing carbon black, there is a problem in that the strength and abrasion resistance are significantly reduced due to the heat generated by the rubber due to the high filling. was there.

このような背景から本発明者らは、耐熱性を損なうこと
なく、グリ・ツブ性能、特にタイヤが高温になった際の
グリップ性能を向上させることをめざして鋭意研究を重
ねた結果、本発明の完成に至った。
Against this background, the present inventors conducted intensive research aimed at improving grip performance, especially grip performance when the tire becomes hot, without compromising heat resistance.As a result, the present invention was developed. has been completed.

したがって本発明は、ゴムに配合することにより、ゴム
の高温における損失係数を向上させ、もってグリップ性
能の向上をはかることができる化合物を提供しようとす
るものである。
Therefore, the present invention aims to provide a compound that can be blended into rubber to improve the loss coefficient of the rubber at high temperatures, thereby improving the grip performance.

また本発明は、かかる化合物の製造法を提供しようとす
るものである。
The present invention also seeks to provide a method for producing such compounds.

さらに本発明は、かかる化合物を用いて、コムの改質、
特にゴムの高温におけるグリップ性能の向上をはかろう
とするものである。
Furthermore, the present invention uses such compounds to modify combs,
In particular, the aim is to improve the grip performance of rubber at high temperatures.

(R1題を解決するための手段) すなわち本発明は、−能代(I) 2 子、炭素数1〜8のアルキル基、/クロヘキシル基、フ
ェニル基、ハロゲン原子、水酸基またはアミノ基であり
 R3は水素原子またはメチル基である) で示される新規な(メタ)アクリルアミド誘導体を提供
する。
(Means for solving problem R1) That is, in the present invention, -Noshiro (I) 2 child, an alkyl group having 1 to 8 carbon atoms, a /chlorohexyl group, a phenyl group, a halogen atom, a hydroxyl group or an amino group, and R3 is The present invention provides a novel (meth)acrylamide derivative represented by (a hydrogen atom or a methyl group).

また本発明は、前記−能代(I)で示される化合物の製
造方法として、−能代(II)2 (式中、R′およびR2は前記と同じ意味を有する) で示されるフェノキシアニリン類と、−a式() (式中、R1およびR2はそれぞれ独立に水素原(式中
、R3は前記と同じ意味を有し、Xはハロゲン原子であ
る) で示されるアクリル酸・またはメタクリル酸のハロゲン
化物とを、不活性溶媒中、脱ハロゲン化水素剤の存在下
で縮合反応させる方法を提供する。
The present invention also provides a method for producing the compound represented by -Noshiro (I), including a phenoxyaniline represented by -Noshiro (II)2 (wherein R' and R2 have the same meanings as above); -A halogen of acrylic acid or methacrylic acid represented by formula () (wherein R1 and R2 are each independently a hydrogen atom (in the formula, R3 has the same meaning as above, and X is a halogen atom) Provided is a method for carrying out a condensation reaction with a compound in an inert solvent in the presence of a dehydrohalogenating agent.

さらに本発明は、前記一般式(1)で示される(メタ)
アクリルアミド誘導体を有効成分とするゴム用改質剤を
提供し、天然ゴムおよび/または合成ゴム、充填剤なら
びに前記一般式(1)で示される(メタ)アクリルアミ
ド誘導体を含有してなるゴム組成物を提供し、また天然
ゴムおよび/または合成ゴムに、前記一般式(1)で示
される(メタ)アクリルアミド誘導体を配合することに
より、ゴムの高温における損失係数を向上させる方法を
提供する。
Furthermore, the present invention provides (meta) represented by the general formula (1)
Provides a rubber modifier containing an acrylamide derivative as an active ingredient, and provides a rubber composition comprising natural rubber and/or synthetic rubber, a filler, and the (meth)acrylamide derivative represented by the general formula (1). The present invention also provides a method for improving the loss coefficient of rubber at high temperatures by blending a (meth)acrylamide derivative represented by the general formula (1) with natural rubber and/or synthetic rubber.

前記一般式(1)において、[11またはR2となりう
る炭素数1〜8のアルキル基としては、メチル、エチル
、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、
オクチルがあげられ、炭素数3以上のものは、直鎖状の
ほか、分枝状であってもよい。これらのなかでも、炭素
数の比較的少ないもの、例えば炭素数1〜4のアルキル
基が好ましい。
In the general formula (1), examples of the alkyl group having 1 to 8 carbon atoms that can be [11 or R2 include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl,
Examples include octyl, and those having 3 or more carbon atoms may be linear or branched. Among these, those having a relatively small number of carbon atoms, such as alkyl groups having 1 to 4 carbon atoms, are preferable.

R1またはR2となりうるハロゲン原子としては、フン
素、塩素、臭素、ヨウ素などがあげられ、これらのなか
でも塩素および臭素が好ましく、さらに好ましくは塩素
である。
Examples of the halogen atom that can be R1 or R2 include fluorine, chlorine, bromine, and iodine. Among these, chlorine and bromine are preferred, and chlorine is more preferred.

R’またはR2となりうるアミノ基は、無置換アミノ(
−NH,)のほか、モノ置換アミノやジ置換アミノであ
ってもよい。アミン基に置換しろる基としては、炭素数
1〜4のアルキル基、フェニル基、シクロヘキンル基な
どがあげられる。
The amino group that can be R' or R2 is unsubstituted amino (
-NH,), mono-substituted amino or di-substituted amino may be used. Examples of the group that can be substituted on the amine group include an alkyl group having 1 to 4 carbon atoms, a phenyl group, and a cyclohexyl group.

R1およびR2は、好ましくはそれぞれ独立に、水素原
子、炭素数1〜4のアルキル基、塩素原子または無置換
のもしくは置換されたアミノ基である。より好ましい化
合物は、R’が水素原子、炭素数1〜4のアルキル基、
塩素原子または無置換のもしくは置換されたアミン基、
R2が水素原子または炭素数1〜4のアルキル基のもの
である。
R1 and R2 are preferably each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a chlorine atom, or an unsubstituted or substituted amino group. A more preferred compound is a compound in which R' is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms,
a chlorine atom or an unsubstituted or substituted amine group,
R2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.

R’が水素原子以外である場合、ベンゼン環のどの位置
に結合してもよいが、エーテル性酸素原子の位置に対し
て4−位または3−位に結合するのが好ましい。またR
2が水素原子以外である場合も、ベンゼン環のどの位置
に結合してもよいが、エーテル性酸素原子の位置に対し
て2−位または3−位に結合するのが好ましい。
When R' is other than a hydrogen atom, it may be bonded to any position on the benzene ring, but it is preferably bonded to the 4-position or 3-position with respect to the position of the etheric oxygen atom. Also R
Even when 2 is other than a hydrogen atom, it may be bonded to any position on the benzene ring, but it is preferably bonded to the 2-position or 3-position with respect to the position of the etheric oxygen atom.

本発明による前記一般式(1)で示される化合物として
、具体的には以下のようなものが例示される。なお以下
の例示において、−Yは−C−CH=CLを、また−2
 i;! −C−C=CH2をそれぞれ示す。
Specific examples of the compound represented by the general formula (1) according to the present invention include the following. In the following examples, -Y represents -C-CH=CL, and -2
i;! -C-C=CH2 is shown respectively.

(1)     σo(yu H−Y < 2 >    CH30o(yNH−Y(3)  
C)13CL【yO(yNII−Y(4)CHコ(CH
2) 、00ON H−Y(5) cH,(ch、)、
−OSo8NH−y(24)       (IIΣ0
(コトN1(−Z(25)    c++3(yo(y
NH−Z(26)  C11,CI+200(yNH−
2(27) C113<c、N2)v−QpO−Q7−
NH−1(28)C1(yOONH−Z (29)  σN )I−C)−[IQN H−Z本発
明の前記−9式(1)で示される化合物は、前述したと
おり、−9式(n)で示されるフェノキシアニリン類と
、−9式([[)で示される酸ハロゲン化物とを、不活
性溶媒中、脱ハロゲン化水素剤の存在下で縮合反応させ
ることにより製造することができる。
(1) σo(yu H-Y < 2 > CH30o(yNH-Y(3)
C) 13CL [yO(yNII-Y(4)CH co(CH
2) ,00ON HY(5) cH,(ch,),
-OSo8NH-y(24) (IIΣ0
(CotoN1(-Z(25) c++3(yo(y
NH-Z(26) C11, CI+200(yNH-
2(27) C113<c, N2)v-QpO-Q7-
NH-1(28)C1(yOONH-Z (29) σN )I-C)-[IQNH-Z The compound represented by the -9 formula (1) of the present invention is, as described above, represented by the -9 formula ( It can be produced by condensing a phenoxyaniline represented by n) and an acid halide represented by formula -9 ([[) in an inert solvent in the presence of a dehydrohalogenating agent. .

一般式(n)で示される原料フェノキシアニリン類は、
−9式<rV) 2 (式中、R’およびR2は前記と同じ意味を有する) で示される芳香族ニトロ化合物を還元することによって
製造することができる。この際の還元は、例えば、エタ
ノール溶媒中で白金触媒を用い、J、 Am、 Che
m、Sac、、 53. 1566、1568(193
1)  に記載の方法に準じて、あるいは、塩酸水溶液
下、塩化すず([11を用い、Monatshef t
ef[ir Chen+ie、 57.31.41 (
1931)  に記載の方法に準じて行うことができる
The raw material phenoxyaniline represented by the general formula (n) is
It can be produced by reducing an aromatic nitro compound represented by the formula -9<rV) 2 (wherein R' and R2 have the same meanings as above). The reduction at this time is carried out using, for example, a platinum catalyst in an ethanol solvent, using J, Am, Che
m, Sac,, 53. 1566, 1568 (193
1) or by using tin chloride ([11] under an aqueous hydrochloric acid solution,
ef[ir Chen+ie, 57.31.41 (
It can be carried out according to the method described in (1931).

一般式(rV)で示される芳香族ニトロ化合物は、例え
ば、−9式(V) (式中、R1は前記と同じ意味を有し、)4は水素原子
またはナトリウム、カリウム等のアルカリ金属であるが
、好ましくはアルカリ金属である) で示されるフェノール類と、−9式(1(式中、R2は
前記と同じ意味を有し、Xはハロゲン原子である) で示されるニトロハロベンゼン類とを、綜合反応させる
ことによって製造することができる。
The aromatic nitro compound represented by the general formula (rV) is, for example, -9 formula (V) (wherein R1 has the same meaning as above, and 4 is a hydrogen atom or an alkali metal such as sodium or potassium) phenols represented by formula -9 (1 (wherein R2 has the same meaning as above and X is a halogen atom) It can be produced by a synthetic reaction.

この縮合反応は、例えば、銅粉触媒の存在下、J、 A
m、 Chem、 Soc、、 55.1289 (1
933)  に記載の方法に準じて行うことができる。
This condensation reaction is carried out, for example, in the presence of a copper powder catalyst by J, A
m, Chem, Soc,, 55.1289 (1
933).

一方、前記一般式(I)で示される酸ハロゲン化物は、
アクリル酸またはメタクリル酸とハロゲン化剤との反応
によって製造することができるっこの反応に用いられる
ハロゲン化剤として具体的には、塩化チオニル、三塩化
リン、五塩化リン等の塩素化剤、三臭化リン等の臭素化
剤などが例示される。また、ハロゲン化剤の使用量は通
常、アクリル酸またはメタクリル酸1モルに対し1.0
〜6.0モル程度の範囲であり、好ましくは2.0〜5
.0モル程度の範囲である。
On the other hand, the acid halide represented by the general formula (I) is
The halogenating agent used in this reaction, which can be produced by reacting acrylic acid or methacrylic acid with a halogenating agent, includes chlorinating agents such as thionyl chloride, phosphorus trichloride, phosphorus pentachloride, etc. Examples include brominating agents such as phosphorus bromide. In addition, the amount of halogenating agent used is usually 1.0 per mole of acrylic acid or methacrylic acid.
~6.0 mol, preferably 2.0 ~ 5 mol
.. It is in the range of about 0 mol.

前記一般式([[)で示されるフェノキンアニリン類と
前記一般式([1)で示される酸ハロゲン化物との縮合
反応は、不活性溶媒中、脱ハロゲン化水素剤の存在下で
行われる。
The condensation reaction between the fenoquine anilines represented by the general formula ([[) and the acid halide represented by the general formula ([1)] is carried out in an inert solvent in the presence of a dehydrohalogenating agent. .

この反応に用いる不活性溶媒としては、例えば、n−ヘ
キサン、n−へブタン等の脂肪族炭化水素、シクロヘキ
サン等の脂環式炭化水素、ベンゼン、トルエン、ヰ/レ
ン等の芳香族炭化水素、酢酸エチル、酢酸ブチル等のエ
ステル類、ジエチルエーテル、テトラヒドロフラン、エ
チレングリコールジメチルエーテル等のエーテル類、ジ
クロロメタン、クロロホルム、四塩化炭素、■、2−ジ
クロロエタン等のハロゲン化炭化水素頌などがあげられ
る。
Examples of inert solvents used in this reaction include aliphatic hydrocarbons such as n-hexane and n-hebutane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as benzene, toluene, and Examples include esters such as ethyl acetate and butyl acetate, ethers such as diethyl ether, tetrahydrofuran, and ethylene glycol dimethyl ether, and halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, and 2-dichloroethane.

また脱ハロゲン化水素剤の具体例としては、トリエチル
アミン、ジメチルアニリン、N、Nジメチルベンジルア
ミン、テトラメチル尿素等の三級アミン類、ピリジン、
4   (N、Nジメチルアミノ)ピリジン等のピリジ
ン系化合物などがあげられる。脱ハロゲン化水素剤の使
用量は、一般式(III)で示される酸ハロゲン化物1
モルに対し、0.8〜2.0モル程度の範囲が好ましく
、より好ましくは0.9〜1.5モル程度の範囲である
Specific examples of dehydrohalogenation agents include tertiary amines such as triethylamine, dimethylaniline, N,N dimethylbenzylamine, and tetramethylurea, pyridine,
Examples include pyridine compounds such as 4 (N,N dimethylamino)pyridine. The amount of the dehydrohalogenation agent used is the acid halide represented by the general formula (III) 1
It is preferably in a range of about 0.8 to 2.0 mol, more preferably in a range of about 0.9 to 1.5 mol.

この反応において、フェノキンアニリン類(il)に対
する酸ハロゲン化物(III)の反応モル比、すなわち
(III)  :  (n)は、通常0.7〜1、7 
: i程度が好ましく、より好ましくはO19〜1.3
:1程度である。
In this reaction, the reaction molar ratio of acid halide (III) to fenoquine aniline (il), i.e. (III):(n), is usually 0.7 to 1.7.
: Preferably about i, more preferably O19 to 1.3
: About 1.

反応温度は通常、−40℃〜100℃程度の範囲が好ま
しく、より好ましくは〜20℃〜50℃程度の範囲であ
る。
The reaction temperature is usually preferably in the range of -40°C to about 100°C, more preferably in the range of -20°C to about 50°C.

反応終了後は、脱ハロゲン化水素剤の酸塩を濾過等によ
りあらかじめ分離したのち、あるいま分離することなく
、任意の方法で反応液を処理することにより、目的物を
分離することができる。例えば、反応液を必要に応じて
中和処理したのち水洗し、有機j冒から溶媒を留去する
方法、反応液に水を加え、冷却して析出界を取り出す方
法など、種々の方法により目的物が分離される。得られ
た目的物は、さらに再結晶、溶媒洗浄等の公知の方法に
より精製することもできる。
After the reaction is completed, the target product can be separated by separating the acid salt of the dehydrohalogenating agent in advance by filtration or the like, and then treating the reaction solution by any method without separating it now. For example, the reaction solution can be neutralized if necessary and then washed with water, and the solvent can be distilled off from the organic solvent, or water can be added to the reaction solution and cooled to remove the precipitate. Things are separated. The obtained target product can be further purified by known methods such as recrystallization and solvent washing.

一般式(1)で示される(メタ)アクリルアミド誘導体
をゴムに添加する場合の形態としては、それぞれの化合
物単体であってもよいし、複数化合物の混合物であって
もよいし、あるいはゴム物性に影響を与えないクレーな
どの担体と混合したものであってもよく、さらには他の
配合剤と混合したものであってもよい。かかる(メタ)
アクリルアミド誘導体は、配合ゴムを製造する任意の段
階で添加することができる。
When the (meth)acrylamide derivative represented by the general formula (1) is added to rubber, each compound may be added alone, a mixture of multiple compounds may be added, or the physical properties of the rubber may be added. It may be mixed with a carrier such as clay that has no effect, or it may be mixed with other compounding agents. It takes (meta)
The acrylamide derivative can be added at any stage of producing compounded rubber.

また原料ゴムが合成ゴムである場合には、合成ゴムの重
合直後に添加してもよい。例えば、あるかしめ調製した
上記化合物の乳化液か、あるいは上記化合物をあらかじ
め有機溶剤に溶解させた溶液などの形で、重合後の合成
ゴムに添加することもできる。
Moreover, when the raw material rubber is synthetic rubber, it may be added immediately after polymerization of the synthetic rubber. For example, it can be added to the synthetic rubber after polymerization in the form of an emulsion of the above-mentioned compound prepared by caulking, or a solution in which the above-mentioned compound is previously dissolved in an organic solvent.

ゴムの配合にあたって、前記一般式(1)で示される化
合物の使用量は特に限定されないが、一般には、天然コ
ムおよび/または合成ゴム100重量部あたり0.1〜
20重量部重量部節囲が好ましい。
When compounding rubber, the amount of the compound represented by the general formula (1) is not particularly limited, but is generally 0.1 to 100 parts by weight of natural comb and/or synthetic rubber.
A range of 20 parts by weight is preferred.

また、本発明において使用する充填剤としては、ゴム工
業で使用されている種々のものが適用されるが、一般に
はカーボンブラックが好ましい。カーボンブランクの種
類は特に限定されるものでなく、従来よりゴム工業で使
用されている各種のカーボンブラックを使用することが
できる。なお、タイヤのグリップ性能を向上させるため
に従来からSAFブラック、l5AFブラツク、HAF
ブラックなど、窒素吸着比表面積80〜250m2/g
の高補強性カーボンブラックが用いられており、本発明
においてもこのような高補強性カーボンブラックを用い
るのが好ましい。充填剤の配合量は特に限定されないが
、一般にはゴム100重景部に対して20〜200重量
部程度の範囲が好ましい。
Further, as the filler used in the present invention, various fillers used in the rubber industry can be used, but carbon black is generally preferred. The type of carbon blank is not particularly limited, and various carbon blacks conventionally used in the rubber industry can be used. In addition, in order to improve the grip performance of tires, SAF black, l5AF black, HAF
Black, etc., nitrogen adsorption specific surface area 80-250m2/g
Highly reinforcing carbon black is used, and it is preferable to use such highly reinforcing carbon black in the present invention as well. The amount of the filler to be blended is not particularly limited, but is generally preferably in the range of about 20 to 200 parts by weight per 100 parts of rubber.

本発明において使用しうるゴムの種類としては、天然ゴ
ムのほか、ポリイソプレンゴム(IR)、スチレン・ブ
タジェン共重合ゴム(SBR)、ポリブタジェンゴム(
BR) 、アクリロニトリル・ブタジェン共重合ゴム(
N B R)、イソプレン・インブチレン共重合ゴム(
IIRL  エチレン・プロピレン・ジエン共重合ゴム
(EPDM)などの各種の合成ゴム、天然ゴムと合成ゴ
ムのブレンド、ふよびSBRとIR,SBRとBRなど
の合成ゴムのブレンドが例示される。
In addition to natural rubber, the types of rubber that can be used in the present invention include polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), and polybutadiene rubber (
BR), acrylonitrile-butadiene copolymer rubber (
NBR), isoprene/inbutylene copolymer rubber (
IIRL Examples include various synthetic rubbers such as ethylene-propylene-diene copolymer rubber (EPDM), blends of natural rubber and synthetic rubber, and blends of synthetic rubbers such as SBR and IR, and SBR and BR.

なお、タイヤのグリップ性能向上のために最近では、特
にスチレン含有量の高いSBRが好ましく用いられてい
るが、本発明においてもこのようなスチレン含有量の高
いSBRを用いることができる。本発明は、スチレン含
有量20〜50%のSBHに対しても効果的であり、こ
のようなSBRは好ましいゴムの一つである。
In order to improve the grip performance of tires, SBR with a particularly high styrene content has recently been preferably used, and such SBR with a high styrene content can also be used in the present invention. The present invention is also effective against SBH with a styrene content of 20 to 50%, and such SBR is one of the preferred rubbers.

SBRの種類は、溶液重合型であっても乳化重合型であ
っても差し支えない。
The type of SBR may be either a solution polymerization type or an emulsion polymerization type.

トレンドゴム材料の配合にあたり、従来からタイヤのグ
リップ性能を高めるた約にプロセス油を配合する手法が
よく用いられているが、本発明においてもプロセス油を
併用することができ、かつ好ましい。プロセス油の配合
量は特に限定しないが、一般には、ゴム100重量部あ
たり200重量部以下であり、好ましくは5〜200重
量部の範囲から選択される。プロセス油の種類も、本発
明において特定されるものてな(、従来よりゴム工業で
使用されている各種のプロセス油を用いることができる
When blending trend rubber materials, a method of blending process oil with a tire to improve the grip performance of tires has been commonly used, but it is also possible and preferable to use process oil in combination in the present invention. The amount of process oil blended is not particularly limited, but is generally 200 parts by weight or less per 100 parts by weight of rubber, preferably selected from the range of 5 to 200 parts by weight. The type of process oil is also specified in the present invention (although various process oils conventionally used in the rubber industry can be used).

また本発明にふいては、ゴム工業で通常使用されている
老化防止剤、加硫剤、加硫促進剤、リターダ−しゃっ解
剖や軟化剤等の各種ゴム薬品を従来と同様に併用しても
よいことはいうまでもない。
In addition, in the present invention, various rubber chemicals such as anti-aging agents, vulcanizing agents, vulcanization accelerators, retarders and softeners commonly used in the rubber industry are used in combination in the same manner as in the past. Needless to say, this is a good thing.

〈実施例〉 次に、前記一般式(1)で示される化合物を製造し、ま
たそれをゴムに配合して物性評価した実施例により、本
発明をさらに具体的に説明するが、本発明はこれらによ
って限定されるものではない。以下の例中、%および部
は、特にことわりがないかぎり、それぞれ重量%および
重11部を表わす。
<Example> Next, the present invention will be explained in more detail with reference to an example in which a compound represented by the above general formula (1) was manufactured, and the compound was blended into rubber and the physical properties were evaluated. It is not limited to these. In the following examples, % and parts refer to % by weight and 11 parts by weight, respectively, unless otherwise specified.

なお、本発明の(メタ)アクリルアミド誘導体の製造原
料となる前記一般式(n)で示されるフェノキシアニリ
ン類は、例えば、前記一般式(TV>の芳香族ニトロ化
合物を、塩酸水溶液中、塩化すず(ロ)を触媒として還
元することによって製造することができ、またこの芳香
族ニトロ化合物(■)は、前記一般式(V)のフェノー
ルlトー1式(VI)のニトロハロベンゼン類とを銅粉
触媒下で縮合反応させることによって得られるが、以下
、具体的な製造例にて説明を加える。
The phenoxyanilines represented by the general formula (n), which are the raw materials for producing the (meth)acrylamide derivatives of the present invention, can be prepared by, for example, adding an aromatic nitro compound represented by the general formula (TV>) to tin chloride in an aqueous solution of hydrochloric acid. This aromatic nitro compound (■) can be produced by reducing the phenol of the general formula (V) and the nitrohalobenzene of the formula (VI) with copper. It is obtained by a condensation reaction under a powder catalyst, and will be explained below using specific production examples.

原料製造例 フラスコにカリウムフェノラート39.6 g(0,3
モル)、4−フルオロ−1−二トロベンゼン49.4g
(0,35モル)および銅粉触媒1.20 gを仕込み
、200℃で2時間保温した。反応終了後、反応混合物
を5℃まで冷却し、析出した結晶を濾過し、冷ジエチル
エーテル50m1で洗浄した後、減圧乾燥して、4−ニ
トロ−ジフェニルエーテル52.6 g ヲ得た。この
化合物の融点は、53〜54℃であった。
Raw material production example 39.6 g (0.3 g) of potassium phenolate was placed in a flask.
mole), 49.4 g of 4-fluoro-1-nitrobenzene
(0.35 mol) and 1.20 g of copper powder catalyst were charged and kept at 200°C for 2 hours. After the reaction was completed, the reaction mixture was cooled to 5° C., the precipitated crystals were filtered, washed with 50 ml of cold diethyl ether, and then dried under reduced pressure to obtain 52.6 g of 4-nitro-diphenyl ether. The melting point of this compound was 53-54°C.

この化合物全量を再びフラスコに仕込み、氷酢酸50−
1塩化すず([1)3.0 g、 30%塩酸水溶液4
001nf!を加え、還流下で5時間保温した。反応終
了後、反応混合物を5℃まで冷却し、水100mj!に
て抽出した。さらに、33%水酸化す) IJウム水溶
液で中和し、水100ml!で洗浄した後、減圧濃縮し
、次いでヘキサン−酢酸エチルにより再結晶して、淡黄
色結晶の4−フェノキシアニリン31.2 gを得た。
The entire amount of this compound was charged into the flask again, and glacial acetic acid 50-
Tin monochloride ([1) 3.0 g, 30% aqueous hydrochloric acid solution 4
001nf! was added and kept warm under reflux for 5 hours. After the reaction is complete, the reaction mixture is cooled to 5°C and added with 100mj of water! Extracted. Furthermore, neutralize with 33% hydroxide) IJum aqueous solution and add 100ml of water! The residue was washed with water, concentrated under reduced pressure, and then recrystallized from hexane-ethyl acetate to obtain 31.2 g of 4-phenoxyaniline as pale yellow crystals.

この化合物の融点は82〜84℃であり、元素分析結果
は以下のとおりであった。
The melting point of this compound was 82 to 84°C, and the results of elemental analysis were as follows.

CHN 測定値 77、75% 5.87% 7.63%計算値
 77.81% 5゜94% 7.56%実施例1 フラスコにアクリル酸90.8g(1モル)、塩化チオ
ニル473g(4モル)を仕込み、還流下にて4時間保
温した。保温終了後、反応混合物を室温まで冷却し、次
いで蒸留して、アクリル酸クロライド45゜8gを得た
。沸点は72〜74℃であった。
CHN Measured value 77.75% 5.87% 7.63% Calculated value 77.81% 5°94% 7.56% Example 1 90.8 g (1 mol) of acrylic acid and 473 g (4 mol) of thionyl chloride were placed in a flask. ) and kept warm under reflux for 4 hours. After incubation, the reaction mixture was cooled to room temperature and then distilled to obtain 45.8 g of acrylic acid chloride. The boiling point was 72-74°C.

一方、フラスコに4−フェノキシアニリン18.5g(
0,1モル)、トリエチルアミン13.1g(0,13
モル)、クロロホルム40〇−を仕込み、アクリル酸ク
ロライド10.9 g(0,12モル)を25〜35℃
で30分間を要して滴下した。滴下終了後、反応混合物
を35℃にて2時間保温した。
Meanwhile, 18.5 g of 4-phenoxyaniline (
0.1 mol), triethylamine 13.1 g (0.13
10.9 g (0.12 mol) of acrylic acid chloride was heated at 25 to 35°C.
The mixture was added dropwise over a period of 30 minutes. After the addition was completed, the reaction mixture was kept at 35° C. for 2 hours.

反応終了後、反応混合物に水200rn1を注ぎ、抽出
した。有機層を水200−にて洗浄したのち、溶媒を留
去した。析出した結晶をエーテル30顎で洗浄し、減圧
乾燥して、生成物23. Ogを得た。この化合物は白
色結晶であり、融点は114〜115℃であった。
After the reaction was completed, 200rn1 of water was poured into the reaction mixture for extraction. After washing the organic layer with 200 g of water, the solvent was distilled off. The precipitated crystals were washed with 30 jaws of ether and dried under reduced pressure to obtain product 23. Obtained Og. This compound was a white crystal with a melting point of 114-115°C.

この化合物を化合物Aとする。This compound is designated as Compound A.

この化合物は、元素分析結果およびNMRスペクトルの
帰属により、下記の構造式であることが確認された。
This compound was confirmed to have the following structural formula based on elemental analysis results and NMR spectrum assignment.

元素分析 CHN 測定値 75.25% 5.48% 5,81%計算値
 75.33% 5.44% 5.85%原料を変える
以外は上記に準じた方法で、次の化合物を製造した。
Elemental analysis CHN Measured value 75.25% 5.48% 5.81% Calculated value 75.33% 5.44% 5.85% The following compound was produced in the same manner as above except that the raw materials were changed.

化1ffB  4−(4−メチルフェノキシ)フェニル
アクリルアミド 化合物C4−(4−クロロフェノキン)フェニルアクリ
ルアミド 化合物D 3−フェノキシフェニルアクリルアミド 化合物E  4−(4−N、N−ジメチルアミノフェノ
キシ)フェニルアク リルアミド 実施例2 原料をメタクリル酸として、実施例1に準じてメタクリ
ル酸クロライドを製造し、もう一方の原料として4−フ
ェノキンアニリンを用いて反応させた。その結果、反応
生成物として白色結晶24.1 gを得た。この化合物
の融点は68〜69℃であった。この化合物を化合物F
とする。
Chemical formula 1ffB 4-(4-methylphenoxy)phenylacrylamide compound C4-(4-chlorophenoquine)phenylacrylamide compound D 3-phenoxyphenylacrylamide compound E 4-(4-N,N-dimethylaminophenoxy)phenylacrylamide Example 2. Methacrylic acid chloride was produced according to Example 1 using methacrylic acid as the raw material, and 4-phenoquinaniline was used as the other raw material to react. As a result, 24.1 g of white crystals were obtained as a reaction product. The melting point of this compound was 68-69°C. This compound is compound F
shall be.

この化合物は、元素分析結果およびNMRスペクトルの
帰属により、下言己の構造式であることが確認された。
This compound was confirmed to have the following structural formula based on the elemental analysis results and NMR spectrum assignment.

元素分析 CHN 測定1ii1 75.92% 5.88% 5.58%
計算値 75.90% 5,92% 5.53%原料を
変える以外は上記に準じた方法で、次の化合物を製造し
た。
Elemental analysis CHN measurement 1ii1 75.92% 5.88% 5.58%
Calculated value 75.90% 5.92% 5.53% The following compound was produced in the same manner as above except for changing the raw materials.

化合物G  4−(4−メチルフェノキシ)フェニルメ
タクリルアミド 化合物H3−フェノキシフェニルメタクリルアミド 実施例3 (配合処方) IsΔFカーボンブラック ステアリン酸 亜鉛華 芳香族系プロセス油 50部 3部 5部 表−1記載 イオウ 2部 化合物 表−1記載 バンバリーミキサ−として、東洋精機製の250−ラボ
プラストミル■を用い、オイルバス温度170℃で、上
記配合処方に基づき、スチレン・ブタジェン共重合ゴム
をベースに、本発明で対象とする化合物、カーボンブラ
ック、ステアリン酸、プロセス油、老化防止剤および亜
鉛華を投入し、60rpmのミキサー回転数で5分間混
練した。この時のゴム温度は160〜170℃であった
Compound G 4-(4-methylphenoxy)phenylmethacrylamide Compound H3-phenoxyphenylmethacrylamide Example 3 (Blend prescription) IsΔF carbon black zinc stearate aromatic process oil 50 parts 3 parts 5 parts Sulfur listed in Table-1 Part 2 Compounds Listed in Table 1 As a Banbury mixer, 250-Labo Plastomil ■ manufactured by Toyo Seiki was used, and the present invention was carried out at an oil bath temperature of 170°C, based on the above formulation, and based on styrene-butadiene copolymer rubber. Then, the target compound, carbon black, stearic acid, process oil, anti-aging agent and zinc white were added and kneaded for 5 minutes at a mixer rotation speed of 60 rpm. The rubber temperature at this time was 160 to 170°C.

次にこのゴム配合物をオープルミルに移し、40〜50
℃の温度で、上記配合処方に示した加硫促進剤およびイ
オウを添加し、混練した。
Next, this rubber compound was transferred to an Oople mill, and the
The vulcanization accelerator and sulfur shown in the above formulation were added and kneaded at a temperature of .degree.

さらに加硫プレスにより、1.50℃で50分間加硫し
、所定の形状にした後、tanδの測定に供した。ta
nδの測定は、岩木製作所製の粘弾性スペクトロメータ
ーを用い、周波数10七の条件下、室温から100℃ま
での温度で行った。
Furthermore, it was vulcanized at 1.50° C. for 50 minutes using a vulcanization press to form a predetermined shape, and then used for tan δ measurement. ta
The measurement of nδ was performed using a viscoelastic spectrometer manufactured by Iwaki Seisakusho under the condition of a frequency of 107 at temperatures from room temperature to 100°C.

また耐熱性試験として、前記ゴム組成物から作成した約
1 cm x l cm x 3.5 n++nの加硫
ゴム試験片を用いてブローアウト温度を測定した。
Further, as a heat resistance test, the blowout temperature was measured using a vulcanized rubber test piece of approximately 1 cm x 1 cm x 3.5 n++n prepared from the rubber composition.

ブローアウト温度の測定は、恒温槽に加硫ゴム試験片を
入れ、温度を200℃より10℃間隔で300℃まで上
昇させる問答々の温度で1時間放置した後、試験片を取
り出して半分に切り、内部に気泡が発生しているか否か
を肉眼で確認することにより行った。初めて気泡が発生
し始めた温度をブローアウト温度とした。
To measure the blowout temperature, place a vulcanized rubber test piece in a constant temperature bath, raise the temperature from 200°C to 300°C at 10°C intervals for 1 hour, then remove the test piece and cut it in half. This was done by cutting the sample and visually checking whether or not air bubbles were generated inside. The temperature at which bubbles first began to generate was defined as the blowout temperature.

得られた結果のうち、80℃におけるtanδおよびブ
ローアウト温−度を、化合物およびプロセス油の配合条
件とともに表−1に示した。
Among the results obtained, tan δ and blowout temperature at 80°C are shown in Table 1 along with compounding conditions of the compound and process oil.

\ \ \ \ \ \ \ \ \ \ \、 \ \ \ 実施例4 (配合処方) 天然ゴム ブタジェンゴム(BR−01) SAFカーボンブラック ステアリン酸 亜鉛華 芳香族系プロセス油 老化防止剤(実施例3に同じ) 加硫促進剤(実施例3に同じ) イオウ 化合物 表−2記載 表−2記載 65部 1部 3部 40部 1部 1部 2部 表−2記載 上記配合処方に基づき、実施例3の方法に準拠して加硫
ゴムを作製し、同様の試験に供した。得られた結果を、
ベースゴムおよび化合物の配合条件とともに表−2に示
した。
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \, \ \ \ \ Example 4 (Composition) Natural rubber butadiene rubber (BR-01) SAF carbon black Zinc stearate Aromatic process oil Anti-aging agent (Example 3) Vulcanization accelerator (same as Example 3) Sulfur compound Table-2 Description Table-2 65 parts 1 part 3 parts 40 parts 1 part 1 part 2 parts Table-2 Implementation based on the above compounding recipe Vulcanized rubber was prepared according to the method of Example 3 and subjected to similar tests. The results obtained,
Table 2 shows the compounding conditions for the base rubber and compounds.

〈発明の効果〉 本発明による(メタ)アクリルアミド誘導体は、天然ゴ
ムおよび/または合成ゴムに配合した場合に、ブローア
ウト温度の低下を来すことなく、タイヤが高温になった
際のグリップ力に対応する60℃以上の高温領域におけ
るtanδを効果的に向上させることができる。したが
ってこの(メタ)アクリルアミド透導体は、ゴム用改質
剤として有用であり、またこの改質剤を配合したゴム組
成物は、特にタイヤのトレッド部に適用した場合に、優
れたグリップ性能を有するタイヤとすることができる。
<Effects of the Invention> The (meth)acrylamide derivative according to the present invention, when blended with natural rubber and/or synthetic rubber, improves the grip strength of tires at high temperatures without causing a decrease in blowout temperature. The tan δ in the corresponding high temperature range of 60° C. or higher can be effectively improved. Therefore, this (meth)acrylamide transparent conductor is useful as a rubber modifier, and a rubber composition containing this modifier has excellent grip performance, especially when applied to the tread of a tire. It can be a tire.

Claims (5)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ (式中、R^1およびR^2はそれぞれ独立に水素原子
、炭素数1〜8のアルキル基、シクロヘキシル基、フェ
ニル基、ハロゲン原子、水酸基またはアミノ基であり、
R^3は水素原子またはメチル基である) で示される(メタ)アクリルアミド誘導体。
(1) General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, R^1 and R^2 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cyclohexyl group, a phenyl group, a halogen atom , a hydroxyl group or an amino group,
(R^3 is a hydrogen atom or a methyl group) A (meth)acrylamide derivative represented by:
(2)一般式 ▲数式、化学式、表等があります▼ (式中、R^1およびR^2はそれぞれ独立に水素原子
、炭素数1〜8のアルキル基、シクロヘキシル基、フェ
ニル基、ハロゲン原子、 水酸基またはアミノ基である) で示されるフェノキシアニリン類と、アクリル酸または
メタクリル酸のハロゲン化物とを、不活性溶媒中、脱ハ
ロゲン化水素剤の存在下で縮合反応させることを特徴と
する請求項1記載の(メタ)アクリルアミド誘導体の製
造法。
(2) General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, R^1 and R^2 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cyclohexyl group, a phenyl group, a halogen atom , a hydroxyl group or an amino group) and a halide of acrylic acid or methacrylic acid are subjected to a condensation reaction in the presence of a dehydrohalogenating agent in an inert solvent. Item 1. A method for producing a (meth)acrylamide derivative according to item 1.
(3)請求項1記載の(メタ)アクリルアミド誘導体を
有効成分とするゴム用改質剤。
(3) A rubber modifier comprising the (meth)acrylamide derivative according to claim 1 as an active ingredient.
(4)天然ゴムおよび/または合成ゴム、充填剤、なら
びに請求項1記載の(メタ)アクリルアミド誘導体を含
有してなるゴム組成物。
(4) A rubber composition comprising natural rubber and/or synthetic rubber, a filler, and the (meth)acrylamide derivative according to claim 1.
(5)天然ゴムおよび/または合成ゴムに、請求項1記
載の(メタ)アクリルアミド誘導体を配合することを特
徴とするゴムの高温における損失係数を向上させる方法
(5) A method for improving the loss coefficient of rubber at high temperatures, which comprises blending the (meth)acrylamide derivative according to claim 1 into natural rubber and/or synthetic rubber.
JP18563389A 1989-07-17 1989-07-17 (meth)acrylamide derivative, its production and rubber modifier containing the same derivative as active ingredient Pending JPH0348647A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18563389A JPH0348647A (en) 1989-07-17 1989-07-17 (meth)acrylamide derivative, its production and rubber modifier containing the same derivative as active ingredient
CA 2021194 CA2021194A1 (en) 1989-07-17 1990-07-13 Rubber composition useful for tires
EP90307807A EP0409565A1 (en) 1989-07-17 1990-07-17 Rubber composition useful for tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18563389A JPH0348647A (en) 1989-07-17 1989-07-17 (meth)acrylamide derivative, its production and rubber modifier containing the same derivative as active ingredient

Publications (1)

Publication Number Publication Date
JPH0348647A true JPH0348647A (en) 1991-03-01

Family

ID=16174188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18563389A Pending JPH0348647A (en) 1989-07-17 1989-07-17 (meth)acrylamide derivative, its production and rubber modifier containing the same derivative as active ingredient

Country Status (1)

Country Link
JP (1) JPH0348647A (en)

Similar Documents

Publication Publication Date Title
JP4450149B2 (en) Organosilicon compound, method for producing the same, and compounding agent for rubber
JP5682575B2 (en) Fused heterocyclic compounds and compositions
JP4985935B2 (en) Compounding agent for rubber
KR101960988B1 (en) Coupling agent for rubber/carbon black, and rubber composition containing same for use in tires
KR101979960B1 (en) Organosilicon compound and method for preparing the same, rubber compounding agent and rubber composition
JPWO2004000930A1 (en) Rubber composition and tire using the same
JP5173312B2 (en) Additive for rubber composition, rubber composition and tire using the same
JP3996694B2 (en) Rubber composition
JP2001226383A (en) Sulfur-containing organosilicon compound, and method for producing the same
JPH0348647A (en) (meth)acrylamide derivative, its production and rubber modifier containing the same derivative as active ingredient
JP6125323B2 (en) Rubber composition and pneumatic tire
US5218025A (en) Method for improving properties of vulcanized rubber containing inorganic whity filler
JP2016216595A (en) Coupling agent for rubber/carbon black and rubber composition
JP2718065B2 (en) Novel coupling agent and method for improving physical properties of vulcanized rubber using the same
JP2019089869A (en) Low-mileage tire rubber composition
EP0409565A1 (en) Rubber composition useful for tires
JPH0359042A (en) Rubber composition for tire
JP2017155075A (en) Coupling agent for rubber-carbon black and rubber composition
JP2906621B2 (en) Rubber composition for tire tread
JPH02189349A (en) Improvement of loss factor of styrene/butadiene copolymer rubber at high temperature
JPH03140341A (en) Rubber composition for tire
JPH03134040A (en) Rubber composition for tire
WO2014092181A1 (en) Rubber composition having double bond in each molecule
JP2012240927A (en) Organosilicon compound and method for producing the same, compounding agent for rubber, rubber composition, and tire
JPH04220442A (en) Rubber composition